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Abstract — The Grid Collector is a system that facilitates the effective analysis and spontaneous 
exploration of scientific data.  It combines an efficient indexing technology with a Grid file management 
technology to speed up common analysis jobs on high-energy physics data and to enable some 
previously impractical analysis jobs.  To analyze a set of high-energy collision events, one typically 
specifies the files containing the events of interest, reads all the events in the files, and filters out 
unwanted ones.  Since most analysis jobs filter out significant number of events, a considerable amount 
of time is wasted by reading the unwanted events.  The Grid Collector removes this inefficiency by 
allowing users to specify more precisely what events are of interest and to read only the selected events.  
This speeds up most analysis jobs.  In existing analysis frameworks, the responsibility of bringing files 
from tertiary storages or remote sites to local disks falls on the users.  This forces most of analysis jobs to 
be performed at centralized computer facilities where commonly used files are kept on large shared file 
systems.  The Grid Collector automates file management tasks and eliminates the labor-intensive manual 
file transfers.  This makes it much easier to perform analyses that require data files on tertiary storages 
and remote sites.  It also makes more computer resources available for analysis jobs since they are no 
longer bound to the centralized facilities. 
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1 INTRODUCTION

Modern scientific investigations require the searching over 

billions of objects and accessing data from various distributed 

storage systems.  The lack of appropriate technology to ad-

dress this problem has prohibited the effective analysis and 

spontaneous exploration of scientific data.  In this paper, we 

describe the application of a new theoretically optimal bitmap 

indexing technology in combination with Grid storage man-

agement technology to overcome this data analysis problem.  

While the technology is generic and can be applied to various 

application domains, we focus in this paper on applying it to a 

particular dataset produced from a high-energy and nuclear 

physics (HENP) experiment called STAR [13].  This pre-

sented an additional challenge of incorporating these tech-

nologies into the existing analysis framework used by the ex-

periment.  This was achieved by making the Grid Collector a 

plug-in that boosts the performance and capability of STAR 

analysis framework. 

Many on-going and planned HENP physics experiments 

are capable of producing PetaBytes of raw data per year [1] 

[2].  Generally, the bulk of the data is composed of snapshots 

of high-energy collisions, known as events.  The recorded 

data, in its “raw” or digitalized format, usually goes through a 

reconstruction process to produce event summary data [4].  

The event summary data is often further processed into analy-

sis objects [4].  As the name suggests, most user analyses use 

these analysis objects rather than the raw data or the event 

summary data.  Even though, the analysis objects are much 

smaller than the raw data, they can still be many terabytes in 

size [2].  The process of producing these analysis objects and 

event summary data is time consuming, which may necessitate 

distributed processing.  Since most HENP experiments are 

large collaborations, participating institutions often desire to 

replicate certain portions of the event summary data or analy-

sis objects.  For these and other reasons, such as reliability and 

redundancy, high-energy physics data like data from many 

other sources are distributed across diverse geographical loca-

tions.  In addition, because the data volume is too large for 

most disk systems, all of the raw data, the majority of event 

summary data, and much of the analysis objects are on tertiary 

storage managed by mass storage systems, which make them 

inaccessible by analysis jobs designed to work with disk-

resident files only.    

The event summary data and analysis object data are typi-

cally stored as ROOT files [5].  An analysis job is usually per-

formed on a set of selected events.  Many of the existing 

analysis frameworks require these events to be specified as a 

list of files.  These analysis frameworks then read all events in 

the files and leave the user code to filter out unwanted events.  

In most cases, only a fraction of the events in the data files are 

selected, and the time to read the unwanted events could be a 

significant portion of the total execution time.  One objective 

of the Grid Collector is to eliminate the time spent to read 
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these unwanted events.  A second objective is to automate 

most file and data management tasks, such as determining the 

event of interest and the respective files containing them, the 

locations of files, reserving space for the files to be moved, 

transferring files over the Grid or from mass storage systems, 

and reclaiming the disk space after analyses. 

The Grid Collector project achieves these goals by combin-

ing two technologies, an efficient indexing scheme [6] [7] and 

a distributed file management tool called Storage Resource 

Manager [8] [9].  The Grid Collector provides a way to spec-

ify events of interest using conditions on variables (properties 

of the events) defined by the physicists.  Because the events of 

interest are explicitly specified, it is possible for the analysis 

framework to avoid reading unwanted events.  The file man-

agements functions mentioned before are performed by the 

Storage Resource Manager software.  The Grid Collector pro-

vides a way for an event to be associated with a set of files 

containing the appropriate event summary data and analysis 

objects, and get the data files from local or remote systems, 

including mass storage systems. 

There are a number of projects with somewhat similar vi-

sions as the Grid Collector; two of the closest ones are STACS 

[10] and XROOTD [11].  The STACS project can be viewed 

as the progenitor of the Grid Collector.  It demonstrated with 

one mass storage system and a fixed set of files that it is pos-

sible to automate the file management tasks.  In contrast, the 

Grid Collector can support an arbitrary number of storage sites 

and mass storage systems.  It also uses a more efficient index-

ing scheme.  The XROOTD software was developed in the 

context of a high-energy experiment named BaBar [12].  

XROOTD was intended as an extension of the ROOT Daemon 

ROOTD [5] to provide accesses to ROOT files stored on lo-

cally attached storage (any disk or storage attached to a single 

node), centrally available storage (NFS, NAS, SAN)  or on 

mass storage systems (MSS).  One key difference between the 

Grid Collector and XROOTD is that the Grid Collector pro-

vides event-level (i.e. object-level) data access rather than file-

level data access.  Another difference is that the Grid Collector 

relies on standard Grid technologies while XROOTD uses its 

own peer-to-peer protocol. 

An overview of the Grid Collector is provided in Section 2. 

In Sections 3 and 4 we describe the two main components of 

the Grid Collector: the Storage Resource Manager and the 

bitmap indexing module.  In Sections 5 and 6 we describe how 

the Grid Collector improves two types of analysis jobs.  A 

short summary is given in Section 7. 

2 OVERVIEW OF GRID COLLECTOR 

The current implementation of the Grid Collector includes a 

main server we call the Coordinator and a number of other 

servers to complete its functions.  There is a client library that 

plugs in to the STAR analysis framework [14], which allows 

the analysis code to make use of the Grid Collector.  Figure 1 

shows a schematic diagram of the various modules involved.  

In the next sub-sections we briefly describe the key functions 

of each module. 

2.1 Grid Collector Coordinator 

The Coordinator is currently implemented as a CORBA 

server.  It consists of four identifiable modules: Index Builder, 

Event Catalog, File Locator, and File Scheduler. 

The Index Builder module ingests the tag files generated by 

the reconstruction process and uses the information to build a 

catalog for the events.  The catalog contains hundreds of high-

level attributes, called tags, about each event.  Since the tags 
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Figure 1:  The architecture of the Grid Collector. 
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are defined by the physicists and are relatively small in num-

bers, they are natural candidates to be indexed and searched. 

The core of the Coordinator is an Event Catalog.  The data 

in this catalog is the same as those in the tag files.  However, 

because we build an index for each tag, we can answer ques-

tions like “finding all events with chargedMultiplicity between 

100 and 200” much more efficiently than using the tag files 

directly.  This module takes queries from users, and outputs 

the logical names of files containing the events of interest and 

identifiers of the events in the files. 

The File Locator module takes the logical file names and 

performs the necessary lookup to determine an appropriate 

copy of the file to use.  If a copy is accessible by the client, its 

name will be returned, otherwise, the “closest” copy will be 

returned and the file will be scheduled for actual transfer.  The 

File Scheduler decides which files to be transferred next.  The 

actual transfer is performed through Storage Resource Manag-

ers.  Our design allows the possibility of requesting multiple 

files at the same time.  This is needed for analyses that use two 

or more different kinds of files simultaneously.  In this situa-

tion, in order to analyze one event, multiple files must be pre-

sent at the same time, which creates extra constraints on the 

file caching mechanism.  We refer to the set of files that must 

be used together as a file bundle.  The ability to handle file 

bundles is also a unique feature of Grid Collector. 

2.2 External Services 

The Grid Collector Coordinator requires two external services, 

Storage Resource Managers and Replica Catalogs.  The replica 

catalogs contain information about where the replicas (copies) of 

the files are stored and how to access them.  In STAR, we use 

STAR specific replica catalogs [15].  Potentially other types of 

replica catalogs can be used as well [16].  The Storage Resource 

Managers are used to transfer files and cache them for users. 

We make use of two different types of Storage Resource 

Managers, a Hierarchical Resource Manager (HRM) and a 

Disk Resource Manager (DRM).  The HRM is used to transfer 

files out of mass storage systems and the DRM is used to 

manage the local cache for the end users and to transfer files 

from other storage sites. More information about their func-

tions is provided in the next section. 

2.3 Clients 

The clients of the Grid Collector come in two flavors, the Event 

Iterator that plugs into user analysis code and the stand alone 

CORBA clients that perform administrative and other functions.  

The administrative client instructs the Coordinator to build indi-

ces, and answers a small number of inquiries such as how many 

users are active. 

The more interesting client is the Event Iterator.  The end 

user code makes use of this module to interact with the Grid 

Collector Coordinator.  It sends the query conditions, receives 

statistics about the query, such as the number of events se-

lected, and finally, it reads selected events one at a time.  The 

most important function of the Event Iterator is called next.  If 

a file bundle is accessible, this function reads the next event of 

interest.  After it is finished reading all events in a file bundle, 

the Event Iterator requests another file bundle from the Grid 

Collector.  After calling the function next, an event is available 

in memory for analysis computations.  The Event Iterator also 

works with the DRM to ensure that the files in use are pinned 

in the disk cache (i.e. cannot be removed) and that the pins are 

released after use, so that the space can be reclaimed. 

Because the Event Iterator is designed to be a plug-in to an 

existing analysis framework, the Grid Collector can easily 

coexist with another framework.   This offers the option for 

users to try out the Grid Collector with a minimal modification 

to their analysis programs.  This type of a smooth transition 

path is quite useful to STAR users. 

3 THE STORAGE RESOURCE MANAGERS 

Storage Resource Managers (SRMs) are Grid middleware 

components whose function is to provide dynamic space allo-

cation and file management on shared storage components on 

the Grid [8].  They are designed to provide effective sharing of 

files, by monitoring the activities, and making dynamic deci-

sions on which files to replace when space is needed.  

Managing shared storage resources on the Grid is a neces-

sary but complex task because of the diversity of the storage 

resources present.  Storage resources can vary in complexity: a 

single disk under a UNIX file system, large sets of disk caches 

or disk RAIDs, or mass storage systems (such as HPSS).  To 

simplify the access to these diverse resources, SRM provides a 

uniform interface for the clients.  SRM supports many transfer 

protocols such as FTP, HTTP/S, GridFTP, or BBFTP, by 

automatic negotiation between the client and the server.  It 

makes file transfers robust and reliable by automatically re-

covering from transient errors and retry. 

SRMs also simplify the Grid client’s interaction with stor-

age systems.  For example, it is a lot simpler for an application 

client to request one thousand files in a single request from an 

SRM regardless of their location on the Grid, rather than hav-

ing to get each file from its source location.  An SRM accepts 

a multi-file request, queues each file requested, retrieves the 

files from the source locations (using a file transport service 

such as GridFTP [22] from the Globus project [23]) based on 

space availability, and streams the files to the client.  If files 

are found locally, they are pinned for a certain lifetime.  The 

File Scheduler of the Grid Collector takes advantage of this 

function. An SRM can enable sharing of files between clients 

and between requests, makes storage usage more effective, 

and avoiding unnecessary file transfers over the network. 

SRMs also enable a more effective use of the large shared 

storage space by automatic garbage collection.  A common 

problem of managing shared storage resources is that files are 

deposited in such systems and often not removed.  Much of 

the storage space may be occupied by files that are not needed 

any longer.  SRMs reduce this problem by associating a life-

time with temporary files.  This makes it easy for SRMs to 

reuse the space occupied by inactive files.  SRMs support the 

“pinning” of files for the duration of a lifetime, as well as ex-

plicit “release” of files. 

As depicted in Figure 2, an SRM which is placed in front of 

a mass storage system, such as HPSS [24], is referred to as an 

HRM).  It manages a disk cache of its own, and interacts with 

HPSS to stage and archive files.  When a request for files 
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Figure 2:  A schematic drawing of Storage Resource Management. 

comes to a DRM of a client, it communicates with other 

HRMs, DRMs or file repository with FTP, GridFTP, BBFTP, 

or HTTP servers using the source URL.  The source URL is 

usually the physical address of a file, or the address used by 

SRMs to access the file from the storage systems they access.  

The DRM then brings each file to its local disk to be accessed 

by the client.  In the STAR experiment, the DRM also regis-

ters the files into the File Replica Catalogs upon a successful 

transfer.  This enables the Grid Collector to make use of the 

new copies without any user intervention. 

4 THE BITMAP INDICES 

A key component of Grid Collector is the Event Catalog.  It 

holds searchable attributes of events (called tags by the physi-

cists), information about how to locate the file, and the loca-

tion of each event within a file.  Using it, one can specify con-

ditions on any number of searchable attributes and get back 

enough information to retrieve the selected events.  A number 

of experiments have previously explored the idea of building 

event catalogs; however, most have given up on this approach 

because of the complexity of the problem of searching over 

millions or billions of event properties.  An obvious way of 

building an event catalog is to put all the data into a commer-

cial DBMS.  However, this approach is not practical, since 

even commercial DBMS systems are not able to search effi-

ciently the large volume of data produced from a typical 

HENP experiment.  Frequently, the experiments use an open-

source DBMS system to implement the file catalogs and rep-

lica catalogs.  However, an event catalog would have 100 to 

1000 times more records than the file catalogs.  Because of 

their size, the challenge we had to address is how to search 

event catalogs efficiently. 

The general technique for speeding up searching of large 

datasets is indexing.  Recently, we implemented an efficient 

compressed bitmap index scheme.  Complexity analyses show 

that our compressed bitmap indices are optimal for one-

dimensional range queries.  The time complexity of answering 

these one-dimensional range queries is a linear function of the 

number of hits [7].  Only few especially efficient indexing 

 B - t r e e Projection B i t m a p 

Index Size (MB) 408 113 186 

1-dim 0.95 0.51 0.02 

2-dim 2.15 0.56 0.04 

Average 

processing 

time (sec) 5-dim 2.23 0.67 0.17 

Table 1: The sizes and average query processing time 

on a subset of STAR data with 2.2 million events and 

12 commonly used attributes. 
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schemes, such as B-tree, have this optimality property.  Since 

the results of one-dimensional queries can be efficiently com-

bined to answer multi-dimensional queries, this optimality 

implies that compressed bitmap indices are also efficient for 

multi-dimensional range queries.  The same is not true for B-

trees or other indexing methods, including multi-dimensional 

indexes.  Performance measurements on a variety of datasets 

demonstrated that the compressed bitmap indices are signifi-

cantly more efficient than other indices not only on one-

dimensional range queries but also on multi-dimensional range 

queries [6]. 

Table 1 is a summary of the performance of three indexing 

schemes, a B-tree from a commercial DBMS, a projection 

index and our compressed bitmap index.  We compare our 

bitmap indices against B-tree and the projection index because 

the B-tree is the most commonly used indexing scheme and 

the projection index is known to be the most efficient scheme 

for multi-dimensional range queries.  Each average query 

processing time reported in Table 1 is an average over 1000 

range queries with randomly generated range conditions.  The 

same queries are answered with all three indexing schemes.  A 

client program generates the queries and measures the query 

response time.  For 5-dimensional range queries, our com-

pressed bitmap indices use about one quarter of the time re-

quired by the projection indices and less than one tenth the 

time consumed by the B-tree indices.   We have conducted a 

number of tests on different datasets, and our compressed bit-

map indexing scheme consistently outperforms other indexing 

schemes [6] [7].  Our bitmap indices can also be built in much 

less time than the typical B-tree indices. 

5 SPEEDING UP COMMON ANALYSIS JOBS 

One of the main reasons for developing the Grid Collector is 

to speed up the analysis jobs.  In a previous paper, we reported 

the performance of reading selected events without doing any 

useful analysis work [20], where the performance improve-

ment on typical analysis tasks was between 2 and 100 depend-

ing on the number of events selected.  However, the previous 

measurements assumed that the whole content of an event had 

to be read into memory before the filter function can be ap-

plied.  In this section, we report some timing results using a 

flow analysis program [21].  The time measured includes both 

the I/O time and the analysis computation time.  More re-

cently, the STAR experiment has reorganized the analysis 

object data files to make them more efficient for the com-

monly used filtering mechanism.  It was important to us to 

measure against this improved filtering mechanism.  Next, we 

describe these results. 

The measurements were performed on a Linux computer 

with two Intel Xeon 2.8 GHz processors and 2 GB of main 

memory.  The tests use a subset of recently produced analysis 

objects totaling about 8 GB.  The files used in the tests reside 

on an active disk vault; the programs run on a lightly loaded 

machine.  We ran two equivalent programs with the same set-

tings for analysis computations.  The main difference between 

the two is that one uses the existing filtering mechanism while 

the other program relies on the Grid Collector to perform the 

same selection.  The filtering mechanism requires part of an 

analysis object to be read into memory before a decision is 

made on whether to continue the analysis computation.  Using 

the Grid Collector, only the events required for the analysis 

computation are read, and therefore the program using the 

Grid Collector should take less time.  Because the ROOT files 

storing the analysis objects are compressed in baskets (blocks) 

and a basket has to be decompressed before any data in the 

basket can be accessed [5], the exact amount of time can be 

saved is not obvious. 

The speedup values shown in Figure 3 are ratios of time 

used by the analysis program with the existing filtering 

mechanism to the one with Grid Collector.  The horizontal 

axis is the fraction of events selected for analysis computation.  

The dots are the actual measurements, where each dot is an 

average of 4 different runs with the same settings.  The solid 

lines are trend lines produced by the plotting program (Micro-

soft Excel).  Since the analysis portion of the programs per-

forms the same computations, the one with Grid Collector 

uses less time because it reads fewer events.  Because the data 

files are compressed ROOT files [5], reading an analysis ob-

ject actually require a significant amount of CPU time.  In 

Figure 3, the speedup values for elapsed time is less than those 

for CPU time because both programs have to open the files 

through the same NFS system, which have the same file sys-

tem delays, network delays and other random delays.  In most 

test cases, these delays are longer than the CPU time required. 

The test show that the program using the Grid Collector 

never takes more time than the one without Grid Collector.  

However, the speedup is less than the inverse of selectivity 

because the ROOT files are compressed in baskets.  Selectiv-

ity is defined as the number of events selected for the analysis 

relative to the total number of events.  When the selectivity is 

large, say, > 0.1, almost all baskets are read and decompressed 

in order to access the selected events.   If fewer baskets are 

read or fewer files are opened, then the speedup is more sig-

nificant. 

Figure 3:  Using Grid Collector reduces both CPU time 

and elapsed time, and speeds up analysis jobs. 
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There is a large class of flow analysis jobs with selectivity 

of about 0.1 [21].  For these jobs, using the Grid Collector 

reduces the CPU time about 50% and reduces the elapsed time 

about 30%.  If every job uses 30% less time than before, the 

same computer center can accommodate 40% more analysis 

jobs.  Clearly, using the Grid Collector is beneficial even 

compared against the improved filtering mechanism in STAR. 

6 ENABLING “EXOTIC” ANALYSIS JOBS 

Next, we briefly describe two cases that are very expensive in 

the current analysis frameworks, but are relatively inexpensive 

using the Grid Collector, namely analyses of rare events and 

analyses outside of the computer centers.  Physicists often 

refer to such analysis jobs as “exotic”.  Unlike the common 

analysis jobs where the files are on disk, these jobs typically 

involve files that are not already on disks.  Because of the ex-

cessive amount of manpower and disk resource required to 

complete these jobs, they are practically prohibitive, and are 

usually put on the backburner for years, which may hinder 

critical scientific discoveries. 

6.1 Analyses of rare events 

Rare events in high-energy collisions could reveal important 

new physics insights.  For example, one of the main missions 

of the STAR experiment is to search for the quark-gluon 

plasma, however, out of the many millions of collision events 

already collected there are very few that display unambiguous 

signatures of quark-gluon plasma, or other new forms of mat-

ter such as strangelets, or new phenomenon such as jet 

quenching [17] [18] [19].  Clearly, analyses of rare events are 

important to the overall goals of HENP experiments.  Fre-

quently, there is an initial search for rare events using the 

analysis objects on disk followed by one or more analyses on 

progressively fewer but more promising events.  Because the 

follow-up analyses often require files not on disk, they can not 

be easily performed which forces the scientists to device new 

analysis strategies to analyze the data on disk to reveal the 

same information.  The Grid Collector can remove most bot-

tlenecks and make the follow-up analyses relatively straight-

forward. 

To illustrate the use of the Grid Collector in these cases, we 

give one example of searching for the evidence of jet quench-

ing.  An initial search has been performed on a large number 

of analysis objects, and a small number of events (about 80) 

were found to have unusual jet distributions, which could in-

dicate jet quenching.  To further investigate these 80 events, 

they have to be extracted from the files containing them.  

However, because the events are scattered in many large files 

and most of the files are on tertiary storage systems, the ana-

lysts are not willing to spend the disk resource and manpower 

to transfer the files themselves.  For this reason, the follow-up 

analyses were delayed for three years.  However, once the 

analysts learned of the Grid Collector, they were able to ex-

tract these 80 events within 15 minutes.  In STAR, the Grid 

Collector has also helped in searching for anti-Helium-3 ( eH3 ) 

and potential evidences of strangelets. 

6.2 Analyses outside of computer centers 

Many physics groups have access to their own computing re-

sources outside of the main computer centers.  Often the ag-

gregate computing power of these scattered resources rivals or 

surpasses those of the computer centers.  So far, these scat-

tered resources have not been put into productive analyses of 

HENP data.  One of the main difficulties is the need to man-

age distributed files and disk spaces. 

The Grid Collector makes this type of analysis much easier 

than before.  On the analysis machine, the user only needs the 

Event Iterator library and an installation of DRM.  The Event 

Iterator can be configured to use one of the Grid Collector 

Coordinators running in the computer centers.  At this time, 

there are two Coordinators running, one at Brookhaven Na-

tional Laboratory and one at Lawrence Berkeley National 

Laboratory.  Users can specify events of interests and have the 

Grid Collector transfer all the necessary files to the local DRM 

from the “closest” sources.  This should make more computer 

power available for high-energy data analyses – boosting the 

analysis capability of HENP data. 

7 SUMMARY 

The Grid Collector combines an indexing technology and a Grid 

file management technology to make analysis of high-energy 

physics data considerably faster and easier than using the existing 

analysis frameworks.  For common analysis jobs where the re-

quired files are on disk, the Grid Collector can speed up the exe-

cutions because it avoids reading unwanted events.  For analyses 

that involve files not already on disk, the Grid Collector auto-

matically transfers the necessary files and avoids the tedious man-

ual file management tasks.  With the same computer resources, 

more analysis jobs can be performed with the Grid Collector.  

The Grid Collector can also make more computer resources 

available for analysis by making it easier to use the scattered 

computer resources outside of the computer centers.  The Grid 

Collector is designed as a plug-in for an existing analysis frame-

work.  This allows an on-going HENP experiment to easily boost 

their analysis capacity with a minimal amount of investment. 
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