Evaluation Strategies for Bitmap Indices with
Binning*

Kurt Stockinger, Kesheng Wu, Arie Shoshani

Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720, USA
{KStockinger, KWu, AShoshani}@lbl.gov

Abstract. Bitmap indices are efficient data structures for querying read-
only data with low attribute cardinalities. To improve the efficiency of
the bitmap indices on attributes with high cardinalities, we present a
new strategy to evaluate queries using bitmap indices. This work is mo-
tivated by a number of scientific data analysis applications where most
attributes have cardinalities in the millions. On these attributes, binning
is a common strategy to reduce the size of the bitmap index. In this
article we analyze how binning affects the number of pages accessed dur-
ing query processing, and propose an optimal way of using the bitmap
indices to reduce the number of pages accessed. Compared with two ba-
sic strategies the new algorithm reduces the query response time by up
to a factor of two. On a set of five dimensional queries on real applica-
tion data, the bitmap indices are on average 10 times faster than the
projection index.

1 Introduction

Large scale, high-dimensional data analysis requires specialized data structures
to efficiently query the search space. Both commercial data warehouses and sci-
entific data are typically read-only, and index data structures do not require
transactional support for update operations. Under these conditions bitmap in-
dices are suitable for complex, multi-dimensional data analyses.

The basic idea of bitmap indices is to store one slice of bits per distinct
attribute value (e.g. all integers from 0 to 140). Each bit of the slice is mapped
to a record or a data object. The associated bit is set if and only if the record’s
value fulfills the property in focus (e.g. the respective value of the record is
equal to, say, 87). One of their main strengths is that complex logical selection

* The authors thank Ekow Otoo, Doron Rotem, and Heinz Stockinger for their con-
structive comments during the writing of this article. This work was supported by the
Director, Office of Science, Office of Laboratory Policy and Infrastructure Manage-
ment, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
This research used resources of the National Energy Research Scientific Comput-
ing Center, which is supported by the Office of Science of the U.S. Department of
Energy.

operations can be performed very quickly by means of Boolean operators such
as AND, OR, or XOR.

The contributions of this article are as follows. We summarize the current
state of the art of bitmap index technologies and focus in particular on queries
against scientific data. Next we introduce a novel bitmap evaluation technique
and compare it with currently deployed methods. We provide both analyses and
experimental measurements to show that the new strategy indeed minimizes the
number of records scanned. In some cases we observe a factor two improvement
in query response time using the new strategy.

2 Related Work

Bitmap indices are mostly used for On-Line Analytical Processing (OLAP) and
data warehouse applications [1] for complex queries in read-only or append-
only environments. The most commonly used bitmap encoding strategies are
equality, range or interval encoding [2,3]. Equality encoding is optimized for
so-called exact match queries of the form a = v where a is an attribute and v
the value to be searched for. Range encoding, on the other hand, is optimized
for one-sided range queries of the from a op v where op € {<, <, >, >}. Finally,
interval encoding shows the best performance characteristics for two sided-range
queries of the form vy op a op vs.

Traditional bitmap indices are typically used on integer and string values.
However, scientific data is often based on floating point values which requires
other kinds of bitmap indices based on binning [6, 7]. In this case, one bitmap
does not represent one attribute value but one attribute range (see Figure 1).

Assume that we want to evaluate the query z < 63. The bitmap that holds
these values is bitmap 4 (shaded in Figure 1). This bitmap represents floating
point numbers in the range of 0 to 80. In order to evaluate the query z < 63,
two additional steps are required in order to retrieve the values that match the
query condition.

Note that bitmap 4 represents values in the range of 0 to 80, which is more
than what we have specified as our query condition (63). We now combine bitmap
4 and bitmap 3 with the logical operator XOR and get those values that are in
the range of 60 to 80. As depicted in Figure 1, two values are left that need to
be read from disk and checked against the query constraint z < 63. We call this
additional step the candidate check.

There are a number of approaches to reduce the index size and increase
the performance of the bitmap index for high cardinality attributes. These ap-
proaches include multicomponent encoding [2, 3], binning the attribute values
[6,7] and compressing the bitmaps [4, 8].

3 Evaluation Strategies

The query example in Section 2 is a typical one-dimensional query since the query
condition consists of only one attribute. For multi-dimensional queries that con-

6 5 4 3 2 1 bitmap identifiers
[0;120) [0;100) [0;80) [0;60) [0;40) [0;20) bin ranges

34.7 1 1 1 1 1 0
candidate object

% 1 11 (0|00 |0 (nohit)

//
649 |1 1 170 |0 0
155 1 1 1 1 1 1
617 |1 1 10| |0 0

| T candidate object
1372 | O 0 0 0 0 0 (is"hit")
8.6 1 1 1 1 1 1

attribute values on disk }W

(base data)

Fig. 1. One-sided range query = < 63 on a range encoded bitmap index.

tain several attributes, for instance z; < 63 AND x5 > 72 AND z3 < 5.2, the
results of several bitmaps need to be combined. The goal is to calculate the
intermediate result of each query dimension in such a way that the number of
candidates and thus the number of disk scans is minimized. In this section we
present three different techniques for evaluating bitmap indices with binning.

Assumptions and Definitions: The following analysis assumes all attributes
have uniform distribution. This represents the worst case for the bitmap indices,
which are usually more efficient on real application data as demonstrated in
Section 5. Without loss of generality, we further assume the domain of each at-
tribute is normalized to be [0, 1]. We limit all queries to be conjunctive with
a one-sided range condition on each attribute z; < v;. The bin boundaries just
below and above v; are denoted by v, and v; respectively. For the attribute z in
the domain of [0, 140], the query = < 63 shown in Figure 1 is normalized to be
2 < 0.45. The lower and upper ranges of the candidate bitmap are 60 and 80.
After normalization, we yield v=0.43 and 7= 0.57.

Strategy 1: Figures 2a) - g) show a graphical interpretation of the bitmap
evaluation strategy on a 2-dimensional query. In the first phase, the bitmap in-
dex is scanned for both attributes. The result is an L-shape which represents
the candidate records (see Figure 2) of both dimensions 1 and 2. We refer to
these candidates as C,;. Since the domains of the attributes are normalized, the
number of records in Cy,; is equal to the area of the L-shape times the total
number of records V.

Let us assume the hit area for attribute 4 is denoted as H; and the candidates
for attribute 7 are denoted as C;. We can calculate the candidate L-shape Cy;
as follows: Cipr = (H1 V C1) A (Ha V Co) — H, where H = Hy A Hy. This is
equivalent to what is shown graphically in Figure 2.

In the next phase, the candidate check for attribute 1 is performed by reading
the attribute values from disk and checking them against the range condition. All

ﬁ hits
candicates

¢)Result

a) Hits and candidates b} Hits and candidates = vy
of dim 1 0% <v) of dim 2 {yy < vy} ?
g) Candidate area =
AND . Vv —viey2
d) Hits of dim 1 e) Hits of dim 2 fiResult H=
vi-va

Fig. 2. Calculation of the candidate area for strategies 1 and 3.

Cint] T2

-

v1, v1] [‘ﬂ>v‘)"‘] [ﬂ, Vi, w]
) candidate check for dim 1 b) candidate check for dim 2) Results of 2d query

VI-va—Vviova V1-vi—viva

Fig. 3. Bitmap evaluation strategy 1.

records represented by Cy,; are checked (see Figure 3a)). The records satisfying
the range condition involving attribute 1 is recorded as r;. Finally, the candidate
check for dimension 2 is performed by reading all attributes represented by the
area r; (see Figure 3b)). The results of the 2-dimensional query are shown in
Figure 3c).

Let the candidate selectivity of ith dimension s; be the fraction of records that
need to be scanned, the candidate selectivity of the first dimension s; = 7175 —
v,0,, and the candidate selectivity of the second dimension sy = v172 —v;v,. In
general, the equation for the candidate selectivity is:

i—1 d d
si= | [Tvillw | - [T (1)
j=1 j=i j=1

where d refers to dimension. The total number of records scanned S =
N Z?:l Si-

Ideally, we would only read the candidate records during the candidate check-
ing. Since most I/O system performs disk operations in pages, more records are
actually read into memory. To more accurately evaluate the cost of candidate
checking, we compute the number of page accesses for each attribute. Given the
candidate selectivity s, the estimated number of pages is (1 — e_%)p, where N
is the number of records of the base data and p is the number of pages for one

s; N
attribute [5]. The total number of pages for all dimensions is Z?Zl(l —e 77)p.
For the next two bitmap evaluation strategies, the number of pages is estimated
analogically.

Strategy 2: This strategy evaluates each dimension separately. Using the same
2D example as before, the bitmap index for the first attribute is evaluated first
and the candidates of this attribute are checked immediately afterward (see Fig-
ure 4a)). After these operations the condition involving the first attribute is fully
resolved. In Figure 4 the result is denoted as Hy. Similarly, dimension 2 is evalu-
ated. Since the query conditions are conjunctive, the final answer must be from
H,. Therefore, the candidates to be checked must be both in H; and C5. This
reduces the area from T — v, to v1(Ty — v,).

[5%] vl

) Hits of dim 1
(mask for next dim)

a) Candidate check for dim 1: b) Result

V- n-n

e} Candidates of dim 2 f) Candidate check for dim 2.

i-v vi- (- 12)

b
m

o Hits of di

Fig. 4. Bitmap evaluation strategy 2.

It is straightforward to extend this strategy to resolve more attributes. The
candidate selectivity of attribute 7 is as follows:

si= (v | @2 @)

Strategy 3: This strategy is an optimal combination of Strategies 1 and 2.
Given the values are binned, it checks the minimal number of candidates.

AND

M1 L] é_‘

d) Result of
candidate check

7]
a) Candidate area.

N vi-vva vi-v1 va-(vi-v1)

LF)
c, M, R
3

] h) Result of candidate
o Mask fromdim 1 f) Candidates of dim 2 g) Candidate check check, 12
- Final result R2 plus H

LA

b) Candidates of dim 1 ¢) Candidate check:

RG]

Ry AN

va-v2 1 (v-v3)

Fig. 5. Bitmap evaluation strategy 3.

The first phase of this technique is identical to Strategy 1. Once the L-
shaped area C,; is computed, the candidate check for dimension 1 can begin.
However, rather than scanning all attributes represented by C},:, this area is
reduced by “AND”ing together the candidate bitmap Cy with Cy,: (see Figure
5¢)). In this case the candidate selectivity is s; = (U1 — vy)U2. The result of this
candidate check r; is combined with C;,; and C; to produce a refined candidate
set R1 = Ctot AN —|(M1 AN —|7“1), where M1 = Ctot AN Cl.

To determine the minimal candidate set for attribute 2, the refined candidate
set R; and the candidate set Cs are “AND”ed together, which produces Ms. The
area representing M, is vy (T2 — v,). Let 7o denote the result of this candidate
check. The final result of the two dimensional query is H V Ry, where Ry =
R1 A —|(M2 A —I’I“Q).

The whole process is depicted in Figure 5. In general, the candidate selectivity
for attribute i is as follows:

i—1 d
si= | [Tvi | @—o) | 1] o (3)
j=1 =it

This strategy checks the minimal number of candidates. It achieves this with
some extra operations on bitmaps. The first two strategies only need to access
the bitmap indices once. However, this strategy has to access the bitmap indices
twice: once to determine the initial candidate set C,; and once to determine
the candidates for the ith attribute to compute C;. In addition, it needs more
bitwise logical operations after each candidate checking to refine the candidate
sets. These extra bitmap operations clearly require time. One question we seek
to address is whether the savings in reduced candidate checking is enough to
offset these extra operations on bitmaps.

4 Analytical Results

In this section we evaluate the three strategies discussed in Section 3 according
to the number of candidates checked and the number of pages accessed. All
evaluations are carried out on a data set of 25 million records with 10 attributes.
All attributes are uniform random values in the range of [0, 1]. We have chosen
25 million records since our real data used in the next section also comprises
of 25 million entries. For each dimension we assume a bitmap index with 300
bins as in the performance tests in the next section. The page size is 8KB. Each
attribute value takes 4 bytes to store and all pages are packed as in a typical
projection index [5]. In many data warehouse applications, the projection index
is observed to have the best performance in answering complex queries. We use
it as a reference for measuring the performance of the various bitmap schemes.
To simplify the evaluation, we set all v; to be the same. Furthermore, we assume
the query boundaries are never exactly on the bin boundaries, i.e., v # T # v.
Figure 6 shows the number of candidates expected (according to Equations 1, 2
and 3) and Figure 7 shows the number of page accesses expected.

x10 x10

Number of candidates
o

Number of candidates
o

0
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
a) 1d - Query boundary b) 2d - Query boundary

5 5

x 10 x 10

—— Strategy 1
10| —+ Strategy 2
—©— Strategy 3

Number of candidates
o

Number of candidates
o

1oL

0 B—8—&
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
b) 5d — Query boundary b) 10d - Query boundary

Fig. 6. Total number of candidates for multi-dimensional queries.

For one-dimensional queries there is no performance difference among the
strategies (see Figure 6a)). In all cases, the candidate selectivity is 0.3% (=
1/300) which corresponds to all entries of one candidate bitmap. Note that since
each page contains 2048 records, selecting one out of every 300 records means
all pages are accessed.

When more than one attribute is involved, there is a significant difference
among the strategies. We observe that Strategy 1 performs better than Strategy

4

12 12 —k— Projection 127
—— Strategy 1
—— Strategy 2
—_ 10 —_ 10 —©— Strategy 3 —_ 10
@ @ @
° 41 @
g 8 g 8 g 8
f= = E=3
S Q Q6
o @ @
> =) =3
@ @ @
o 4 & 4 & 4
2] 2 2
0 0O 0

0 0.5 1 0 0.5 1 0 0.5 1
b) 2d - Querv boundarv b) 5d — Querv houndarv b) 10d - Querv houndarv

Fig. 7. Page I/O for multi-dimensional queries.

2 for queries with boundaries below 0.5. For query with boundaries above 0.5,
Strategy 2 performs better than Strategy 1. However, in all cases Strategy 3
shows the best performance characteristics.

5 Bitmap Index Performance

Querying Synthetic Data: We first verify the performance model on uniform
random attributes. As in the previous section, we generated a bitmap index for
25 million records and 10 attributes. The index consists of 300 range-encoded
bins. The whole bitmap index is compressed with the WAH scheme [8]. The size
of the base data is 1 GB. The size of the bitmap indices is about 10 times larger
because range-encoded bitmap indices are hard to compress. The experiments
are carried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/0
subsystem is a hardware RAID with two SCSI disks.

To verify the performance model, we ran the same benchmarks as reported
in Section 4. The results for multi-dimensional queries with query boundaries in
the range of [0, 1] are shown in Figure 8. We can see that in all cases strategy
3 results in the lowest number of candidates to be checked. The number of
candidates checked is exactly as expected.

Figure 9 shows the query response time. As we expected from our analytical
results, strategy 3 performs best in most cases and has a performance gain of
up to a factor of two. We also see that apart from one case, the bitmap index
performs always better than the projection index.

Querying Scientific Data: We also tested our new bitmap evaluation strate-
gies on a set of real data from combustion studies. The data was computed from
a direct numerical simulation of hydrogen-oxygen autoignition processes. Our
timing measurements use randomly generated conditions on 10 chemical species
involving hydrogen and oxygen [9]. For each attribute we built a range-encoded
bitmap index with 300 bins. In this case, the total index size is only 40% larger
than the base data because the distribution of the real data is not uniform.
The query performance results are presented in Figure 10. We observe that all

6 6

x 10 x 10 x 10

3 31 | =< Strategy 1 3
—+— Strategy 2

o 25 , 25 S Strategy 3 0 25
3) 3
g g g

5 2 5 2 5 2
2 2 2
@ I <
8 8 8

5 15 5 15 5 15
3 1]
£ £ £

3 1 = 1 3 1
z z z

05 05 05

o® 0 o

0 0.5 1 0 05 1 0 0.5 1
b\ 2d - Ouerv houndarv b) 5d - Querv houndarv b 10d - Querv houndarv

Fig. 8. Total number of candidates for multi-dimensional queries against uniformly
distributed random data.

8
T 45 g7
@2, 2,
g e
@ 35 | g5
2 2
2 3 24
3 —— Projection 8
> 25 —=— Strategy 1 >3
g —+— Strategy 2 S T
o 2 —©— Strategy 3 O 2
15 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
b) 2d - Query boundary b) 3d - Query boundary
14 30
T —— F—f—k—k—* T 0
o, o,
@ @
g E20
2 8 @
2 215
g 6 2
g g
IS} <10
> 4 2
2]
o 2 & 5
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
b) 5d - Query boundary b) 10d - Query boundary

Fig. 9. Response times for multi-dimensional queries against uniformly distributed
random data.

bitmap schemes work significantly better than the projection index. The rela-
tive differences among the three bitmap based evaluation strategies are small
because fewer candidates are scanned than on the uniform random data. In gen-
eral, Strategy 1 uses more time than others, and Strategies 2 and 3 use about
the same amount of time. The average query response time using compressed
bitmap indices is less than one second in all tests. For 5-dimensional queries
the compressed bitmap indices are, on average, about 13 times faster than the
projection index.

6 Conclusions

We introduced a novel bitmap evaluation strategy for bitmap indices with bins.
It minimizes the number of records scanned during the candidate checking, but

n
n

wwwwwwwww 14 ek ——k
12 1

—*— Projection
—— Strategy 1
—+— Strategy 2
-©- Strategy 3

IS
N
S}

10

w
-
15}

N
N
1)

Query response time [sec]
Query response time [sec]
Query response time [sec]

-
[

0.5 1 0.5 1 0 0.5 1
b) 2d - Ouerv boundarv b) 5d - Ouerv boundarv b) 10d - Ouerv boundarv

o
o
=Y

Fig. 10. Response times for multi-dimensional queries against real data.

requires more operations on bitmaps. We provided detailed analyses and experi-
mental measurements to verify that the new scheme is indeed efficient. In many
cases the new strategy scans much fewer records than previous strategies, and
in some cases, it can improve the query response time by a factor of two. All
strategies are shown to outperform the projection index in the majority of the
cases.

Since the new bitmap index evaluation strategy uses more bitmap operations,
it occasionally uses more time than others. In the future, we plan to develop a
way to optimally combine the three strategies.

References

1. S. Chaudhuri and U. Dayal, An Overview of Data Warehousing and OLAP Tech-
nology, ACM SIGMOD Record 26(1), March 1997.

2. C. Chan, Y.E. Ioannidis, Bitmap Index Design and Evaluation, In SIGMOD 1998,
Seattle, Washington, USA, June 1998, ACM Press.

3. C. Chan, Y.E. Ioannidis, An Efficient Bitmap Encoding Scheme for Selection
Queries. In SIGMOD 1999, Philadelphia, Pennsylvania, USA, June 1999, ACM
Press.

4. T. Johnson, Performance Measurements of Compressed Bitmap Indices, In VLDB
1999, Edinburgh, Scotland, UK, September 1999, Morgan Kaufmann.

5. P. O’Neil and D. Quass. Improved Query Performance With Variant Indices. In
SIGMOD 1997, Tucson, Arizona, USA, May 1997, ACM Press.

6. A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. In SSDBM
1999, July 1999, IEEE Computer Society Press.

7. K. Stockinger. Bitmap Indices for Speeding Up High-Dimensional Data Analysis,
InDEXA 2002, Aix-en-Provence, France, September 2002, Springer-Verlag.

8. K. Stockinger, K. Wu, and A. Shoshani. Strategies for Processing ad-hoc Queries
on Large Data Warehouses. In (DOLAP 2002), McLean, VA, USA, November 2002.
ACM Press.

9. K. Wu, W. Koegler, J. Chen and A. Shoshani, Using Bitmap Index for Interactive
Exploration of Large Datasets. In SSDBM 2003, July 2003, IEEE Computer Society
Press.

