
LBNL-57677

Grid Collector: Facilitating Efficient Selective
Access from Data Grids

Kesheng Wu, Junmin Gu, Jerome Lauret, Arthur M. Poskanzer, Arie Shoshani, Alexander Sim, and

Wei-Ming Zhang

Abstract — The Grid Collector is a system that facilitates the effective analysis and spontaneous
exploration of scientific data. It combines an efficient indexing technology with a Grid file management
technology to speed up common analysis jobs on high-energy physics data and to enable some
previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically
specifies the files containing the events of interest, reads all the events in the files, and filters out
unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount
of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by
allowing users to specify more precisely what events are of interest and to read only the selected events.
This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files
from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to
be performed at centralized computer facilities where commonly used files are kept on large shared file
systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual
file transfers. This makes it much easier to perform analyses that require data files on tertiary storages
and remote sites. It also makes more computer resources available for analysis jobs since they are no
longer bound to the centralized facilities.

Key words – Grid, Data Management, Data Analysis, Bitmap Index, Storage Resource Manager

—————————— � ——————————

1 INTRODUCTION

Modern scientific investigations require the searching over

billions of objects and accessing data from various distributed

storage systems. The lack of appropriate technology to ad-

dress this problem has prohibited the effective analysis and

spontaneous exploration of scientific data. In this paper, we

describe the application of a new theoretically optimal bitmap

indexing technology in combination with Grid storage man-

agement technology to overcome this data analysis problem.

While the technology is generic and can be applied to various

application domains, we focus in this paper on applying it to a

particular dataset produced from a high-energy and nuclear

physics (HENP) experiment called STAR [13]. This pre-

sented an additional challenge of incorporating these tech-

nologies into the existing analysis framework used by the ex-

periment. This was achieved by making the Grid Collector a

plug-in that boosts the performance and capability of STAR

analysis framework.

Many on-going and planned HENP physics experiments

are capable of producing PetaBytes of raw data per year [1]

[2]. Generally, the bulk of the data is composed of snapshots

of high-energy collisions, known as events. The recorded

data, in its “raw” or digitalized format, usually goes through a

reconstruction process to produce event summary data [4].

The event summary data is often further processed into analy-

sis objects [4]. As the name suggests, most user analyses use

these analysis objects rather than the raw data or the event

summary data. Even though, the analysis objects are much

smaller than the raw data, they can still be many terabytes in

size [2]. The process of producing these analysis objects and

event summary data is time consuming, which may necessitate

distributed processing. Since most HENP experiments are

large collaborations, participating institutions often desire to

replicate certain portions of the event summary data or analy-

sis objects. For these and other reasons, such as reliability and

redundancy, high-energy physics data like data from many

other sources are distributed across diverse geographical loca-

tions. In addition, because the data volume is too large for

most disk systems, all of the raw data, the majority of event

summary data, and much of the analysis objects are on tertiary

storage managed by mass storage systems, which make them

inaccessible by analysis jobs designed to work with disk-

resident files only.

The event summary data and analysis object data are typi-

cally stored as ROOT files [5]. An analysis job is usually per-

formed on a set of selected events. Many of the existing

analysis frameworks require these events to be specified as a

list of files. These analysis frameworks then read all events in

the files and leave the user code to filter out unwanted events.

In most cases, only a fraction of the events in the data files are

selected, and the time to read the unwanted events could be a

significant portion of the total execution time. One objective

of the Grid Collector is to eliminate the time spent to read

————————————————

• K. Wu, J. Gu, A. M. Poskanzer, A. Shoshani, and A. Sim are with Lawrence
Berkeley National Laboratory, Berkeley, CA 94720. E-mail: {KWu, JGu,
AMPoskanzer, AShoshani, ASim}@lbl.gov.

• W. Zhang is with Department of Physics, Kent State University, Kent, OH
44242. E-mail: zhang@hpacq.kent.edu.

• J. Lauret is with Brookhaven National Laboratory, Upton, NY 11973. E-
mail: jeromel@bnl.gov.

This work was supported by the Director, Office of Science, Division of Mathe-
matical, Information and Computational Sciences, of the U.S. Department of En-
ergy under Contract No. DE-AC03-76SF00098.

2 GRID COLLECTOR

these unwanted events. A second objective is to automate

most file and data management tasks, such as determining the

event of interest and the respective files containing them, the

locations of files, reserving space for the files to be moved,

transferring files over the Grid or from mass storage systems,

and reclaiming the disk space after analyses.

The Grid Collector project achieves these goals by combin-

ing two technologies, an efficient indexing scheme [6] [7] and

a distributed file management tool called Storage Resource

Manager [8] [9]. The Grid Collector provides a way to spec-

ify events of interest using conditions on variables (properties

of the events) defined by the physicists. Because the events of

interest are explicitly specified, it is possible for the analysis

framework to avoid reading unwanted events. The file man-

agements functions mentioned before are performed by the

Storage Resource Manager software. The Grid Collector pro-

vides a way for an event to be associated with a set of files

containing the appropriate event summary data and analysis

objects, and get the data files from local or remote systems,

including mass storage systems.

There are a number of projects with somewhat similar vi-

sions as the Grid Collector; two of the closest ones are STACS

[10] and XROOTD [11]. The STACS project can be viewed

as the progenitor of the Grid Collector. It demonstrated with

one mass storage system and a fixed set of files that it is pos-

sible to automate the file management tasks. In contrast, the

Grid Collector can support an arbitrary number of storage sites

and mass storage systems. It also uses a more efficient index-

ing scheme. The XROOTD software was developed in the

context of a high-energy experiment named BaBar [12].

XROOTD was intended as an extension of the ROOT Daemon

ROOTD [5] to provide accesses to ROOT files stored on lo-

cally attached storage (any disk or storage attached to a single

node), centrally available storage (NFS, NAS, SAN) or on

mass storage systems (MSS). One key difference between the

Grid Collector and XROOTD is that the Grid Collector pro-

vides event-level (i.e. object-level) data access rather than file-

level data access. Another difference is that the Grid Collector

relies on standard Grid technologies while XROOTD uses its

own peer-to-peer protocol.

An overview of the Grid Collector is provided in Section 2.

In Sections 3 and 4 we describe the two main components of

the Grid Collector: the Storage Resource Manager and the

bitmap indexing module. In Sections 5 and 6 we describe how

the Grid Collector improves two types of analysis jobs. A

short summary is given in Section 7.

2 OVERVIEW OF GRID COLLECTOR

The current implementation of the Grid Collector includes a

main server we call the Coordinator and a number of other

servers to complete its functions. There is a client library that

plugs in to the STAR analysis framework [14], which allows

the analysis code to make use of the Grid Collector. Figure 1

shows a schematic diagram of the various modules involved.

In the next sub-sections we briefly describe the key functions

of each module.

2.1 Grid Collector Coordinator

The Coordinator is currently implemented as a CORBA

server. It consists of four identifiable modules: Index Builder,

Event Catalog, File Locator, and File Scheduler.

The Index Builder module ingests the tag files generated by

the reconstruction process and uses the information to build a

catalog for the events. The catalog contains hundreds of high-

level attributes, called tags, about each event. Since the tags

Analysis

code

New query

Event iterator

Event Catalog

In: conditions

Out: logical files,

event IDs

File Locator

In: logical name,

Out: physical

location

Grid Collector

File Scheduler

In: physical file

DRM

Administrator

Fetch tag file

Load subset

Rollback

Commit

Index Builder

In: STAR tag file

Out: bitmap index

NFS, local disk

Replica Catalog

HRM 1

HRM 2

Clients Servers

Replica Catalog

Figure 1: The architecture of the Grid Collector.

LBNL-57677 3

are defined by the physicists and are relatively small in num-

bers, they are natural candidates to be indexed and searched.

The core of the Coordinator is an Event Catalog. The data

in this catalog is the same as those in the tag files. However,

because we build an index for each tag, we can answer ques-

tions like “finding all events with chargedMultiplicity between

100 and 200” much more efficiently than using the tag files

directly. This module takes queries from users, and outputs

the logical names of files containing the events of interest and

identifiers of the events in the files.

The File Locator module takes the logical file names and

performs the necessary lookup to determine an appropriate

copy of the file to use. If a copy is accessible by the client, its

name will be returned, otherwise, the “closest” copy will be

returned and the file will be scheduled for actual transfer. The

File Scheduler decides which files to be transferred next. The

actual transfer is performed through Storage Resource Manag-

ers. Our design allows the possibility of requesting multiple

files at the same time. This is needed for analyses that use two

or more different kinds of files simultaneously. In this situa-

tion, in order to analyze one event, multiple files must be pre-

sent at the same time, which creates extra constraints on the

file caching mechanism. We refer to the set of files that must

be used together as a file bundle. The ability to handle file

bundles is also a unique feature of Grid Collector.

2.2 External Services

The Grid Collector Coordinator requires two external services,

Storage Resource Managers and Replica Catalogs. The replica

catalogs contain information about where the replicas (copies) of

the files are stored and how to access them. In STAR, we use

STAR specific replica catalogs [15]. Potentially other types of

replica catalogs can be used as well [16]. The Storage Resource

Managers are used to transfer files and cache them for users.

We make use of two different types of Storage Resource

Managers, a Hierarchical Resource Manager (HRM) and a

Disk Resource Manager (DRM). The HRM is used to transfer

files out of mass storage systems and the DRM is used to

manage the local cache for the end users and to transfer files

from other storage sites. More information about their func-

tions is provided in the next section.

2.3 Clients

The clients of the Grid Collector come in two flavors, the Event

Iterator that plugs into user analysis code and the stand alone

CORBA clients that perform administrative and other functions.

The administrative client instructs the Coordinator to build indi-

ces, and answers a small number of inquiries such as how many

users are active.

The more interesting client is the Event Iterator. The end

user code makes use of this module to interact with the Grid

Collector Coordinator. It sends the query conditions, receives

statistics about the query, such as the number of events se-

lected, and finally, it reads selected events one at a time. The

most important function of the Event Iterator is called next. If

a file bundle is accessible, this function reads the next event of

interest. After it is finished reading all events in a file bundle,

the Event Iterator requests another file bundle from the Grid

Collector. After calling the function next, an event is available

in memory for analysis computations. The Event Iterator also

works with the DRM to ensure that the files in use are pinned

in the disk cache (i.e. cannot be removed) and that the pins are

released after use, so that the space can be reclaimed.

Because the Event Iterator is designed to be a plug-in to an

existing analysis framework, the Grid Collector can easily

coexist with another framework. This offers the option for

users to try out the Grid Collector with a minimal modification

to their analysis programs. This type of a smooth transition

path is quite useful to STAR users.

3 THE STORAGE RESOURCE MANAGERS

Storage Resource Managers (SRMs) are Grid middleware

components whose function is to provide dynamic space allo-

cation and file management on shared storage components on

the Grid [8]. They are designed to provide effective sharing of

files, by monitoring the activities, and making dynamic deci-

sions on which files to replace when space is needed.

Managing shared storage resources on the Grid is a neces-

sary but complex task because of the diversity of the storage

resources present. Storage resources can vary in complexity: a

single disk under a UNIX file system, large sets of disk caches

or disk RAIDs, or mass storage systems (such as HPSS). To

simplify the access to these diverse resources, SRM provides a

uniform interface for the clients. SRM supports many transfer

protocols such as FTP, HTTP/S, GridFTP, or BBFTP, by

automatic negotiation between the client and the server. It

makes file transfers robust and reliable by automatically re-

covering from transient errors and retry.

SRMs also simplify the Grid client’s interaction with stor-

age systems. For example, it is a lot simpler for an application

client to request one thousand files in a single request from an

SRM regardless of their location on the Grid, rather than hav-

ing to get each file from its source location. An SRM accepts

a multi-file request, queues each file requested, retrieves the

files from the source locations (using a file transport service

such as GridFTP [22] from the Globus project [23]) based on

space availability, and streams the files to the client. If files

are found locally, they are pinned for a certain lifetime. The

File Scheduler of the Grid Collector takes advantage of this

function. An SRM can enable sharing of files between clients

and between requests, makes storage usage more effective,

and avoiding unnecessary file transfers over the network.

SRMs also enable a more effective use of the large shared

storage space by automatic garbage collection. A common

problem of managing shared storage resources is that files are

deposited in such systems and often not removed. Much of

the storage space may be occupied by files that are not needed

any longer. SRMs reduce this problem by associating a life-

time with temporary files. This makes it easy for SRMs to

reuse the space occupied by inactive files. SRMs support the

“pinning” of files for the duration of a lifetime, as well as ex-

plicit “release” of files.

As depicted in Figure 2, an SRM which is placed in front of

a mass storage system, such as HPSS [24], is referred to as an

HRM). It manages a disk cache of its own, and interacts with

HPSS to stage and archive files. When a request for files

4 GRID COLLECTOR

SRM -GET

stage filesstage files

Disk

Cache

Disk

Cache

DataMover

HRM
(performs writes)

Disk

Cache

Disk

Cache

HRM
(performs reads)

NCAR -MSS

Files request

(thousands of files)

-GET

GridFTPGridFTP

stage filesstage files

Network transfer

Disk

Cache

Disk

Cache

DataMover

HRM
(performs writes)

Disk

Cache

Disk

Cache

HRM
(performs reads)

NCAR -MSSDisk

Cache

Disk

Cache

DataMover

HRM
(performs writes)

Disk

Cache

Disk

Cache

HRM
(performs reads)

Disk

Cache

Disk

Cache

DRM

HRM

Disk

Cache

Disk

Cache

HRM

MSS

stage files

SRM-GET

Network transfer

GridFTP

HRM
(performs writes)

HRM
(performs writes)

HRM
(performs writes)

DRM

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

SRM-GET

Network transfer

GridFTP

HRM
(performs writes)

HRM
(performs writes)

HRM
(performs writes)

FTP

GridFTP

HTTP(s)

BBFTP

servers
Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Network

File

transfer

Client

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Disk

Cache

Replica

Registration

Service

Replica

Catalog

Figure 2: A schematic drawing of Storage Resource Management.

comes to a DRM of a client, it communicates with other

HRMs, DRMs or file repository with FTP, GridFTP, BBFTP,

or HTTP servers using the source URL. The source URL is

usually the physical address of a file, or the address used by

SRMs to access the file from the storage systems they access.

The DRM then brings each file to its local disk to be accessed

by the client. In the STAR experiment, the DRM also regis-

ters the files into the File Replica Catalogs upon a successful

transfer. This enables the Grid Collector to make use of the

new copies without any user intervention.

4 THE BITMAP INDICES

A key component of Grid Collector is the Event Catalog. It

holds searchable attributes of events (called tags by the physi-

cists), information about how to locate the file, and the loca-

tion of each event within a file. Using it, one can specify con-

ditions on any number of searchable attributes and get back

enough information to retrieve the selected events. A number

of experiments have previously explored the idea of building

event catalogs; however, most have given up on this approach

because of the complexity of the problem of searching over

millions or billions of event properties. An obvious way of

building an event catalog is to put all the data into a commer-

cial DBMS. However, this approach is not practical, since

even commercial DBMS systems are not able to search effi-

ciently the large volume of data produced from a typical

HENP experiment. Frequently, the experiments use an open-

source DBMS system to implement the file catalogs and rep-

lica catalogs. However, an event catalog would have 100 to

1000 times more records than the file catalogs. Because of

their size, the challenge we had to address is how to search

event catalogs efficiently.

The general technique for speeding up searching of large

datasets is indexing. Recently, we implemented an efficient

compressed bitmap index scheme. Complexity analyses show

that our compressed bitmap indices are optimal for one-

dimensional range queries. The time complexity of answering

these one-dimensional range queries is a linear function of the

number of hits [7]. Only few especially efficient indexing

 B - t r e e Projection B i t m a p

Index Size (MB) 408 113 186

1-dim 0.95 0.51 0.02

2-dim 2.15 0.56 0.04

Average

processing

time (sec) 5-dim 2.23 0.67 0.17

Table 1: The sizes and average query processing time

on a subset of STAR data with 2.2 million events and

12 commonly used attributes.

LBNL-57677 5

schemes, such as B-tree, have this optimality property. Since

the results of one-dimensional queries can be efficiently com-

bined to answer multi-dimensional queries, this optimality

implies that compressed bitmap indices are also efficient for

multi-dimensional range queries. The same is not true for B-

trees or other indexing methods, including multi-dimensional

indexes. Performance measurements on a variety of datasets

demonstrated that the compressed bitmap indices are signifi-

cantly more efficient than other indices not only on one-

dimensional range queries but also on multi-dimensional range

queries [6].

Table 1 is a summary of the performance of three indexing

schemes, a B-tree from a commercial DBMS, a projection

index and our compressed bitmap index. We compare our

bitmap indices against B-tree and the projection index because

the B-tree is the most commonly used indexing scheme and

the projection index is known to be the most efficient scheme

for multi-dimensional range queries. Each average query

processing time reported in Table 1 is an average over 1000

range queries with randomly generated range conditions. The

same queries are answered with all three indexing schemes. A

client program generates the queries and measures the query

response time. For 5-dimensional range queries, our com-

pressed bitmap indices use about one quarter of the time re-

quired by the projection indices and less than one tenth the

time consumed by the B-tree indices. We have conducted a

number of tests on different datasets, and our compressed bit-

map indexing scheme consistently outperforms other indexing

schemes [6] [7]. Our bitmap indices can also be built in much

less time than the typical B-tree indices.

5 SPEEDING UP COMMON ANALYSIS JOBS

One of the main reasons for developing the Grid Collector is

to speed up the analysis jobs. In a previous paper, we reported

the performance of reading selected events without doing any

useful analysis work [20], where the performance improve-

ment on typical analysis tasks was between 2 and 100 depend-

ing on the number of events selected. However, the previous

measurements assumed that the whole content of an event had

to be read into memory before the filter function can be ap-

plied. In this section, we report some timing results using a

flow analysis program [21]. The time measured includes both

the I/O time and the analysis computation time. More re-

cently, the STAR experiment has reorganized the analysis

object data files to make them more efficient for the com-

monly used filtering mechanism. It was important to us to

measure against this improved filtering mechanism. Next, we

describe these results.

The measurements were performed on a Linux computer

with two Intel Xeon 2.8 GHz processors and 2 GB of main

memory. The tests use a subset of recently produced analysis

objects totaling about 8 GB. The files used in the tests reside

on an active disk vault; the programs run on a lightly loaded

machine. We ran two equivalent programs with the same set-

tings for analysis computations. The main difference between

the two is that one uses the existing filtering mechanism while

the other program relies on the Grid Collector to perform the

same selection. The filtering mechanism requires part of an

analysis object to be read into memory before a decision is

made on whether to continue the analysis computation. Using

the Grid Collector, only the events required for the analysis

computation are read, and therefore the program using the

Grid Collector should take less time. Because the ROOT files

storing the analysis objects are compressed in baskets (blocks)

and a basket has to be decompressed before any data in the

basket can be accessed [5], the exact amount of time can be

saved is not obvious.

The speedup values shown in Figure 3 are ratios of time

used by the analysis program with the existing filtering

mechanism to the one with Grid Collector. The horizontal

axis is the fraction of events selected for analysis computation.

The dots are the actual measurements, where each dot is an

average of 4 different runs with the same settings. The solid

lines are trend lines produced by the plotting program (Micro-

soft Excel). Since the analysis portion of the programs per-

forms the same computations, the one with Grid Collector

uses less time because it reads fewer events. Because the data

files are compressed ROOT files [5], reading an analysis ob-

ject actually require a significant amount of CPU time. In

Figure 3, the speedup values for elapsed time is less than those

for CPU time because both programs have to open the files

through the same NFS system, which have the same file sys-

tem delays, network delays and other random delays. In most

test cases, these delays are longer than the CPU time required.

The test show that the program using the Grid Collector

never takes more time than the one without Grid Collector.

However, the speedup is less than the inverse of selectivity

because the ROOT files are compressed in baskets. Selectiv-

ity is defined as the number of events selected for the analysis

relative to the total number of events. When the selectivity is

large, say, > 0.1, almost all baskets are read and decompressed

in order to access the selected events. If fewer baskets are

read or fewer files are opened, then the speedup is more sig-

nificant.

Figure 3: Using Grid Collector reduces both CPU time

and elapsed time, and speeds up analysis jobs.

1

2

3

4

5

6

0.01 0.1 1

selectivity

s
p

e
e
d

u
p

elapsed time CPU time

6 GRID COLLECTOR

There is a large class of flow analysis jobs with selectivity

of about 0.1 [21]. For these jobs, using the Grid Collector

reduces the CPU time about 50% and reduces the elapsed time

about 30%. If every job uses 30% less time than before, the

same computer center can accommodate 40% more analysis

jobs. Clearly, using the Grid Collector is beneficial even

compared against the improved filtering mechanism in STAR.

6 ENABLING “EXOTIC” ANALYSIS JOBS

Next, we briefly describe two cases that are very expensive in

the current analysis frameworks, but are relatively inexpensive

using the Grid Collector, namely analyses of rare events and

analyses outside of the computer centers. Physicists often

refer to such analysis jobs as “exotic”. Unlike the common

analysis jobs where the files are on disk, these jobs typically

involve files that are not already on disks. Because of the ex-

cessive amount of manpower and disk resource required to

complete these jobs, they are practically prohibitive, and are

usually put on the backburner for years, which may hinder

critical scientific discoveries.

6.1 Analyses of rare events

Rare events in high-energy collisions could reveal important

new physics insights. For example, one of the main missions

of the STAR experiment is to search for the quark-gluon

plasma, however, out of the many millions of collision events

already collected there are very few that display unambiguous

signatures of quark-gluon plasma, or other new forms of mat-

ter such as strangelets, or new phenomenon such as jet

quenching [17] [18] [19]. Clearly, analyses of rare events are

important to the overall goals of HENP experiments. Fre-

quently, there is an initial search for rare events using the

analysis objects on disk followed by one or more analyses on

progressively fewer but more promising events. Because the

follow-up analyses often require files not on disk, they can not

be easily performed which forces the scientists to device new

analysis strategies to analyze the data on disk to reveal the

same information. The Grid Collector can remove most bot-

tlenecks and make the follow-up analyses relatively straight-

forward.

To illustrate the use of the Grid Collector in these cases, we

give one example of searching for the evidence of jet quench-

ing. An initial search has been performed on a large number

of analysis objects, and a small number of events (about 80)

were found to have unusual jet distributions, which could in-

dicate jet quenching. To further investigate these 80 events,

they have to be extracted from the files containing them.

However, because the events are scattered in many large files

and most of the files are on tertiary storage systems, the ana-

lysts are not willing to spend the disk resource and manpower

to transfer the files themselves. For this reason, the follow-up

analyses were delayed for three years. However, once the

analysts learned of the Grid Collector, they were able to ex-

tract these 80 events within 15 minutes. In STAR, the Grid

Collector has also helped in searching for anti-Helium-3 (eH3)

and potential evidences of strangelets.

6.2 Analyses outside of computer centers

Many physics groups have access to their own computing re-

sources outside of the main computer centers. Often the ag-

gregate computing power of these scattered resources rivals or

surpasses those of the computer centers. So far, these scat-

tered resources have not been put into productive analyses of

HENP data. One of the main difficulties is the need to man-

age distributed files and disk spaces.

The Grid Collector makes this type of analysis much easier

than before. On the analysis machine, the user only needs the

Event Iterator library and an installation of DRM. The Event

Iterator can be configured to use one of the Grid Collector

Coordinators running in the computer centers. At this time,

there are two Coordinators running, one at Brookhaven Na-

tional Laboratory and one at Lawrence Berkeley National

Laboratory. Users can specify events of interests and have the

Grid Collector transfer all the necessary files to the local DRM

from the “closest” sources. This should make more computer

power available for high-energy data analyses – boosting the

analysis capability of HENP data.

7 SUMMARY

The Grid Collector combines an indexing technology and a Grid

file management technology to make analysis of high-energy

physics data considerably faster and easier than using the existing

analysis frameworks. For common analysis jobs where the re-

quired files are on disk, the Grid Collector can speed up the exe-

cutions because it avoids reading unwanted events. For analyses

that involve files not already on disk, the Grid Collector auto-

matically transfers the necessary files and avoids the tedious man-

ual file management tasks. With the same computer resources,

more analysis jobs can be performed with the Grid Collector.

The Grid Collector can also make more computer resources

available for analysis by making it easier to use the scattered

computer resources outside of the computer centers. The Grid

Collector is designed as a plug-in for an existing analysis frame-

work. This allows an on-going HENP experiment to easily boost

their analysis capacity with a minimal amount of investment.

ACKNOWLEDGMENT

The authors gratefully acknowledge comments and sugges-

tions received from our users, in particular, those from Drs.

Lee Barnby, Markus Oldenburg, and Aihong Tang.

REFERENCES

[1]. The GriPhyN Collaboration. “Petascale Virtual-
Data Grids for Data Intensive Sciences.”
http://www.phys.ufl.edu/~avery/mre/white_paper.ht
ml. 2000.
[2]. J. M. Landgraf, M. J. LeVine, A. Ljubicic, Jr., J. M.
Nelson, D. Padrazo and M. W. Schulz, and for the STAR
Collaboration, “An Overview of the STAR DAQ Sys-
tem.” Nucl. Instrum. Meth. A 499, pp. 762-767, 2003.
[3]. D. G. York, J. Adelman, J.E. Anderson, Jr., et al.,
“The Sloan Digital Sky Survey: Technical Summary.”
The Astronomical Journal, 120:3, pp. 1579-1587, 2000.

LBNL-57677 7

[4]. F. Carminati, P. Cerello, C. Grandi, E. Van Herwi-
jnen, O. Smirnova, J. Templon, “Common User Cases
For A HEP Common Application Layer -- HEPCAL,”
http://www.cern.ch/fca/HEPCAL-prime.doc. 2003.
[5]. Rene Brun and Fons Rademarkers, “ROOT user’s
guide,” http://root.cern.ch/root/doc/RootDoc.html. 2004.
[6]. K. Wu, E. Otoo and A. Shoshani, "Compressing
Bitmap Indexes for Faster Search Operations," Proc.
SSDBM’02, pp. 99-108, 2002.
[7]. K. Wu, E. Otoo and A. Shoshani, “On the per-
formance of bitmap indices for high cardinality attrib-
utes,” Proc. VLDB’2004, pp. 24-35, 2004.
[8]. A. Shoshani, A. Sim and J. Gu, “Storage Resource
Managers: Essential Components for the Grid,” In Grid
Resource Management: State of the Art and Future Trends,
pp. 321-340, Kluwer Academic Publishers, 2003.
[9]. A. Sim, J. Gu, A. Shoshani and V. Natarajan,
“DataMover: Robust Terabyte-Scale Multi-file Replica-
tion over Wide-Area Networks,” Proc. SSDBM’04, pp.
403-412, 2004.
[10]. L. M. Bernardo, A. Shoshani, A. Sim and H. Nord-
berg, “Access Coordination of Tertiary Storage for High-
energy Physics Applications,” IEEE Symposium on Mass
Storage Systems 2000, pp. 105-118, 2000.
[11]. A. Hanushevsky and A. Dorigo and F. Furano,
“The Next Generation Root File Server,” Proc. CHEP
2004, 2004. Software available at
http://xrootd.slac.stanford.edu.
[12]. BaBar experiment’s main web site is at
http://www.slac.stanford.edu/BFROOT/.
[13]. STAR experiment’s main web site is at
http://www.star.bnl.gov/.
[14]. D.L. Olson, C.E. Tull and D. Prindle, “STAR
Analysis Framework”, Technical Report LBNL-39764.
Lawrence Berkeley National Laboratory. 1997.
[15]. STAR File Catalog is fully described at
http://www.star.bnl.gov/STAR/comp/Grid/fileCatalog/index.h

tml.
[16]. A. L. Chervenak, E. Deelman, I. Foster, A. Iam-
nitchi, C. Kesselman, W. Hoschek, P. Kunszt, M.
Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger
and B. Tierney, “Giggle: A Framework for Constructing
Scalable Replica Location Services,” Proc. of the IEEE Su-
percomputing Conference (SC 2002), November 2002. IEEE
Computer Society Press.
[17]. STAR Collaboration (J. Adams et al.). “Azimuthal
anisotropy and correlations at large transverse momenta
in p+p and Au+Au collisions at S(NN)**(1/2) = 200-
GeV”.
Phys. Rev. Lett. 93 pp. 252301-6, 2004.
[18]. STAR Collaboration (J. Adams et al.), “Multis-
trange baryon production in Au-Au collisions at
S(NN)**1/2 = 130 GeV,” Phys. Rev. Lett. 92, pp. 182301-6,
2004.

[19]. STAR Collaboration (J. Adams et al.), “Evidence
from d + Au measurements for final state suppression of
high Pt hadrons in Au+Au collisions at RHIC” Phys. Rev.
Lett. 91, pp. 072304-9. 2003.
[20]. K. Wu, W.-M. Zhang, V. Perevoztchikov, J. Lauret,
and A. Shoshani. “The Grid Collector: Using an Event
Catalog To Speed up User Analysis in Distributed Envi-
ronment,” Proc. CHEP 2004, 2004. Document available
at http://chep2004.web.cern.ch/.
[21]. A. M. Poskanzer and S. A. Voloshin, “Methods for
Analyzing Anisotropic Flow in Relativistic Nuclear Col-
lisions,” Phys. Rev. C. 58, 1671-1678. 1998.
[22]. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, and S. Tuecke. Data management and transfer
in high performance computational Grid environments.
Parallel Computing Journal, 28(5):749–771, 2002.
[23]. The Globus Alliance, http://globus.org/.
[24]. HPSS. High Performance Storage System,
http://www.sdsc.edu/HPSS, San Diego Supercomputer
Center, La Jolla, CA, 1997.

