
Evaluation Strategies for Bitmap Indi
es withBinning?Kurt Sto
kinger, Kesheng Wu, Arie ShoshaniLawren
e Berkeley National Laboratory1 Cy
lotron Road, Berkeley, CA 94720, USAfKSto
kinger, KWu, AShoshanig�lbl.govAbstra
t. Bitmap indi
es are eÆ
ient data stru
tures for querying read-only data with low attribute
ardinalities. To improve the eÆ
ien
y ofthe bitmap indi
es on attributes with high
ardinalities, we present anew strategy to evaluate queries using bitmap indi
es. This work is mo-tivated by a number of s
ienti�
 data analysis appli
ations where mostattributes have
ardinalities in the millions. On these attributes, binningis a
ommon strategy to redu
e the size of the bitmap index. In thisarti
le we analyze how binning a�e
ts the number of pages a

essed dur-ing query pro
essing, and propose an optimal way of using the bitmapindi
es to redu
e the number of pages a

essed. Compared with two ba-si
 strategies the new algorithm redu
es the query response time by upto a fa
tor of two. On a set of �ve dimensional queries on real appli
a-tion data, the bitmap indi
es are on average 10 times faster than theproje
tion index.1 Introdu
tionLarge s
ale, high-dimensional data analysis requires spe
ialized data stru
turesto eÆ
iently query the sear
h spa
e. Both
ommer
ial data warehouses and s
i-enti�
 data are typi
ally read-only, and index data stru
tures do not requiretransa
tional support for update operations. Under these
onditions bitmap in-di
es are suitable for
omplex, multi-dimensional data analyses.The basi
 idea of bitmap indi
es is to store one sli
e of bits per distin
tattribute value (e.g. all integers from 0 to 140). Ea
h bit of the sli
e is mappedto a re
ord or a data obje
t. The asso
iated bit is set if and only if the re
ord'svalue ful�lls the property in fo
us (e.g. the respe
tive value of the re
ord isequal to, say, 87). One of their main strengths is that
omplex logi
al sele
tion? The authors thank Ekow Otoo, Doron Rotem, and Heinz Sto
kinger for their
on-stru
tive
omments during the writing of this arti
le. This work was supported by theDire
tor, OÆ
e of S
ien
e, OÆ
e of Laboratory Poli
y and Infrastru
ture Manage-ment, of the U.S. Department of Energy under Contra
t No. DE-AC03-76SF00098.This resear
h used resour
es of the National Energy Resear
h S
ienti�
 Comput-ing Center, whi
h is supported by the OÆ
e of S
ien
e of the U.S. Department ofEnergy.

operations
an be performed very qui
kly by means of Boolean operators su
has AND, OR, or XOR.The
ontributions of this arti
le are as follows. We summarize the
urrentstate of the art of bitmap index te
hnologies and fo
us in parti
ular on queriesagainst s
ienti�
 data. Next we introdu
e a novel bitmap evaluation te
hniqueand
ompare it with
urrently deployed methods. We provide both analyses andexperimental measurements to show that the new strategy indeed minimizes thenumber of re
ords s
anned. In some
ases we observe a fa
tor two improvementin query response time using the new strategy.2 Related WorkBitmap indi
es are mostly used for On-Line Analyti
al Pro
essing (OLAP) anddata warehouse appli
ations [1℄ for
omplex queries in read-only or append-only environments. The most
ommonly used bitmap en
oding strategies areequality, range or interval en
oding [2, 3℄. Equality en
oding is optimized forso-
alled exa
t mat
h queries of the form a = v where a is an attribute and vthe value to be sear
hed for. Range en
oding, on the other hand, is optimizedfor one-sided range queries of the from a op v where op 2 f<;�; >;�g. Finally,interval en
oding shows the best performan
e
hara
teristi
s for two sided-rangequeries of the form v1 op a op v2.Traditional bitmap indi
es are typi
ally used on integer and string values.However, s
ienti�
 data is often based on
oating point values whi
h requiresother kinds of bitmap indi
es based on binning [6, 7℄. In this
ase, one bitmapdoes not represent one attribute value but one attribute range (see Figure 1).Assume that we want to evaluate the query x < 63. The bitmap that holdsthese values is bitmap 4 (shaded in Figure 1). This bitmap represents
oatingpoint numbers in the range of 0 to 80. In order to evaluate the query x < 63,two additional steps are required in order to retrieve the values that mat
h thequery
ondition.Note that bitmap 4 represents values in the range of 0 to 80, whi
h is morethan what we have spe
i�ed as our query
ondition (63). We now
ombine bitmap4 and bitmap 3 with the logi
al operator XOR and get those values that are inthe range of 60 to 80. As depi
ted in Figure 1, two values are left that need tobe read from disk and
he
ked against the query
onstraint x < 63. We
all thisadditional step the
andidate
he
k.There are a number of approa
hes to redu
e the index size and in
reasethe performan
e of the bitmap index for high
ardinality attributes. These ap-proa
hes in
lude multi
omponent en
oding [2, 3℄, binning the attribute values[6, 7℄ and
ompressing the bitmaps [4, 8℄.3 Evaluation StrategiesThe query example in Se
tion 2 is a typi
al one-dimensional query sin
e the query
ondition
onsists of only one attribute. For multi-dimensional queries that
on-

34.7

94

64.9

15.5

8.6

bin ranges

137.2

61.7

candidate object
(no hit)

candidate object
(is "hit")

query range: x<63attribute values on disk
(base data)

6 5 4 3 2 1 bitmap identifiers

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

[0;20)

1111

0111

11111

1 0

00

1111

1

1

1

1

[0;40)[0;60)[0;80)[0;100)[0;120)

1

1

Fig. 1. One-sided range query x < 63 on a range en
oded bitmap index.tain several attributes, for instan
e x1 < 63 AND x2 > 72 AND x3 � 5:2, theresults of several bitmaps need to be
ombined. The goal is to
al
ulate theintermediate result of ea
h query dimension in su
h a way that the number of
andidates and thus the number of disk s
ans is minimized. In this se
tion wepresent three di�erent te
hniques for evaluating bitmap indi
es with binning.Assumptions and De�nitions: The following analysis assumes all attributeshave uniform distribution. This represents the worst
ase for the bitmap indi
es,whi
h are usually more eÆ
ient on real appli
ation data as demonstrated inSe
tion 5. Without loss of generality, we further assume the domain of ea
h at-tribute is normalized to be [0, 1℄. We limit all queries to be
onjun
tive witha one-sided range
ondition on ea
h attribute xi < vi. The bin boundaries justbelow and above vi are denoted by vi and vi respe
tively. For the attribute x inthe domain of [0, 140℄, the query x < 63 shown in Figure 1 is normalized to bex < 0:45. The lower and upper ranges of the
andidate bitmap are 60 and 80.After normalization, we yield v=0.43 and v= 0.57.Strategy 1: Figures 2a) - g) show a graphi
al interpretation of the bitmapevaluation strategy on a 2-dimensional query. In the �rst phase, the bitmap in-dex is s
anned for both attributes. The result is an L-shape whi
h representsthe
andidate re
ords (see Figure 2) of both dimensions 1 and 2. We refer tothese
andidates as Ctot. Sin
e the domains of the attributes are normalized, thenumber of re
ords in Ctot is equal to the area of the L-shape times the totalnumber of re
ords N .Let us assume the hit area for attribute i is denoted as Hi and the
andidatesfor attribute i are denoted as Ci. We
an
al
ulate the
andidate L-shape Ctotas follows: Ctot = (H1 _ C1) ^ (H2 _ C2) � H , where H = H1 ^ H2. This isequivalent to what is shown graphi
ally in Figure 2.In the next phase, the
andidate
he
k for attribute 1 is performed by readingthe attribute values from disk and
he
king them against the range
ondition. All

Fig. 2. Cal
ulation of the
andidate area for strategies 1 and 3.

Fig. 3. Bitmap evaluation strategy 1.re
ords represented by Ctot are
he
ked (see Figure 3a)). The re
ords satisfyingthe range
ondition involving attribute 1 is re
orded as r1. Finally, the
andidate
he
k for dimension 2 is performed by reading all attributes represented by thearea r1 (see Figure 3b)). The results of the 2-dimensional query are shown inFigure 3
).Let the
andidate sele
tivity of ith dimension si be the fra
tion of re
ords thatneed to be s
anned, the
andidate sele
tivity of the �rst dimension s1 = v1v2 �v1v2, and the
andidate sele
tivity of the se
ond dimension s2 = v1v2� v1v2. Ingeneral, the equation for the
andidate sele
tivity is:si = 0�i�1Yj=1 vj dYj=i vj1A� dYj=1 vj (1)

where d refers to dimension. The total number of re
ords s
anned S =NPdi=1 si.Ideally, we would only read the
andidate re
ords during the
andidate
he
k-ing. Sin
e most I/O system performs disk operations in pages, more re
ords area
tually read into memory. To more a

urately evaluate the
ost of
andidate
he
king, we
ompute the number of page a

esses for ea
h attribute. Given the
andidate sele
tivity s, the estimated number of pages is (1� e� sNp)p, where Nis the number of re
ords of the base data and p is the number of pages for oneattribute [5℄. The total number of pages for all dimensions isPdi=1(1� e� siNp)p.For the next two bitmap evaluation strategies, the number of pages is estimatedanalogi
ally.Strategy 2: This strategy evaluates ea
h dimension separately. Using the same2D example as before, the bitmap index for the �rst attribute is evaluated �rstand the
andidates of this attribute are
he
ked immediately afterward (see Fig-ure 4a)). After these operations the
ondition involving the �rst attribute is fullyresolved. In Figure 4 the result is denoted as H1. Similarly, dimension 2 is evalu-ated. Sin
e the query
onditions are
onjun
tive, the �nal answer must be fromH1. Therefore, the
andidates to be
he
ked must be both in H1 and C2. Thisredu
es the area from v2 � v2 to v1(v2 � v2).

Fig. 4. Bitmap evaluation strategy 2.It is straightforward to extend this strategy to resolve more attributes. The
andidate sele
tivity of attribute i is as follows:si = 0�i�1Yj=1 vj1A (vi � vi) (2)Strategy 3: This strategy is an optimal
ombination of Strategies 1 and 2.Given the values are binned, it
he
ks the minimal number of
andidates.

Fig. 5. Bitmap evaluation strategy 3.The �rst phase of this te
hnique is identi
al to Strategy 1. On
e the L-shaped area Ctot is
omputed, the
andidate
he
k for dimension 1
an begin.However, rather than s
anning all attributes represented by Ctot, this area isredu
ed by \AND"ing together the
andidate bitmap C1 with Ctot (see Figure5
)). In this
ase the
andidate sele
tivity is s1 = (v1 � v1)v2. The result of this
andidate
he
k r1 is
ombined with Ctot and C1 to produ
e a re�ned
andidateset R1 = Ctot ^ :(M1 ^ :r1), where M1 = Ctot ^ C1.To determine the minimal
andidate set for attribute 2, the re�ned
andidateset R1 and the
andidate set C2 are \AND"ed together, whi
h produ
esM2. Thearea representing M2 is v1(v2 � v2). Let r2 denote the result of this
andidate
he
k. The �nal result of the two dimensional query is H _ R2, where R2 =R1 ^ :(M2 ^ :r2).The whole pro
ess is depi
ted in Figure 5. In general, the
andidate sele
tivityfor attribute i is as follows:si = 0�i�1Yj=1 vj1A (vi � vi)0� dYj=i+1 vj1A (3)This strategy
he
ks the minimal number of
andidates. It a
hieves this withsome extra operations on bitmaps. The �rst two strategies only need to a

essthe bitmap indi
es on
e. However, this strategy has to a

ess the bitmap indi
estwi
e: on
e to determine the initial
andidate set Ctot and on
e to determinethe
andidates for the ith attribute to
ompute Ci. In addition, it needs morebitwise logi
al operations after ea
h
andidate
he
king to re�ne the
andidatesets. These extra bitmap operations
learly require time. One question we seekto address is whether the savings in redu
ed
andidate
he
king is enough too�set these extra operations on bitmaps.

4 Analyti
al ResultsIn this se
tion we evaluate the three strategies dis
ussed in Se
tion 3 a

ordingto the number of
andidates
he
ked and the number of pages a

essed. Allevaluations are
arried out on a data set of 25 million re
ords with 10 attributes.All attributes are uniform random values in the range of [0, 1℄. We have
hosen25 million re
ords sin
e our real data used in the next se
tion also
omprisesof 25 million entries. For ea
h dimension we assume a bitmap index with 300bins as in the performan
e tests in the next se
tion. The page size is 8KB. Ea
hattribute value takes 4 bytes to store and all pages are pa
ked as in a typi
alproje
tion index [5℄. In many data warehouse appli
ations, the proje
tion indexis observed to have the best performan
e in answering
omplex queries. We useit as a referen
e for measuring the performan
e of the various bitmap s
hemes.To simplify the evaluation, we set all vi to be the same. Furthermore, we assumethe query boundaries are never exa
tly on the bin boundaries, i.e., v 6= v 6= v.Figure 6 shows the number of
andidates expe
ted (a

ording to Equations 1, 2and 3) and Figure 7 shows the number of page a

esses expe
ted.
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12
x 10

5

a) 1d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 10

5

b) 2d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 10

5

b) 5d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 10

5

b) 10d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

Strategy 1
Strategy 2
Strategy 3

Fig. 6. Total number of
andidates for multi-dimensional queries.For one-dimensional queries there is no performan
e di�eren
e among thestrategies (see Figure 6a)). In all
ases, the
andidate sele
tivity is 0.3% (=1=300) whi
h
orresponds to all entries of one
andidate bitmap. Note that sin
eea
h page
ontains 2048 re
ords, sele
ting one out of every 300 re
ords meansall pages are a

essed.When more than one attribute is involved, there is a signi�
ant di�eren
eamong the strategies. We observe that Strategy 1 performs better than Strategy

0 0.5 1
0

2

4

6

8

10

12

x 10
4

b) 2d − Query boundary

P
ag

e
I/O

 [p
ag

es
]

0 0.5 1
0

2

4

6

8

10

12

x 10
4

b) 5d − Query boundary

P
ag

e
I/O

 [p
ag

es
]

0 0.5 1
0

2

4

6

8

10

12

x 10
4

b) 10d − Query boundary

P
ag

e
I/O

 [p
ag

es
]

Projection
Strategy 1
Strategy 2
Strategy 3

Fig. 7. Page I/O for multi-dimensional queries.2 for queries with boundaries below 0.5. For query with boundaries above 0.5,Strategy 2 performs better than Strategy 1. However, in all
ases Strategy 3shows the best performan
e
hara
teristi
s.5 Bitmap Index Performan
eQuerying Syntheti
 Data: We �rst verify the performan
e model on uniformrandom attributes. As in the previous se
tion, we generated a bitmap index for25 million re
ords and 10 attributes. The index
onsists of 300 range-en
odedbins. The whole bitmap index is
ompressed with the WAH s
heme [8℄. The sizeof the base data is 1 GB. The size of the bitmap indi
es is about 10 times largerbe
ause range-en
oded bitmap indi
es are hard to
ompress. The experimentsare
arried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/Osubsystem is a hardware RAID with two SCSI disks.To verify the performan
e model, we ran the same ben
hmarks as reportedin Se
tion 4. The results for multi-dimensional queries with query boundaries inthe range of [0, 1℄ are shown in Figure 8. We
an see that in all
ases strategy3 results in the lowest number of
andidates to be
he
ked. The number of
andidates
he
ked is exa
tly as expe
ted.Figure 9 shows the query response time. As we expe
ted from our analyti
alresults, strategy 3 performs best in most
ases and has a performan
e gain ofup to a fa
tor of two. We also see that apart from one
ase, the bitmap indexperforms always better than the proje
tion index.Querying S
ienti�
 Data: We also tested our new bitmap evaluation strate-gies on a set of real data from
ombustion studies. The data was
omputed froma dire
t numeri
al simulation of hydrogen-oxygen autoignition pro
esses. Ourtiming measurements use randomly generated
onditions on 10
hemi
al spe
iesinvolving hydrogen and oxygen [9℄. For ea
h attribute we built a range-en
odedbitmap index with 300 bins. In this
ase, the total index size is only 40% largerthan the base data be
ause the distribution of the real data is not uniform.The query performan
e results are presented in Figure 10. We observe that all

0 0.5 1
0

0.5

1

1.5

2

2.5

3

x 10
6

b) 2d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

0 0.5 1
0

0.5

1

1.5

2

2.5

3

x 10
6

b) 5d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

0 0.5 1
0

0.5

1

1.5

2

2.5

3

x 10
6

b) 10d − Query boundary

N
um

be
r

of
 c

an
di

da
te

s

Strategy 1
Strategy 2
Strategy 3

Fig. 8. Total number of
andidates for multi-dimensional queries against uniformlydistributed random data.
0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

3.5

4

4.5

5

b) 2d − Query boundary

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
ec

]

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

b) 3d − Query boundary

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
ec

]

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

b) 5d − Query boundary

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
ec

]

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

b) 10d − Query boundary

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
ec

]
Projection
Strategy 1
Strategy 2
Strategy 3

Fig. 9. Response times for multi-dimensional queries against uniformly distributedrandom data.bitmap s
hemes work signi�
antly better than the proje
tion index. The rela-tive di�eren
es among the three bitmap based evaluation strategies are smallbe
ause fewer
andidates are s
anned than on the uniform random data. In gen-eral, Strategy 1 uses more time than others, and Strategies 2 and 3 use aboutthe same amount of time. The average query response time using
ompressedbitmap indi
es is less than one se
ond in all tests. For 5-dimensional queriesthe
ompressed bitmap indi
es are, on average, about 13 times faster than theproje
tion index.6 Con
lusionsWe introdu
ed a novel bitmap evaluation strategy for bitmap indi
es with bins.It minimizes the number of re
ords s
anned during the
andidate
he
king, but

0 0.5 1
0

1

2

3

4

5

b) 2d − Query boundary
Q

ue
ry

 r
es

po
ns

e
tim

e
[s

ec
]

0 0.5 1
0

2

4

6

8

10

12

14

b) 5d − Query boundary

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
ec

]

0 0.5 1
0

5

10

15

20

25

b) 10d − Query boundary

Q
ue

ry
 r

es
po

ns
e

tim
e

[s
ec

] Projection
Strategy 1
Strategy 2
Strategy 3

Fig. 10. Response times for multi-dimensional queries against real data.requires more operations on bitmaps. We provided detailed analyses and experi-mental measurements to verify that the new s
heme is indeed eÆ
ient. In many
ases the new strategy s
ans mu
h fewer re
ords than previous strategies, andin some
ases, it
an improve the query response time by a fa
tor of two. Allstrategies are shown to outperform the proje
tion index in the majority of the
ases.Sin
e the new bitmap index evaluation strategy uses more bitmap operations,it o

asionally uses more time than others. In the future, we plan to develop away to optimally
ombine the three strategies.Referen
es1. S. Chaudhuri and U. Dayal, An Overview of Data Warehousing and OLAP Te
h-nology, ACM SIGMOD Re
ord 26(1), Mar
h 1997.2. C. Chan, Y.E. Ioannidis, Bitmap Index Design and Evaluation, In SIGMOD 1998,Seattle, Washington, USA, June 1998, ACM Press.3. C. Chan, Y.E. Ioannidis, An EÆ
ient Bitmap En
oding S
heme for Sele
tionQueries. In SIGMOD 1999, Philadelphia, Pennsylvania, USA, June 1999, ACMPress.4. T. Johnson, Performan
e Measurements of Compressed Bitmap Indi
es, In VLDB1999, Edinburgh, S
otland, UK, September 1999, Morgan Kaufmann.5. P. O'Neil and D. Quass. Improved Query Performan
e With Variant Indi
es. InSIGMOD 1997, Tu
son, Arizona, USA, May 1997, ACM Press.6. A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. In SSDBM1999, July 1999, IEEE Computer So
iety Press.7. K. Sto
kinger. Bitmap Indi
es for Speeding Up High-Dimensional Data Analysis,InDEXA 2002, Aix-en-Proven
e, Fran
e, September 2002, Springer-Verlag.8. K. Sto
kinger, K. Wu, and A. Shoshani. Strategies for Pro
essing ad-ho
 Querieson Large Data Warehouses. In (DOLAP 2002), M
Lean, VA, USA, November 2002.ACM Press.9. K. Wu, W. Koegler, J. Chen and A. Shoshani, Using Bitmap Index for Intera
tiveExploration of Large Datasets. In SSDBM 2003, July 2003, IEEE Computer So
ietyPress.

