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1 Introdu
tionMany s
ienti�
 datasets are spatio-temporal in nature be
ause they measure physi
al quantities in spa
e andtime. For example, a simulation of the 
ombustion pro
ess 
omputes the 
on
entrations of all 
hemi
al spe
iesalong with pressure and temperature [3, 6℄. A satellite image of the surfa
e of the Earth [9, 10℄ measuresquantities su
h as temperature, wind speed, humidity and so on. One 
ommon operation in mining thesedatasets is to derive some quantities on regions of interest, e.g., the total heat output from an ignition kernelin the 
ombustion simulation, and the average rain fall of a state over a spe
i�ed period of time. To supportthis operation one needs to eÆ
iently identify regions of interest.In this paper, we 
on
entrate on datasets with regular dis
retization of spa
e, su
h as the Dire
t Numeri
alSimulations of 
ombustion on uniform 2D or 3D meshes[3, 6℄, and the raster images of the surfa
e of theEarth from satellite observation [9, 10℄. In these 
ases, the spa
e is dis
retized into small 
ells, and thequantities on ea
h 
ell are 
omputed or measured at some time values. All data from one time value is
ommonly known as a time step. To simplify the dis
ussion, we only dis
uss the regions of interest arede�ned by users with range 
onditions su
h as \pressure > 10; 000 and temperature > 1; 000."After the user spe
i�es the 
onditions, the pro
ess of identifying the regions of interest is usually dividedinto two steps, the sear
hing step to �nd the 
ells satisfying the 
onditions, and the region-growing step togroup the 
ells into 
onne
ted regions. This region-growing step is often 
alled the 
onne
ted 
omponentlabeling in image pro
essing literature [1, 4℄. If the 
onditions for regions of interest are simple, su
h as\pressure < 20; 000", the boundaries of the regions are the 
ontour lines 
omputed by the iso-
ontouringalgorithms for \pressure = 20; 000" [2, 8℄. For visualization purposes, region-growing algorithms produ
ethe same output as iso-
ontouring algorithms. Be
ause of this, region-growing algorithms are sometimes
ompared with iso-
ontouring algorithms. However, one important di�eren
e is that region-growing algo-rithms produ
e the 
ells inside the regions but the iso-
ontouring algorithms only identify the 
ells on theboundaries.One approa
h to identify regions of interest is to partition the 
ells a

ording to spatial 
oordinates,su
h as Quad-tree and R-Tree [5℄. These indexing s
hemes are only eÆ
ient for relatively low dimensional



data, say the total number of attributes in
luding the spatial dimensions is less than 10. If the number ofattributes is more or if only a small number of attributes are involved in the 
onditions, these indi
es arenot as eÆ
ient as the brute-for
e s
an. Worse yet, these indexing s
hemes usually separate 
ells that areneighbors in spa
e. Be
ause of this, they slow down the region-growing step. For example, in a re
ent studyby Shi and Jaja [9℄, the time spent by their region-growing step is signi�
antly longer than the time spent by
omparable 
onne
ted 
omponent labeling algorithms [1, 4℄. For these reasons, the most su

essful approa
huses brute-for
e s
an for the sear
hing step. Be
ause this allows the neighboring 
ells to be kept together,eÆ
ient algorithms for 
onne
t 
omponent labeling 
an be used for the region-growing step. Clearly, if we
an use an indexing s
heme that keep the neighboring 
ells together, we should redu
e the time used by thesear
hing step without in
reasing the time used by the region-growing step. This would redu
e the totaltime.We propose to use bitmap indi
es for the sear
hing step be
ause they do not reorder the 
ells [7, 11, 14℄.Our implementation of the bitmap indi
es also uses 
ompression s
heme based the run-length en
oding. Inthis 
ase, the sear
hing step produ
es a 
ompressed bitmap to represent the 
ells satisfying the 
onditions.This 
ompressed bitmap 
an be easily 
onverted to blo
ks of 
onne
ted 
ells. Working with these blo
ks toperform the region-grow step is in fa
t more eÆ
ient than using 
ells dire
tly. Previously, we have presentedsome eviden
e that the bitmap-based approa
h works well for data a on 2D uniform mesh [12℄. In thispaper, we des
ribe a set of eÆ
ient algorithms for region-growing in 3D. By taking full advantage of the
ompa
t output from the bitmap indi
es, our algorithms are orders of magnitudes faster than the generi
algorithm required when the sear
hing step produ
es 
ells in arbitrary order. As in the 2D 
ase [12℄, weobserve that our region-growing algorithm s
ales linearly in the number of blo
ks produ
ed by the sear
hingstep. Sin
e the number of blo
ks is less than the number of 
ells on the boundaries of the regions of interest,our algorithm s
ales better than the best iso-
ontouring algorithms [2, 8℄. The best of 
onne
ted 
omponentlabeling algorithms s
ale linearly in the total number of 
ells [1, 4℄, our region-growing algorithm s
ales mu
hbetter sin
e the number of blo
ks are mu
h less than the total number of 
ells.



bitmap indexRID I =0 =1 =2 =31 0 1 0 0 02 1 0 1 0 03 3 0 0 0 14 2 0 0 1 05 3 0 0 0 16 3 0 0 0 17 1 0 1 0 08 3 0 0 0 1b1 b2 b3 b4Figure 1: A sample bitmap index where RID is the re
ord ID and I is the integer attribute with values inthe range of 0 to 3.2 Bitmap-Based Approa
hFor read-only or read-mostly data, the bitmap index is one of the most eÆ
ient indexing s
hemes for speedingup range queries [7, 14℄. For an attribute with 
 distin
t values, the basi
 bitmap index generates 
 bitmapsea
h with N bits, where N is the number of re
ords (
ells) in the dataset. Ea
h bit in a bitmap is set to 1if the attribute in the re
ord is of a spe
i�
 value, otherwise 0. For example, the integer attribute I shownin Figure 1 
an be one of four distin
t values, 0, 1, 2, and 3, and the 
orresponding bitmap index has fourbitmaps. Sin
e the value in re
ord 5 is 3, the �fth bit in b4 is set to 1 and the same bits in other bitmapsare 0. In short, 4 bitmaps are required to en
ode 4 distin
t attribute values.Using a bitmap index, answering a range query, su
h as I < 2, requires some bitwise logi
al operationson the bitmaps. Sin
e bitwise logi
al operations are well-supported by 
omputer hardware, we 
an expe
tto answer range queries eÆ
iently with bitmap indi
es. With a bitmap index for ea
h attribute, 
onditionsinvolving multiple attributes, su
h as \I < 2 and J < 3", 
an also be eÆ
iently answered by 
ombining thepartial solutions 
omputed using indi
es on attributes I and J.One major 
on
ern about the bitmap index is that for attributes with a large number of distin
t values,the indi
es require too mu
h spa
e to store. Re
ently, it has been shown that even in the worst 
ase, thebitmap indi
es 
an be 
ompressed to a size that is 
omparable with a typi
al B-tree index. The time requiredto answer a range query using a 
ompressed bitmap index is in fa
t optimal. In the worst 
ase, the responsetime is proportional to the number of hits of the query [14℄.In our implementation of the bitmap index for spatio-temporal data, we preserve the spatial order of the




ells. This avoids reordering of the raw data and redu
es the time required for building the bitmap indi
es.Another bene�t is that the 
ompressed bitmap produ
ed as the result of the sear
hing step 
an be easilyturned into blo
ks of 
onne
ted 
ells. In [9℄ the authors report that a majority of the 
ompute time is spentin grouping the 
ells identi�ed by the sear
hing step into horizontal line segments. The time required in ourapproa
h to 
onvert a 
ompressed bitmap into line segments and other blo
ks is usually below the a

ura
yof the 
ommon timing fun
tions of about 0.01 se
onds.On a 3D regular mesh, the 
ells 
an be identi�ed by three 
oordinates along three spatial dimensions,x, y, and z. A 
ommon way of representing the 
ells during 
omputation or measurement is to order the
ells a

ording to their z-
oordinates �rst. For 
ells with the same z-
oordinates, order them a

ording toy-
oordinates. For 
ells with the same z- and y-
oordinates, order them a

ording to x-
oordinates. This isusually 
alled the raster s
an order. Sin
e most of the eÆ
ient bitmap 
ompression s
hemes are based onrun-length en
oding, the result produ
ed by the sear
hing step naturally represents 
onse
utive 
ells thateither all satisfy the user spe
i�ed 
onditions or not. These 
onse
utive 
ells 
an be easily mapped to blo
ksalong the x-axis. There are three types of blo
ks (see Figure 2):1. Line segments, where all 
ells have the same y and z 
oordinates.2. Whole lines, where all 
ells have the same z 
oordinates, 
onse
utive y 
oordinates and all possiblevalues in the x-axis.3. Whole planes, where 
ells have 
onse
utive z 
oordinates and have all possible x and y 
oordinates inthe given range of z 
oordinates.To simplify the dis
ussion, we des
ribe all algorithms as if there are only line segments. In the a
tualimplementations all three types are 
onsidered.Both experiments and analyses have shown that the time spent in the sear
hing step is proportional tothe number of blo
ks identi�ed, and the size of the result produ
ed by the sear
hing step is also proportionalto the number of blo
ks [14, 12, 13℄. The most eÆ
ient iso-
ontouring algorithms are shown to have anexe
ution time that is proportional to the number of 
ells tou
hing the 
ontour lines [2, 8℄. Sin
e ea
h blo
khas at least one point tou
hing the boundaries of the regions, the sear
hing time using bitmap indi
es is not



Figure 2: a) Cell with grid lines of the mesh. b) Blo
k type I and II without grid lines. 
)-d) Blo
k type IIIwithout grid lines.worse than linear in the number of 
ells tou
hing the 
ontour lines. On 2D data, we have observed thatthe region-growing time is proportional to the number of blo
ks [12℄. Next we will show the same is truefor 3D data. If both steps have linear 
omplexity, then the whole pro
ess has linear time 
omplexity. Thisdemonstrates that our bitmap-based approa
h to identify regions of interest is theoreti
ally optimal.3 Region-Growing AlgorithmsEa
h blo
k in the 3D spa
e is 
hara
terized by a pair of points for ea
h dimension. Ea
h pair spe
i�es the lowerand upper bound in a given dimension (bounding box). For instan
e, blo
k[7℄ in Figure 3 is 
hara
terizedby the points < 0; 1 >< 3; 4 >< 1; 2 >, where < 0; 1 > refers to the 
oordinates < xmin; xmax >, < 3; 4 >refers to < ymin; ymax >, and < 1; 2 > to < zmin; zmax > . In the following dis
ussion, we take the inputfor region-growing algorithms to be a list of blo
ks. The output of the region-growing algorithm are lists of
onne
ted regions. Next, we outline algorithms for 
onne
ting blo
ks to form regions of interest.



3.1 Simple Region Sear
hThis algorithm is the most generi
 one and does not assume any parti
ular order of blo
ks. Note that blo
ksare the output of the sear
h step dis
ussed in Se
tion 2. This algorithm is used for indexing s
hemes thatdo not preserve spatial ordering among the 
ells, for example, [9℄.The sear
h algorithm works as follows. The �rst blo
k blo
k[0℄ is 
onsidered as the �rst 
onne
ted region
onne
tedRegions[0℄. Next, the algorithm loops over ea
h blo
k and 
he
ks whether it is part of an alreadyidenti�ed 
onne
ted region. If it is not part of an existing 
onne
ted region, a new region is 
reated. If theblo
k is part of a 
onne
ted region, it gets added to this one. If the blo
k is part of several 
onne
ted regions,these regions are merged.numberOfBlo
ks is given from initial sear
h step // always greater than 0
onne
tedRegions = 0
onne
tedRegions[0℄->add(blo
k[0℄) // ve
tor of ve
tors with blo
k indi
es;// ea
h blo
k-ve
tor holds the indi
esfor i = 1 to numberOfBlo
ks-1 // of the blo
ks of a spe
ifi
 regionmergeRegions.
lear()numberOfFoundRegions = 0findMore = truefor j = 0 to 
onne
tedRegions.size()-1for k=0 to 
onne
tedRegions[j℄.size()-1AND (sear
hMore == true)if blo
k[i℄ 
onne
ted with 
onne
tedRegions[j℄[k℄ thennumberOfFoundRegions++
onne
tedRegions[j℄->add(blo
k[i℄)mergeRegions->add(j)sear
hMore = falseif numberOfFoundRegions == 0 then
reateNewRegion(blo
k[i℄) // 
onne
tedRegions->add(blo
k[i℄)else if numberFoundRegions > 1 thenmergeConne
tedRegions in mergeRegionsFor indexing s
hemes that do not preserve spatial order among the 
ells, it is ne
essary to use thisalgorithm. Another possibility is to sort the blo
ks �rst and then use one of following algorithms.3.2 Improved Region Sear
h IThe improved algorithm FastRegionSear
h I takes advantage of the fa
t that the blo
ks are partially sorted.Rather than sear
hing through all 
onne
ted regions, only a subset has to be sear
hed, namely those regions



that are 
lose to the blo
k. In this 
ase, 
lose means that the respe
tive blo
k is on the same plane withinthe axis of our 
oordinate system. See Figure 3.

Figure 3: Blo
ks in spa
e with 3 spatial dimensions. Note: For simpli
ity, not all blo
ks are indexed in this�gure.FastRegionSear
h I iterates through the blo
ks plane-wise with respe
t to the z-axis. The algorithm �rst
he
ks all the blo
ks on the x-y-plane for a given z-
oordinate (see Figure 4 (a)). On
e all blo
ks on thisplane are sear
hed, the next x-y-plane gets sear
hed ((see Figure 4 (b) - (d)).Note that some blo
ks might not be 
onsidered as 
onne
ted on the x-y-plane for a given z-value. However,by sear
hing x-y-planes on a higher z-value, these blo
ks 
an get 
onne
ted. This is true for the blo
ks blo
k[8℄and blo
k[9℄ in Figure 3. They are only identi�ed as being 
onne
ted after blo
k[10℄ is pro
essed.Like for the simple algorithm, the �rst blo
k is 
onsidered to be the �rst 
onne
ted region. Next Fas-tRegionSear
h I sear
hes through the blo
ks on the x-y-plane with z-
oordinate 0 and 
he
ks for 
onne
tedregions in the same way as the simple algorithm does. All blo
ks on this plane are stored in an auxil-iary data stru
ture 
alled 
andidateRegions. This is a two-dimensional data stru
ture. Its �rst dimension



Figure 4: Blo
ks of Figure 3 mapped to two spatial dimensions.holds the index of the original blo
k. The se
ond dimension holds the index of the 
onne
ted region, e.g.
andidateRegions[1℄[0℄ = 7 refers to blo
k 7, 
andidateRegions[1℄[1℄ = 1 being part of 
onne
ted region 1(see Figure 3).On
e all blo
ks on the x-y-plane with the z-
oordinate 0 are 
he
ked, the next plane on a higher z-
oordinate is sear
hed. If the next blo
k is on a plane adja
ent to the previous plane, i.e. the di�eren
e ofthe z-
oordinate is 1, then we know that there are 
andidate regions that might be 
onne
ted to previous
andidates regions. The �rst step is to rename all 
andidate regions of the previous plane to the auxiliarydata stru
ture a
tiveRegions and 
lear 
andidateRegions. a
tiveRegions is the same two-dimensional datastru
ture as 
andidateRegions. Assume we are sear
hing through the x-y-plane with the z-
oordinate = 1(see Figure 4 (b)). All sear
hed blo
ks on this plane are 
onsidered as 
andidate regions. On the other hand,all blo
ks on the previous x-y-plane with z-
oordinate = 0 are 
onsidered as a
tive regions.Next, all blo
ks on the 
urrent plane are 
he
ked if they are 
onne
ted with the regions in a
tiveRegions.The 
he
king for 
onne
tion and the possible merging of 
onne
ted regions is analogous to what we dis
ussed



for the simple algorithm.If the blo
ks are on a x-y-plane that is not adja
ent to the previous one, i.e. the di�eren
e in the z-
oordinate > 1, then we know that these regions are not 
onne
ted with any regions on the previous plane,e.g. blo
k[8℄ and blo
k[9℄. If the blo
k is the �rst on the non-adja
ent x-y-plane, then a new 
onne
ted regionis 
reated, otherwise the blo
k is 
ompared with all the blo
ks on the same plane, i.e. 
andidateRegions.numberOfBlo
ks is given from initial sear
h step // always greater than 0
onne
tedRegions = 0
onne
tedRegions[0℄->add(blo
k[0℄)for i = 1 to numberOfBlo
ks-1mergeRegions.
lear()numberOfFoundRegions = 0if (blo
k[i℄ is on the same x-y-plane) thenfindConne
tions() // see belowelse if (blo
k[i℄ is on the adja
ent x-y-plane) thena
tiveRegions = 
andidateRegions
andidateRegions.
lear()findConne
tions() // see belowelse if (blo
k[i℄ is first of non-adja
ent x-y-plane) then
andidateRegions.
lear()
reateNewRegion(blo
k[i℄)findConne
tions():numberOfConne
tions = 0for j=0 to 
andidateRegions.size()-1if blo
k[i℄ is 
onne
ted with 
andidateRegions[j℄ thennumberOfFoundRegions++if (numberOfFoundRegions == 1) then
onne
tedRegions[
andidateRegions[j℄℄->add(blo
k[i℄)mergeRegions->add(j)for j=0 to a
tiveRegions.size()-1if blo
k[i℄ is 
onne
ted with a
tiveRegions[j℄ thennumberOfFoundRegions++if (numberOfFoundRegion == 1) then
onne
tedRegions[
andidateRegions[j℄℄->add(blo
k[i℄)mergeRegions->add(j)if (numberOfFoundRegions == 0) then
reateNewRegion(blo
k[i℄)else if (numberOfFoundRegions > 1) thenmergeConne
tedRegions in mergeRegionsupdate region index in 
andidateRegions and a
tiveRegions
andidateRegions->add(blo
k[i℄)



3.3 Improved Region Sear
h IINext we study an even further improved algorithm 
alled FastRegionSear
h II. The main di�eren
e is that wegroup the regions a
tiveRegions and 
andidateRegions into 
onne
ted regions. Re
all that 
andidateRegionsrefers to all regions on the same plane as the new blo
k. By grouping them into 
onne
ted regions, not allblo
ks of a parti
ular region have to be sear
hed for �nding possible 
onne
ted regions. The sear
h 
anbe stopped after identifying the �rst one. However, the sear
h through a
tiveRegions involves more steps.Sin
e an input blo
k 
an be 
onne
ted with multiple a
tiveRegions, all subgroups need to be sear
hed.Both data stru
tures are one-dimensional. The �rst element holds the index of the 
onne
ted region. Theremaining elements hold the index of the original blo
k. Assume the z-
oordinate is 4 (see Figure 4 (d)). Inthis 
ase the two blo
ks blo
k[8℄ and blo
k[9℄ of the previous plane (see Figure 4 (
)) belong to the followinga
tive region: a
tiveRegions[0℄[0℄ = 2 (index of 
onne
ted region), a
tiveRegions[0℄[1℄ = 8 (blo
k[8℄) anda
tiveRegions[0℄[2℄ = 9 (blo
k[9℄).Due to the one-dimensional stru
ture of a
tiveRegions and 
andidateRegions FastRegionSear
h II hasanother advantage over FastRegionSear
h I. Only the �rst element needs to be updated for 
hanging theindex of the 
onne
ted region after regions get merged.The �rst part of this algorithm is identi
al to FastRegionSear
h I. The di�eren
e, however, is the methodfindConne
tions that is des
ribed below:findConne
tions():numberOfConne
tions = 0for j=0 to 
andidateRegions.size()-1 AND sear
hMoreif blo
k[i℄ is 
onne
ted with 
andidateRegions[j℄ thennumberOfFoundRegions++sear
hMore = false // Sear
h stops after one
onne
tedRegions[
andidateRegions[j℄℄->add(blo
k[i℄) // 
onne
ted region is found
andidateRegions[j℄->add(blo
k[i℄) // in 
andRegions.mergeRegions->add(
andidateRegions)for j=0 to a
tiveRegions.size()-1if blo
k[i℄ is 
onne
ted with a
tiveRegions[j℄ thennumberOfFoundRegions++ // Sin
e a blo
k 
an be 
onne
tedif (numberOfFoundRegion == 1) then // with several regions, all
andidateRegions[a
tiveRegions[j℄℄->add(blo
k[i℄) // 
onne
ted regions in
onne
tedRegions[a
tiveRegions[j℄℄->add(blo
k[i℄) // a
tiveRegions need to bemergeRegions->add(
andidateRegions) // sear
hed.if (numberOfFoundRegions == 0) then




reateNewRegion(blo
k[i℄)else if (numberOfFoundRegions > 1) thenmergeConne
tedRegions in mergeRegionsupdate region index in 
andidateRegions and a
tiveRegions3.4 Improved Region Sear
h IIIA further improvement to the algorithm is not to sear
h through all 
andidate regions and through allregions on the a
tive plane, but only through the ones in 
lose proximity to the blo
k. FastRegionSear
h IIIsear
hes through all 
onne
ted regions on the same y-plane and one y-plane below the blo
k. In addition, itsear
hes through the adja
ent z-plane with regions adja
ent to the y-plane of the blo
k. Assume the blo
kis blo
k[6℄ on the x-y-plane with the z-
oordinate = 1 (see Figure 5 (b)). The algorithms introdu
ed in theprevious se
tions would sear
h through all regions of the x-y-plane with the z-
oordinate = 0. However,FastRegionSear
h III only sear
hes through the two 
olumns with the y-values y = yblo
k[7℄ and y = yblo
k[7℄+ 1.

Figure 5: Redu
ed sear
h area for FastRegionSear
h III.In order to retrieve only those blo
ks on a given y-axis, we introdu
e a new hash-based data stru
turewhi
h keeps tra
k of the y-values of the 
onne
ted regions. The data stru
ture has the following format:<y-value>;<indi
es of 
onne
ted regions 1 to n>;<indi
es of blo
ks of region 1><indi
es of blo
ks of region 2> ...<indi
es of blo
ks of region n>



A typi
al example would be:<4>; <1, 2, 4>; <2, 3> <4> <8, 9, 10>The �rst 
olumn refers to the 
onne
ted regions with the y-value 4. This value is also the hash-value forfast lookup. The se
ond 
olumn holds the index of the 
onne
ted regions 1, 2 and 4. This means, that theblo
ks 2 and 3 make up region 1. Blo
k 4 
orresponds to region 2. Finally, the blo
ks 8, 9 and 10 refer tothe 
onne
ted region 4. The advantage of this data stru
ture is that the lookup for 
onne
ted regions witha given y-value is of 
omplexity O(1). In addition, if two 
onne
ted regions get merged, say regions 2 and4, then this 
an easily be indi
ated by updating the 
orresponding entries of the se
ond 
olumn. Assumingthat region 4 gets merged into region 2, the updated 
olumn would be <1, 2, 2>.Due to spa
e limitations we do not state all the details of the whole algorithm here. The main di�eren
eto Regions Sear
h II is that rather than sear
hing through all 
andidate or a
tive regions, only those are
he
ked, that are adja
ent to the y-plane of the blo
k. For instan
e, if the y-value of the blo
k is 4, then allregions are sear
hed on the y-planes 3, 4 and 5.4 Experimental ResultsWe tested our algorithms on astrophysi
s data whi
h 
onsists of 110 million re
ords. We sele
ted threeattributes from our data set and performed one-dimensional queries with various sele
tivities ranging from5% to 95%. The experiments were 
arried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/Osubsystem is a hardware RAID with two SCSI disks.Figure 6 depi
ts the time for �nding 
onne
ted regions as a fun
tion of the blo
ks that vary between38,000 and 400,000. The pro
essing time for the simple algorithm takes 12 to 1,250 se
onds. The algorithmFastRegionSear
h I is up to a fa
tor of 100 faster. One the other hand, FastRegionSear
h II is again up toa fa
tor of 5 faster than FastRegionSear
h I or even up to fa
tor of 500 faster than the simple algorithm.For a low number of blo
ks, FastRegionSear
h III is slower than FastRegionSear
h II. However, for a largenumber of blo
ks, FastRegionSear
h III shows the best overall performan
e.Figure 7 depi
ts the average time for the nine region sear
h queries shown Figure 6. For instan
e,
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Figure 6: Time [in se
onds℄ for �nding 
onne
ted regions as a fun
tion of blo
ks.for attribute y the average sear
h time for the simple algorithm is 333 se
onds. For the algorithms Fas-tRegionSear
h I, II and III the sear
h times are 5.9, 1.8 and 0.65 se
onds respe
tively. This shows thatFastRegionSear
h III signi�
antly outperforms all other algorithms of a fa
tor of 3 up to 500.5 Con
lusionsIn this paper, we demonstrated that 
ompressed bitmap indi
es 
an be used eÆ
iently to speed up identifyingregions of interest. The pro
ess of identifying regions of interest 
an be a

omplished with a sear
hing stepand a region-growing step. Compressed bitmaps are well-suited for the sear
hing step [11, 14℄. The key
ontribution of this paper is to demonstrate that the output from the sear
hing step 
an be eÆ
iently used



Figure 7: Average time [in se
onds℄ for �nding 
onne
ted regions.for the region-growing step. Be
ause the output of the sear
hing step 
an be easily organized into blo
ksof 
onse
utive 
ells, the region-growing step is observed to s
ale linear in the number of blo
ks. Sin
e thenumber of blo
ks is mu
h smaller than the number of 
ells on the boundaries of the regions of interest, andalso mu
h smaller than the total number of 
ells, our algorithm s
ales better than the best known 
onne
ted
omponent labeling algorithms [1, 4℄ and the iso-
ontouring algorithms [2, 8℄.In the future, we plan to analyze the theoreti
al 
omplexity of the new region-growing algorithm and
ondu
t performan
e tests against the best known 
onne
ted 
omponent labeling and iso-
ontouring algo-rithms.
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