Improved Searching for Spatial Features in Spatio-Temporal Data*
Kurt Stockinger and Kesheng Wu

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

September 27, 2004

Abstract

Scientific data analysis often requires mining large databases or data warehouses to find features in
space. One important task is to find regions of interest such as stellar objects in astrophysics or flame
fronts in combustion studies. Typically, this task is performed in two steps. The first step (searching)
identifies records satisfying certain conditions specified by the user and outputs a set of cells. The second
step (region-growing) groups these cells into connected regions. Most common approaches essentially
perform a brute-force scan for the searching step. A number of indexing schemes have been proposed to
speed up the searching step. Because they usually also slow down the region-growing step, these schemes
have not reduced the overall time.

In this article, we propose an approach based on compressed bitmap indices. Our approach speeds
up not only the searching step, but also the region-growing step. In the literature, the time complexity
of the region-growing step is demonstrated to be linear in the number of records in the dataset. In our
tests, we show that the response time of our region-growing algorithm is linear in the number of records

close to the surface of the regions of interest which is a small subset of all cells.

*The authors thank Ekow Otoo, Doron Rotem, and Heinz Stockinger for their constructive comments during the writing
of this article. This work was supported by the Director, Office of Science, Office of Laboratory Policy and Infrastructure
Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. This research used resources of the
National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of
Energy.

1 Introduction

Many scientific datasets are spatio-temporal in nature because they measure physical quantities in space and
time. For example, a simulation of the combustion process computes the concentrations of all chemical species
along with pressure and temperature [3, 6]. A satellite image of the surface of the Earth [9, 10] measures
quantities such as temperature, wind speed, humidity and so on. One common operation in mining these
datasets is to derive some quantities on regions of interest, e.g., the total heat output from an ignition kernel
in the combustion simulation, and the average rain fall of a state over a specified period of time. To support
this operation one needs to efficiently identify regions of interest.

In this paper, we concentrate on datasets with regular discretization of space, such as the Direct Numerical
Simulations of combustion on uniform 2D or 3D meshes[3, 6], and the raster images of the surface of the
Earth from satellite observation [9, 10]. In these cases, the space is discretized into small cells;, and the
quantities on each cell are computed or measured at some time values. All data from one time value is
commonly known as a time step. To simplify the discussion, we only discuss the regions of interest are
defined by users with range conditions such as “pressure > 10,000 and temperature > 1,000.”

After the user specifies the conditions, the process of identifying the regions of interest is usually divided
into two steps, the searching step to find the cells satisfying the conditions, and the region-growing step to
group the cells into connected regions. This region-growing step is often called the connected component
labeling in image processing literature [1, 4]. If the conditions for regions of interest are simple, such as
“pressure < 20,0007, the boundaries of the regions are the contour lines computed by the iso-contouring
algorithms for “pressure = 20,000” [2, 8]. For visualization purposes, region-growing algorithms produce
the same output as iso-contouring algorithms. Because of this, region-growing algorithms are sometimes
compared with iso-contouring algorithms. However, one important difference is that region-growing algo-
rithms produce the cells inside the regions but the iso-contouring algorithms only identify the cells on the
boundaries.

One approach to identify regions of interest is to partition the cells according to spatial coordinates,

such as Quad-tree and R-Tree [5]. These indexing schemes are only efficient for relatively low dimensional

data, say the total number of attributes including the spatial dimensions is less than 10. If the number of
attributes is more or if only a small number of attributes are involved in the conditions, these indices are
not as efficient as the brute-force scan. Worse yet, these indexing schemes usually separate cells that are
neighbors in space. Because of this, they slow down the region-growing step. For example, in a recent study
by Shi and Jaja [9], the time spent by their region-growing step is significantly longer than the time spent by
comparable connected component labeling algorithms [1, 4]. For these reasons, the most successful approach
uses brute-force scan for the searching step. Because this allows the neighboring cells to be kept together,
efficient algorithms for connect component labeling can be used for the region-growing step. Clearly, if we
can use an indexing scheme that keep the neighboring cells together, we should reduce the time used by the
searching step without increasing the time used by the region-growing step. This would reduce the total
time.

We propose to use bitmap indices for the searching step because they do not reorder the cells [7, 11, 14].
Our implementation of the bitmap indices also uses compression scheme based the run-length encoding. In
this case, the searching step produces a compressed bitmap to represent the cells satisfying the conditions.
This compressed bitmap can be easily converted to blocks of connected cells. Working with these blocks to
perform the region-grow step is in fact more efficient than using cells directly. Previously, we have presented
some evidence that the bitmap-based approach works well for data a on 2D uniform mesh [12]. In this
paper, we describe a set of efficient algorithms for region-growing in 3D. By taking full advantage of the
compact output from the bitmap indices, our algorithms are orders of magnitudes faster than the generic
algorithm required when the searching step produces cells in arbitrary order. As in the 2D case [12], we
observe that our region-growing algorithm scales linearly in the number of blocks produced by the searching
step. Since the number of blocks is less than the number of cells on the boundaries of the regions of interest,
our algorithm scales better than the best iso-contouring algorithms [2, 8]. The best of connected component
labeling algorithms scale linearly in the total number of cells [1, 4], our region-growing algorithm scales much

better since the number of blocks are much less than the total number of cells.

bitmap index

RID | I| =0 =1 =2 =3
110 1 0 0 0
211 0 1 0 0
313 0 0 0 1
412 0 0 1 0
513 0 0 0 1
6|3 0 0 0 1
711 0 1 0 0
813 0 0 0 1
by by by by

Figure 1: A sample bitmap index where RID is the record ID and I is the integer attribute with values in
the range of 0 to 3.

2 Bitmap-Based Approach

For read-only or read-mostly data, the bitmap index is one of the most efficient indexing schemes for speeding
up range queries [7, 14]. For an attribute with ¢ distinct values, the basic bitmap index generates ¢ bitmaps
each with N bits, where N is the number of records (cells) in the dataset. Each bit in a bitmap is set to 1
if the attribute in the record is of a specific value, otherwise 0. For example, the integer attribute I shown
in Figure 1 can be one of four distinct values, 0, 1, 2, and 3, and the corresponding bitmap index has four
bitmaps. Since the value in record 5 is 3, the fifth bit in b4 is set to 1 and the same bits in other bitmaps
are 0. In short, 4 bitmaps are required to encode 4 distinct attribute values.

Using a bitmap index, answering a range query, such as I < 2, requires some bitwise logical operations
on the bitmaps. Since bitwise logical operations are well-supported by computer hardware, we can expect
to answer range queries efficiently with bitmap indices. With a bitmap index for each attribute, conditions
involving multiple attributes, such as “I < 2 and J < 3”, can also be efficiently answered by combining the
partial solutions computed using indices on attributes I and J.

One major concern about the bitmap index is that for attributes with a large number of distinct values,
the indices require too much space to store. Recently, it has been shown that even in the worst case, the
bitmap indices can be compressed to a size that is comparable with a typical B-tree index. The time required
to answer a range query using a compressed bitmap index is in fact optimal. In the worst case, the response
time is proportional to the number of hits of the query [14].

In our implementation of the bitmap index for spatio-temporal data, we preserve the spatial order of the

cells. This avoids reordering of the raw data and reduces the time required for building the bitmap indices.
Another benefit is that the compressed bitmap produced as the result of the searching step can be easily
turned into blocks of connected cells. In [9] the authors report that a majority of the compute time is spent
in grouping the cells identified by the searching step into horizontal line segments. The time required in our
approach to convert a compressed bitmap into line segments and other blocks is usually below the accuracy
of the common timing functions of about 0.01 seconds.

On a 3D regular mesh, the cells can be identified by three coordinates along three spatial dimensions,
X, y, and z. A common way of representing the cells during computation or measurement is to order the
cells according to their z-coordinates first. For cells with the same z-coordinates, order them according to
y-coordinates. For cells with the same z- and y-coordinates, order them according to x-coordinates. This is
usually called the raster scan order. Since most of the efficient bitmap compression schemes are based on
run-length encoding, the result produced by the searching step naturally represents consecutive cells that
either all satisfy the user specified conditions or not. These consecutive cells can be easily mapped to blocks

along the x-axis. There are three types of blocks (see Figure 2):

1. Line segments, where all cells have the same y and z coordinates.

2. Whole lines, where all cells have the same z coordinates, consecutive y coordinates and all possible

values in the x-axis.

3. Whole planes, where cells have consecutive z coordinates and have all possible x and y coordinates in

the given range of z coordinates.

To simplify the discussion, we describe all algorithms as if there are only line segments. In the actual
implementations all three types are considered.

Both experiments and analyses have shown that the time spent in the searching step is proportional to
the number of blocks identified, and the size of the result produced by the searching step is also proportional
to the number of blocks [14, 12, 13]. The most efficient iso-contouring algorithms are shown to have an
execution time that is proportional to the number of cells touching the contour lines [2, 8]. Since each block

has at least one point touching the boundaries of the regions, the searching time using bitmap indices is not

! block type II:
T H T H H Hi 1 whole lines
I -
L _____ _____ _____ _____ _____ JI block type I:

A «—— | line segment

a) b)
block type IlI:
whole planes
— \

Q) d)

Figure 2: a) Cell with grid lines of the mesh. b) Block type I and II without grid lines. ¢)-d) Block type III
without grid lines.

worse than linear in the number of cells touching the contour lines. On 2D data, we have observed that
the region-growing time is proportional to the number of blocks [12]. Next we will show the same is true
for 3D data. If both steps have linear complexity, then the whole process has linear time complexity. This

demonstrates that our bitmap-based approach to identify regions of interest is theoretically optimal.

3 Region-Growing Algorithms

Each block in the 3D space is characterized by a pair of points for each dimension. Each pair specifies the lower
and upper bound in a given dimension (bounding box). For instance, block[7] in Figure 3 is characterized
by the points < 0,1 >< 3,4 >< 1,2 >, where < 0,1 > refers to the coordinates < Zin, Tmaz >, < 3,4 >
refers t0 < Ymin, Ymaz >, and < 1,2 > to < Zmin, Zmaz > - In the following discussion, we take the input
for region-growing algorithms to be a list of blocks. The output of the region-growing algorithm are lists of

connected regions. Next, we outline algorithms for connecting blocks to form regions of interest.

3.1 Simple Region Search

This algorithm is the most generic one and does not assume any particular order of blocks. Note that blocks
are the output of the search step discussed in Section 2. This algorithm is used for indexing schemes that
do not preserve spatial ordering among the cells, for example, [9].

The search algorithm works as follows. The first block block[0] is considered as the first connected region
connectedRegions|0]. Next, the algorithm loops over each block and checks whether it is part of an already
identified connected region. If it is not part of an existing connected region, a new region is created. If the
block is part of a connected region, it gets added to this one. If the block is part of several connected regions,

these regions are merged.

numberOfBlocks is given from initial search step // always greater than O
connectedRegions = 0
connectedRegions [0] ->add(block[0]) // vector of vectors with block indices;
// each block-vector holds the indices
for i = 1 to number0OfBlocks-1 // of the blocks of a specific region
mergeRegions. clear ()
numberOfFoundRegions = 0
findMore = true
for j = 0 to connectedRegions.size()-1
for k=0 to connectedRegions[j].size()-1
AND (searchMore == true)
if block[i] connected with connectedRegions[j][k] then
numberOfFoundRegions++
connectedRegions[j]->add (block[i])
mergeRegions->add (j)
searchMore = false
if numberOfFoundRegions == 0 then
createNewRegion(block[i]) // connectedRegions->add(block[i])
else if numberFoundRegions > 1 then
mergeConnectedRegions in mergeRegions

For indexing schemes that do not preserve spatial order among the cells, it is necessary to use this

algorithm. Another possibility is to sort the blocks first and then use one of following algorithms.

3.2 Improved Region Search I

The improved algorithm FastRegionSearch I takes advantage of the fact that the blocks are partially sorted.

Rather than searching through all connected regions, only a subset has to be searched, namely those regions

that are close to the block. In this case, close means that the respective block is on the same plane within

the axis of our coordinate system. See Figure 3.

adjacent planes T T block[10]
T-3x1S

Rt
™ block[9]

non-adjacent planes

block[7]:
T <0,1> <3 4> <1,2>
block[6] _ |
y-axis
block[0] —» =
/ H-axis
block[1] block[2]

Figure 3: Blocks in space with 3 spatial dimensions. Note: For simplicity, not all blocks are indexed in this
figure.

FastRegionSearch I iterates through the blocks plane-wise with respect to the z-axis. The algorithm first
checks all the blocks on the x-y-plane for a given z-coordinate (see Figure 4 (a)). Once all blocks on this
plane are searched, the next x-y-plane gets searched ((see Figure 4 (b) - (d)).

Note that some blocks might not be considered as connected on the x-y-plane for a given z-value. However,
by searching x-y-planes on a higher z-value, these blocks can get connected. This is true for the blocks block[8]
and block[9] in Figure 3. They are only identified as being connected after block[10] is processed.

Like for the simple algorithm, the first block is considered to be the first connected region. Next Fas-
tRegionSearch I searches through the blocks on the x-y-plane with z-coordinate 0 and checks for connected
regions in the same way as the simple algorithm does. All blocks on this plane are stored in an auxil-

iary data structure called candidate Regions. This is a two-dimensional data structure. Its first dimension

y—l{is 3
5 7
4
2
0|1 6
a)z-value = 0 X3S —> b) z-value = 1
8 9 10
c) z-value = 3 d) z-value = 4

Figure 4: Blocks of Figure 3 mapped to two spatial dimensions.

holds the index of the original block. The second dimension holds the index of the connected region, e.g.
candidate Regions[1][0] = 7 refers to block 7, candidate Regions[1][1] = 1 being part of connected region 1
(see Figure 3).

Once all blocks on the x-y-plane with the z-coordinate 0 are checked, the next plane on a higher z-
coordinate is searched. If the next block is on a plane adjacent to the previous plane, i.e. the difference of
the z-coordinate is 1, then we know that there are candidate regions that might be connected to previous
candidates regions. The first step is to rename all candidate regions of the previous plane to the auxiliary
data structure active Regions and clear candidate Regions. activeRegions is the same two-dimensional data
structure as candidateRegions. Assume we are searching through the x-y-plane with the z-coordinate = 1
(see Figure 4 (b)). All searched blocks on this plane are considered as candidate regions. On the other hand,
all blocks on the previous x-y-plane with z-coordinate = 0 are considered as active regions.

Next, all blocks on the current plane are checked if they are connected with the regions in active Regions.

The checking for connection and the possible merging of connected regions is analogous to what we discussed

for the simple algorithm.

If the blocks are on a x-y-plane that is not adjacent to the previous one, i.e. the difference in the z-
coordinate > 1, then we know that these regions are not connected with any regions on the previous plane,
e.g. block[8] and block[9]. If the block is the first on the non-adjacent x-y-plane, then a new connected region

is created, otherwise the block is compared with all the blocks on the same plane, i.e. candidateRegions.

number0fBlocks is given from initial search step // always greater than O
connectedRegions = 0
connectedRegions [0]->add (block[0])

for i = 1 to number0OfBlocks-1

mergeRegions.clear ()

numberOfFoundRegions = 0

if (block[i] is on the same x-y-plane) then
findConnections() // see below

else if (block[i] is on the adjacent x-y-plane) then
activeRegions = candidateRegions
candidateRegions.clear ()
findConnections() // see below

else if (block[i] is first of non-adjacent x-y-plane) then
candidateRegions.clear ()
createNewRegion(block[i])

findConnections():
numberOfConnections = 0
for j=0 to candidateRegions.size()-1
if block[i] is connected with candidateRegions[j] then
number0fFoundRegions++
if (numberOfFoundRegions == 1) then
connectedRegions [candidateRegions[jl]->add(block[i])

mergeRegions->add (j)

for j=0 to activeRegions.size()-1
if block[i] is connected with activeRegions[j] then
number0fFoundRegions++
if (numberOfFoundRegion == 1) then
connectedRegions [candidateRegions[jl]->add(block[i])
mergeRegions->add(j)

if (numberOfFoundRegions == 0) then
createNewRegion(block[i])

else if (numberOfFoundRegions > 1) then
mergeConnectedRegions in mergeRegions
update region index in candidateRegions and activeRegions

candidateRegions->add(block[i])

3.3 Improved Region Search II

Next we study an even further improved algorithm called FastRegionSearch II. The main difference is that we
group the regions active Regions and candidate Regions into connected regions. Recall that candidate Regions
refers to all regions on the same plane as the new block. By grouping them into connected regions, not all
blocks of a particular region have to be searched for finding possible connected regions. The search can
be stopped after identifying the first one. However, the search through active Regions involves more steps.
Since an input block can be connected with multiple activeRegions, all subgroups need to be searched.
Both data structures are one-dimensional. The first element holds the index of the connected region. The
remaining elements hold the index of the original block. Assume the z-coordinate is 4 (see Figure 4 (d)). In
this case the two blocks block[8] and block[9] of the previous plane (see Figure 4 (c)) belong to the following
active region: activeRegions[0][0] = 2 (index of connected region), activeRegions[0][1] = 8 (block[8]) and
activeRegions[0][2] = 9 (block[9]).

Due to the one-dimensional structure of activeRegions and candidate Regions FastRegionSearch II has
another advantage over FastRegionSearch I. Only the first element needs to be updated for changing the
index of the connected region after regions get merged.

The first part of this algorithm is identical to FastRegionSearch I. The difference, however, is the method

findConnections that is described below:

findConnections():
numberOfConnections = 0
for j=0 to candidateRegions.size()-1 AND searchMore
if block[i] is connected with candidateRegions[j] then
number(fFoundRegions++

searchMore = false // Search stops after one
connectedRegions[candidateRegions[j]]->add(block[i]) // connected region is found
candidateRegions[j]->add(block[i]) // in candRegions.

mergeRegions->add (candidateRegions)

for j=0 to activeRegions.size()-1
if block[i] is connected with activeRegions[j] then
number0fFoundRegions++ // Since a block can be connected
if (numberOfFoundRegion == 1) then // with several regions, all
candidateRegions[activeRegions[j]]->add (block[i]) // connected regions in
connectedRegions [activeRegions[j]]->add (block[i]) // activeRegions need to be
mergeRegions->add (candidateRegions) // searched.

if (numberOfFoundRegions == 0) then

createNewRegion (block[i])

else if (numberOfFoundRegions > 1) then
mergeConnectedRegions in mergeRegions
update region index in candidateRegions and activeRegions

3.4 Improved Region Search III

A further improvement to the algorithm is not to search through all candidate regions and through all
regions on the active plane, but only through the ones in close proximity to the block. FastRegionSearch II1
searches through all connected regions on the same y-plane and one y-plane below the block. In addition, it
searches through the adjacent z-plane with regions adjacent to the y-plane of the block. Assume the block
is block[6] on the x-y-plane with the z-coordinate = 1 (see Figure 5 (b)). The algorithms introduced in the
previous sections would search through all regions of the x-y-plane with the z-coordinate = 0. However,

FastRegionSearch 11 only searches through the two columns with the y-values y = yyiock[7) and y = Ypioc|7]

+ 1.
T search area
y-axis 3
5 7
4
4
y+1 2
¥ 0|1 6
a) W-AKIs — b)

Figure 5: Reduced search area for FastRegionSearch III.

In order to retrieve only those blocks on a given y-axis, we introduce a new hash-based data structure

which keeps track of the y-values of the connected regions. The data structure has the following format:

<y-value>;

<indices of connected regions 1 to n>;
<indices of blocks of region 1>
<indices of blocks of region 2>
<indices of blocks of region n>

A typical example would be:
<4>; <1, 2, 4>; <2, 3> <4> <8, 9, 10>

The first column refers to the connected regions with the y-value 4. This value is also the hash-value for
fast lookup. The second column holds the index of the connected regions 1, 2 and 4. This means, that the
blocks 2 and 3 make up region 1. Block 4 corresponds to region 2. Finally, the blocks 8, 9 and 10 refer to
the connected region 4. The advantage of this data structure is that the lookup for connected regions with
a given y-value is of complexity O(1). In addition, if two connected regions get merged, say regions 2 and
4, then this can easily be indicated by updating the corresponding entries of the second column. Assuming
that region 4 gets merged into region 2, the updated column would be <1, 2, 2>.

Due to space limitations we do not state all the details of the whole algorithm here. The main difference
to Regions Search II is that rather than searching through all candidate or active regions, only those are
checked, that are adjacent to the y-plane of the block. For instance, if the y-value of the block is 4, then all

regions are searched on the y-planes 3, 4 and 5.

4 Experimental Results

We tested our algorithms on astrophysics data which consists of 110 million records. We selected three
attributes from our data set and performed one-dimensional queries with various selectivities ranging from
5% to 95%. The experiments were carried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/0
subsystem is a hardware RAID with two SCSI disks.

Figure 6 depicts the time for finding connected regions as a function of the blocks that vary between
38,000 and 400,000. The processing time for the simple algorithm takes 12 to 1,250 seconds. The algorithm
FastRegionSearch I is up to a factor of 100 faster. One the other hand, FastRegionSearch II is again up to
a factor of 5 faster than FastRegionSearch I or even up to factor of 500 faster than the simple algorithm.
For a low number of blocks, FastRegionSearch III is slower than FastRegionSearch II. However, for a large
number of blocks, FastRegionSearch I1I shows the best overall performance.

Figure 7 depicts the average time for the nine region search queries shown Figure 6. For instance,

10 10
—»— Simple —%— Simple

—— Fast | —— Fast|
—-©— Fastll -©— Fastll
102 L| =« Fastlll i 102 L[| =« Fastlll
“ % 1 10° |

Time [sec]
Time [sec]

10_2 4 .5 6 10_2 4 .5 6
10 10 10 10 10 10
a) Number of input blocks for attribute x b) Number of input blocks for attribute y
10*
—— Simple
—— Fast |
—©— Fastll

102 L| =% Fast Il

10° | %

10" 10° 10

¢) Number of input blocks for attribute z

Time [sec]

6

Figure 6: Time [in seconds] for finding connected regions as a function of blocks.

for attribute y the average search time for the simple algorithm is 333 seconds. For the algorithms Fus-
tRegionSearch I, II and III the search times are 5.9, 1.8 and 0.65 seconds respectively. This shows that

FastRegionSearch III significantly outperforms all other algorithms of a factor of 3 up to 500.

5 Conclusions

In this paper, we demonstrated that compressed bitmap indices can be used efficiently to speed up identifying
regions of interest. The process of identifying regions of interest can be accomplished with a searching step
and a region-growing step. Compressed bitmaps are well-suited for the searching step [11, 14]. The key

contribution of this paper is to demonstrate that the output from the searching step can be efficiently used

000 1000

100
100

Time [sec]
Time [gec]

sirmple fast-| fast-II fast- Il 0.4
a) Search algorithms on attribute =) Search algorithms on attribute ¥

Time [gec]

smpk fmt-l fastl fastlll

c) Search algarithms on attribute z

Figure 7: Average time [in seconds| for finding connected regions.

for the region-growing step. Because the output of the searching step can be easily organized into blocks
of consecutive cells, the region-growing step is observed to scale linear in the number of blocks. Since the
number of blocks is much smaller than the number of cells on the boundaries of the regions of interest, and
also much smaller than the total number of cells, our algorithm scales better than the best known connected
component labeling algorithms [1, 4] and the iso-contouring algorithms [2, 8].

In the future, we plan to analyze the theoretical complexity of the new region-growing algorithm and
conduct performance tests against the best known connected component labeling and iso-contouring algo-

rithms.

References

[1]

2]

F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time component-labeling algorithm using contour tracing
technique. Comput. Vis. Image Underst., 93(2):206 220, 2004.

P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface extraction from irregular
volume data. In Volume Visualization Symposium, pages 31 38, 1996.

T. Echekki and J. H. Chen. Direct numerical simulation of autoignition in non-homogeneous hydrogen-
air mixtures, 2003. to be published in Combustion and Flame.

C. Fiorio and J. Gustedt. Two linear time union-find strategies for image processing. Theor. Comput.
Sei., 154(2):165 181, 1996.

V. Gaede and O. Giinther. Multidimension access methods. ACM Computing Surveys, 30(2):170 231,
1998.

H. G. Im, J. H. Chen, and C. K. Law. Ignition of hydrogen/air mixing layer in turbulent flows. In 27th
International Symposium on Combustion, The Combustion Institute, pages 1047-1056, Boulder, CO,
1998.

P. O’Neil. Model 204 architecture and performance. In 2nd International Workshop in High Performance
Transaction Systems, pages 40 59, Asilomar, CA, 1987. Springer-Verlag.

H. W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing in span space with utmost
efficiency (ISSUE). In IEEE Visualization ‘96, pages 287 294, 1996.

Q. Shi and J. F. Jaja. Efficient techniques for range search queries on earth science data. In J. Kennedy,
editor, Fourteenth International Conference on Scientific and Statistical Database Management, pages
142-151, Edinburgh, Scotland, 2002. IEEE Computer Society.

M. Steinbach, P.-N. Tan, V. Kumar, S. Klooster, and C. Potter. Discovery of climate indices using
clustering. In Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 446 455, Washington, D.C., 2003. ACM Press.

K. Stockinger, K. Wu, and A. Shoshani. Strategies for processing ad hoc queries on large data ware-
houses. In Proceedings of DOLAP’02, McLean, VA, 2002. ACM Press.

K. Wu, W. Koegler, J. Chen, and A. Shoshani. Using bitmap index for interactive exploration of large
datasets. In Proceedings of SSDBM 2003, pages 65 74, Cambridge, MA, 2003.

K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for faster search operations. In
Proceedings of SSDBM’02, pages 99-108, Edinburgh, Scotland, 2002.

K. Wu, E. J. Otoo, and A. Shoshani. On the performance of bitmap indices for high cardinality
attributes. Technical Report LBNL-54673, Lawrence Berkeley National Laboratory, Berkeley, CA,
2004. To appear in VLDB 2004.

