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es withBinning?Kurt Sto
kinger, Kesheng Wu, Arie ShoshaniLawren
e Berkeley National Laboratory1 Cy
lotron Road, Berkeley, CA 94720, USAfKSto
kinger, KWu, AShoshanig�lbl.govAbstra
t. Bitmap indi
es are eÆ
ient data stru
tures for querying read-only data with low attribute 
ardinalities. To improve the eÆ
ien
y ofthe bitmap indi
es on attributes with high 
ardinalities, we present anew strategy to evaluate queries using bitmap indi
es. This work is mo-tivated by a number of s
ienti�
 data analysis appli
ations where mostattributes have 
ardinalities in the millions. On these attributes, binningis a 
ommon strategy to redu
e the size of the bitmap index. In thisarti
le we analyze how binning a�e
ts the number of pages a

essed dur-ing query pro
essing, and propose an optimal way of using the bitmapindi
es to redu
e the number of pages a

essed. Compared with two ba-si
 strategies the new algorithm redu
es the query response time by upto a fa
tor of two. On a set of �ve dimensional queries on real appli
a-tion data, the bitmap indi
es are on average 10 times faster than theproje
tion index.1 Introdu
tionLarge s
ale, high-dimensional data analysis requires spe
ialized data stru
turesto eÆ
iently query the sear
h spa
e. Both 
ommer
ial data warehouses and s
i-enti�
 data are typi
ally read-only, and index data stru
tures do not requiretransa
tional support for update operations. Under these 
onditions bitmap in-di
es are suitable for 
omplex, multi-dimensional data analyses.The basi
 idea of bitmap indi
es is to store one sli
e of bits per distin
tattribute value (e.g. all integers from 0 to 140). Ea
h bit of the sli
e is mappedto a re
ord or a data obje
t. The asso
iated bit is set if and only if the re
ord'svalue ful�lls the property in fo
us (e.g. the respe
tive value of the re
ord isequal to, say, 87). One of their main strengths is that 
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operations 
an be performed very qui
kly by means of Boolean operators su
has AND, OR, or XOR.The 
ontributions of this arti
le are as follows. We summarize the 
urrentstate of the art of bitmap index te
hnologies and fo
us in parti
ular on queriesagainst s
ienti�
 data. Next we introdu
e a novel bitmap evaluation te
hniqueand 
ompare it with 
urrently deployed methods. We provide both analyses andexperimental measurements to show that the new strategy indeed minimizes thenumber of re
ords s
anned. In some 
ases we observe a fa
tor two improvementin query response time using the new strategy.2 Related WorkBitmap indi
es are mostly used for On-Line Analyti
al Pro
essing (OLAP) anddata warehouse appli
ations [1℄ for 
omplex queries in read-only or append-only environments. The most 
ommonly used bitmap en
oding strategies areequality, range or interval en
oding [2, 3℄. Equality en
oding is optimized forso-
alled exa
t mat
h queries of the form a = v where a is an attribute and vthe value to be sear
hed for. Range en
oding, on the other hand, is optimizedfor one-sided range queries of the from a op v where op 2 f<;�; >;�g. Finally,interval en
oding shows the best performan
e 
hara
teristi
s for two sided-rangequeries of the form v1 op a op v2.Traditional bitmap indi
es are typi
ally used on integer and string values.However, s
ienti�
 data is often based on 
oating point values whi
h requiresother kinds of bitmap indi
es based on binning [6, 7℄. In this 
ase, one bitmapdoes not represent one attribute value but one attribute range (see Figure 1).Assume that we want to evaluate the query x < 63. The bitmap that holdsthese values is bitmap 4 (shaded in Figure 1). This bitmap represents 
oatingpoint numbers in the range of 0 to 80. In order to evaluate the query x < 63,two additional steps are required in order to retrieve the values that mat
h thequery 
ondition.Note that bitmap 4 represents values in the range of 0 to 80, whi
h is morethan what we have spe
i�ed as our query 
ondition (63). We now 
ombine bitmap4 and bitmap 3 with the logi
al operator XOR and get those values that are inthe range of 60 to 80. As depi
ted in Figure 1, two values are left that need tobe read from disk and 
he
ked against the query 
onstraint x < 63. We 
all thisadditional step the 
andidate 
he
k.There are a number of approa
hes to redu
e the index size and in
reasethe performan
e of the bitmap index for high 
ardinality attributes. These ap-proa
hes in
lude multi
omponent en
oding [2, 3℄, binning the attribute values[6, 7℄ and 
ompressing the bitmaps [4, 8℄.3 Evaluation StrategiesThe query example in Se
tion 2 is a typi
al one-dimensional query sin
e the query
ondition 
onsists of only one attribute. For multi-dimensional queries that 
on-
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Fig. 1. One-sided range query x < 63 on a range en
oded bitmap index.tain several attributes, for instan
e x1 < 63 AND x2 > 72 AND x3 � 5:2, theresults of several bitmaps need to be 
ombined. The goal is to 
al
ulate theintermediate result of ea
h query dimension in su
h a way that the number of
andidates and thus the number of disk s
ans is minimized. In this se
tion wepresent three di�erent te
hniques for evaluating bitmap indi
es with binning.Assumptions and De�nitions: The following analysis assumes all attributeshave uniform distribution. This represents the worst 
ase for the bitmap indi
es,whi
h are usually more eÆ
ient on real appli
ation data as demonstrated inSe
tion 5. Without loss of generality, we further assume the domain of ea
h at-tribute is normalized to be [0, 1℄. We limit all queries to be 
onjun
tive witha one-sided range 
ondition on ea
h attribute xi < vi. The bin boundaries justbelow and above vi are denoted by vi and vi respe
tively. For the attribute x inthe domain of [0, 140℄, the query x < 63 shown in Figure 1 is normalized to bex < 0:45. The lower and upper ranges of the 
andidate bitmap are 60 and 80.After normalization, we yield v=0.43 and v= 0.57.Strategy 1: Figures 2a) - g) show a graphi
al interpretation of the bitmapevaluation strategy on a 2-dimensional query. In the �rst phase, the bitmap in-dex is s
anned for both attributes. The result is an L-shape whi
h representsthe 
andidate re
ords (see Figure 2) of both dimensions 1 and 2. We refer tothese 
andidates as Ctot. Sin
e the domains of the attributes are normalized, thenumber of re
ords in Ctot is equal to the area of the L-shape times the totalnumber of re
ords N .Let us assume the hit area for attribute i is denoted as Hi and the 
andidatesfor attribute i are denoted as Ci. We 
an 
al
ulate the 
andidate L-shape Ctotas follows: Ctot = (H1 _ C1) ^ (H2 _ C2) � H , where H = H1 ^ H2. This isequivalent to what is shown graphi
ally in Figure 2.In the next phase, the 
andidate 
he
k for attribute 1 is performed by readingthe attribute values from disk and 
he
king them against the range 
ondition. All



Fig. 2. Cal
ulation of the 
andidate area for strategies 1 and 3.

Fig. 3. Bitmap evaluation strategy 1.re
ords represented by Ctot are 
he
ked (see Figure 3a)). The re
ords satisfyingthe range 
ondition involving attribute 1 is re
orded as r1. Finally, the 
andidate
he
k for dimension 2 is performed by reading all attributes represented by thearea r1 (see Figure 3b)). The results of the 2-dimensional query are shown inFigure 3
).Let the 
andidate sele
tivity of ith dimension si be the fra
tion of re
ords thatneed to be s
anned, the 
andidate sele
tivity of the �rst dimension s1 = v1v2 �v1v2, and the 
andidate sele
tivity of the se
ond dimension s2 = v1v2� v1v2. Ingeneral, the equation for the 
andidate sele
tivity is:si = 0�i�1Yj=1 vj dYj=i vj1A� dYj=1 vj (1)



where d refers to dimension. The total number of re
ords s
anned S =NPdi=1 si.Ideally, we would only read the 
andidate re
ords during the 
andidate 
he
k-ing. Sin
e most I/O system performs disk operations in pages, more re
ords area
tually read into memory. To more a

urately evaluate the 
ost of 
andidate
he
king, we 
ompute the number of page a

esses for ea
h attribute. Given the
andidate sele
tivity s, the estimated number of pages is (1� e� sNp )p, where Nis the number of re
ords of the base data and p is the number of pages for oneattribute [5℄. The total number of pages for all dimensions isPdi=1(1� e� siNp )p.For the next two bitmap evaluation strategies, the number of pages is estimatedanalogi
ally.Strategy 2: This strategy evaluates ea
h dimension separately. Using the same2D example as before, the bitmap index for the �rst attribute is evaluated �rstand the 
andidates of this attribute are 
he
ked immediately afterward (see Fig-ure 4a)). After these operations the 
ondition involving the �rst attribute is fullyresolved. In Figure 4 the result is denoted as H1. Similarly, dimension 2 is evalu-ated. Sin
e the query 
onditions are 
onjun
tive, the �nal answer must be fromH1. Therefore, the 
andidates to be 
he
ked must be both in H1 and C2. Thisredu
es the area from v2 � v2 to v1(v2 � v2).

Fig. 4. Bitmap evaluation strategy 2.It is straightforward to extend this strategy to resolve more attributes. The
andidate sele
tivity of attribute i is as follows:si = 0�i�1Yj=1 vj1A (vi � vi) (2)Strategy 3: This strategy is an optimal 
ombination of Strategies 1 and 2.Given the values are binned, it 
he
ks the minimal number of 
andidates.



Fig. 5. Bitmap evaluation strategy 3.The �rst phase of this te
hnique is identi
al to Strategy 1. On
e the L-shaped area Ctot is 
omputed, the 
andidate 
he
k for dimension 1 
an begin.However, rather than s
anning all attributes represented by Ctot, this area isredu
ed by \AND"ing together the 
andidate bitmap C1 with Ctot (see Figure5
)). In this 
ase the 
andidate sele
tivity is s1 = (v1 � v1)v2. The result of this
andidate 
he
k r1 is 
ombined with Ctot and C1 to produ
e a re�ned 
andidateset R1 = Ctot ^ :(M1 ^ :r1), where M1 = Ctot ^ C1.To determine the minimal 
andidate set for attribute 2, the re�ned 
andidateset R1 and the 
andidate set C2 are \AND"ed together, whi
h produ
esM2. Thearea representing M2 is v1(v2 � v2). Let r2 denote the result of this 
andidate
he
k. The �nal result of the two dimensional query is H _ R2, where R2 =R1 ^ :(M2 ^ :r2).The whole pro
ess is depi
ted in Figure 5. In general, the 
andidate sele
tivityfor attribute i is as follows:si = 0�i�1Yj=1 vj1A (vi � vi)0� dYj=i+1 vj1A (3)This strategy 
he
ks the minimal number of 
andidates. It a
hieves this withsome extra operations on bitmaps. The �rst two strategies only need to a

essthe bitmap indi
es on
e. However, this strategy has to a

ess the bitmap indi
estwi
e: on
e to determine the initial 
andidate set Ctot and on
e to determinethe 
andidates for the ith attribute to 
ompute Ci. In addition, it needs morebitwise logi
al operations after ea
h 
andidate 
he
king to re�ne the 
andidatesets. These extra bitmap operations 
learly require time. One question we seekto address is whether the savings in redu
ed 
andidate 
he
king is enough too�set these extra operations on bitmaps.



4 Analyti
al ResultsIn this se
tion we evaluate the three strategies dis
ussed in Se
tion 3 a

ordingto the number of 
andidates 
he
ked and the number of pages a

essed. Allevaluations are 
arried out on a data set of 25 million re
ords with 10 attributes.All attributes are uniform random values in the range of [0, 1℄. We have 
hosen25 million re
ords sin
e our real data used in the next se
tion also 
omprisesof 25 million entries. For ea
h dimension we assume a bitmap index with 300bins as in the performan
e tests in the next se
tion. The page size is 8KB. Ea
hattribute value takes 4 bytes to store and all pages are pa
ked as in a typi
alproje
tion index [5℄. In many data warehouse appli
ations, the proje
tion indexis observed to have the best performan
e in answering 
omplex queries. We useit as a referen
e for measuring the performan
e of the various bitmap s
hemes.To simplify the evaluation, we set all vi to be the same. Furthermore, we assumethe query boundaries are never exa
tly on the bin boundaries, i.e., v 6= v 6= v.Figure 6 shows the number of 
andidates expe
ted (a

ording to Equations 1, 2and 3) and Figure 7 shows the number of page a

esses expe
ted.
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Fig. 6. Total number of 
andidates for multi-dimensional queries.For one-dimensional queries there is no performan
e di�eren
e among thestrategies (see Figure 6a)). In all 
ases, the 
andidate sele
tivity is 0.3% (=1=300) whi
h 
orresponds to all entries of one 
andidate bitmap. Note that sin
eea
h page 
ontains 2048 re
ords, sele
ting one out of every 300 re
ords meansall pages are a

essed.When more than one attribute is involved, there is a signi�
ant di�eren
eamong the strategies. We observe that Strategy 1 performs better than Strategy
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Fig. 7. Page I/O for multi-dimensional queries.2 for queries with boundaries below 0.5. For query with boundaries above 0.5,Strategy 2 performs better than Strategy 1. However, in all 
ases Strategy 3shows the best performan
e 
hara
teristi
s.5 Bitmap Index Performan
eQuerying Syntheti
 Data: We �rst verify the performan
e model on uniformrandom attributes. As in the previous se
tion, we generated a bitmap index for25 million re
ords and 10 attributes. The index 
onsists of 300 range-en
odedbins. The whole bitmap index is 
ompressed with the WAH s
heme [8℄. The sizeof the base data is 1 GB. The size of the bitmap indi
es is about 10 times largerbe
ause range-en
oded bitmap indi
es are hard to 
ompress. The experimentsare 
arried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/Osubsystem is a hardware RAID with two SCSI disks.To verify the performan
e model, we ran the same ben
hmarks as reportedin Se
tion 4. The results for multi-dimensional queries with query boundaries inthe range of [0, 1℄ are shown in Figure 8. We 
an see that in all 
ases strategy3 results in the lowest number of 
andidates to be 
he
ked. The number of
andidates 
he
ked is exa
tly as expe
ted.Figure 9 shows the query response time. As we expe
ted from our analyti
alresults, strategy 3 performs best in most 
ases and has a performan
e gain ofup to a fa
tor of two. We also see that apart from one 
ase, the bitmap indexperforms always better than the proje
tion index.Querying S
ienti�
 Data: We also tested our new bitmap evaluation strate-gies on a set of real data from 
ombustion studies. The data was 
omputed froma dire
t numeri
al simulation of hydrogen-oxygen autoignition pro
esses. Ourtiming measurements use randomly generated 
onditions on 10 
hemi
al spe
iesinvolving hydrogen and oxygen [9℄. For ea
h attribute we built a range-en
odedbitmap index with 300 bins. In this 
ase, the total index size is only 40% largerthan the base data be
ause the distribution of the real data is not uniform.The query performan
e results are presented in Figure 10. We observe that all
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Fig. 8. Total number of 
andidates for multi-dimensional queries against uniformlydistributed random data.
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Fig. 9. Response times for multi-dimensional queries against uniformly distributedrandom data.bitmap s
hemes work signi�
antly better than the proje
tion index. The rela-tive di�eren
es among the three bitmap based evaluation strategies are smallbe
ause fewer 
andidates are s
anned than on the uniform random data. In gen-eral, Strategy 1 uses more time than others, and Strategies 2 and 3 use aboutthe same amount of time. The average query response time using 
ompressedbitmap indi
es is less than one se
ond in all tests. For 5-dimensional queriesthe 
ompressed bitmap indi
es are, on average, about 13 times faster than theproje
tion index.6 Con
lusionsWe introdu
ed a novel bitmap evaluation strategy for bitmap indi
es with bins.It minimizes the number of re
ords s
anned during the 
andidate 
he
king, but
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Fig. 10. Response times for multi-dimensional queries against real data.requires more operations on bitmaps. We provided detailed analyses and experi-mental measurements to verify that the new s
heme is indeed eÆ
ient. In many
ases the new strategy s
ans mu
h fewer re
ords than previous strategies, andin some 
ases, it 
an improve the query response time by a fa
tor of two. Allstrategies are shown to outperform the proje
tion index in the majority of the
ases.Sin
e the new bitmap index evaluation strategy uses more bitmap operations,it o

asionally uses more time than others. In the future, we plan to develop away to optimally 
ombine the three strategies.Referen
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