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Abstract

In this paper, we study the effects of compression on
bitmap indexes. The main operations on the bitmaps dur-
ing query processing are bitwise logical operations such as
AND,OR,NOT, etc.Using the general purpose compres-
sion schemes, such as gzip, the logical operations on the
compressed bitmaps are much slower than on the uncom-
pressed bitmaps. Specialized compression schemes, like
the byte-aligned bitmap code (BBC), are usually faster
in performing logical operations than the general purpose
schemes, but in many cases they are still orders of magni-
tude slower than the uncompressed scheme. To make the
compressed bitmap indexes operate more efficiently, we
designed a CPU-friendly scheme which we refer to as the
word-aligned hybrid code (WAH). Tests on both synthetic
and real application data show that the new scheme sig-
nificantly outperforms well-known compression schemes
at a modest increase in storage space. Compared to BBC,
a scheme well-known for its operational efficiency, WAH
performs logical operations about 12 times faster and uses
only 60% more space. Compared to the uncompressed
scheme, in most test cases WAH is faster while still using
less space. We further verified with additional tests that
the improvement in logical operation speed translates to
similar improvement in query processing speed.

1. Introduction

This research was originally motivated by the need
to manage the volume of data produce by a high-
energy experiment called STAR1 [25, 26]. In this ex-
periment, information about each potentially interest-
ing collision event is recorded and multi-terabyte (1012)
of data is generated each year. One important way of
accessing the data is to have the data management

1 Information about the project is also available at
http://www.star.bnl.gov/STAR.

bitmap index
OID X =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 1. A sample bitmap index.

system retrieve the events satisfying some condition
such as “Energy > 15 GeV and 7 <= NumParticles

< 13” [5, 25]. The physicists have identified about 500
attributes that are useful for this selection process and
a typical condition may involve a handful of attributes.
This type of queries are known as the partial range
queries. Since the attributes are usually read not mod-
ified, the characteristics of the dataset are very sim-
ilar to those of commercial data warehouses. In data
warehouse applications, one of the best known index-
ing strategies for processing the partial range queries is
the bitmap index [6, 8, 21, 30]. For this reason, we have
selected to use the bitmap index for the data manage-
ment software [25].

Generally, a bitmap index consists of a set of
bitmaps and queries can be answered using bit-
wise logical operations on the bitmaps. Figure 1 shows
a set of such bitmaps for the attribute X of a tiny ta-
ble (T) consisting of only eight tuples (rows). The at-
tribute X can have one of four values, 0, 1, 2 and
3. There are four bitmaps each corresponding to
one of the four choices. For convenience, we have la-
beled the four bit sequences b1, . . . , b4. To process the
query “select * from T where X < 2,” one per-
forms the bitwise logical operation b1 OR b2. Since
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bitwise logical operations are well supported by com-
puter hardware, bitmap indexes are very efficient to use
[21]. In many data warehouse applications, bitmap in-
dexes are better than the tree based schemes [6, 21, 30],
such as the variants of B-tree [9] or R-tree [11]. Ac-
cording to the performance model proposed by Jürgens
and Lenz [14], the bitmap indexes are likely to be
even more competitive in the future as the disk tech-
nology improves. In addition to supporting complex
queries on one single table as shown in this pa-
per, researchers have also demonstrated that bitmap
indexes can accelerate complex queries involving mul-
tiple tables [23]. Realizing the value of the bitmap
indexes, most major DBMS vendors have imple-
mented them. The example shown in Figure 1 is the
simplest form of the bitmap index we call the ba-
sic bitmap index.

A bitmap index is typically generated for each at-
tribute. The basic bitmap index produces one bitmap
for each distinct attribute value and it may perform
the logical OR operation on as many as half of the
bitmaps when answering a query involving the at-
tribute. For attributes with low cardinality, a bitmap
index is small compared to one of the tree based indexes
and it can answer a query faster as well. To process the
query “Energy > 15 GeV and 7 <= NumParticles <

13,” a bitmap index on attribute Energy and a bitmap
index on NumParticles are used separately to generate
two bitmaps representing objects satisfying the condi-
tions on Energy and NumParticles. A bitwise logical
AND operation is sufficient to combine the two bitmaps
to generate the final answer. These features make the
bitmap index ideal for processing partial range queries.
However, as in many real applications, the domain
of many of the STAR attributes are continuous and
the number of different values actually appear in the
datasets are very large, in other words, the cardinal-
ities of these attributes are very high. In these cases,
the basic bitmap index generates too many bitmaps
and operations on the bitmaps may also take too long.

In this paper, we propose to improve the effective-
ness of the basic bitmap index by compression. Other
ways of improving the bitmap index include binning
and using different encoding. With binning, multiple
values are grouped into a single bin and only the bins
are indexed [15, 25, 28]. This strategy reduces the num-
ber of bitmaps used but it also introduces inaccuracies.
In order to accurately answer a query, one has to scan
some of the attribute values after operating on the in-
dexes. Many researchers have studied the strategy of
using different encoding schemes [6, 7, 22, 27, 30]. One
well-known scheme is the bit-sliced index, that encodes
k distinct values using log2k bits and creates a bitmap

for each binary digit [22]. This is related to the bi-
nary encoding scheme discussed elsewhere [6, 27, 30].
A drawback of this scheme is that to answer each query,
most of the bitmaps have to be accessed, and possibly
multiple times. There are also a number of schemes that
generate more bitmaps than the bit-sliced index but ac-
cess less of them while processing a query, for examples,
the attribute value decomposition [6], interval encoding
[7] and the K-of-N encoding [27]. We choose to concen-
trate on compression in this paper because it can be ap-
plied on any bitmap. Once we have identified some effi-
cient compression schemes, we can improve all bitmap
indexes. Additionally, a number of other common in-
dexing schemes such as the signature file [10, 12, 16]
and the bit transposed files [27] may also benefit from
efficient bitmap compression algorithms.

Other high-dimensional indexing schemes yet to be
mentioned include the projection index [22] and the
UB-tree [4, 18, 19]. The projection index can be viewed
as a different way of organizing the attribute values of
a table. It can be implemented easily and efficiently by
using bitmaps to store the intermediate results, and we
use it as the bases for measuring the performance of our
compressed bitmap index. The UB-Tree is a promising
technique, regrettably we have to leave it out because
of space limitations.

To compress the bitmap indexes, a simple option is
to use one of the text compression algorithms, such as
LZ77 (used in gzip) [17]. These algorithms are well-
studied and effective in reducing file sizes. However,
performing logical operations on the compressed data
are usually significantly slower than on the uncom-
pressed data. To address this performance issue, a num-
ber of special algorithms have been proposed. John-
son and colleagues have conducted extensive studies
on their performances [13, 1]. From their studies, we
know that the logical operations using these special-
ized schemes are usually faster than those using gzip.
One such specialized algorithm, called the Byte-aligned
Bitmap Code (BBC), is known to be very efficient. It
is used in a commercial database system [2, 3]. How-
ever, even with BBC, in many cases logical operations
on the compressed data still can be orders of magni-
tudes slower than on the uncompressed data.

In this paper, we propose a simple algorithm for
compressing the bitmap indexes that improves the
speed of logical operations by an order of magnitude at
a cost of small increase in space. We call the method
the Word-aligned Hybrid (WAH) compression scheme.
This algorithm not only supports faster logical opera-
tions but also enables the bitmap index to be applied to
attributes with high cardinalities. Our tests show that
by using WAH compression, we can achieve good per-



formance on scientific datasets where most attributes
have high cardinalities. From their performance stud-
ies, Johnson and colleagues came to the conclusion that
one has to dynamically switch among different com-
pression schemes in order to achieve the best perfor-
mance [1]. We found that since WAH is significantly
faster than earlier compression schemes, there is no
need to switch compression schemes in a bitmap index-
ing software. The new compression scheme not only im-
proves the performance of the bitmap indexes but also
simplifies the indexing software.

The remainder of this paper is organized as fol-
lows. In Section II we review three commonly used
compression schemes and identify their key features.
These three were selected as representatives in our
performance comparisons. Section III contains the de-
scription of the word-aligned hybrid code (WAH). Sec-
tion IV contains some timing results of the bitwise log-
ical operations. Some timing information on processing
range queries are presented in section V. A short sum-
mary is given in Section VI.

2. Review of byte based schemes

In this section, we briefly review three well
known schemes for representing bitmaps and intro-
duce the terminology needed to described our new
scheme. These three schemes are selected as represen-
tatives from a number of schemes studied previously
[13, 29].

A straightforward way of representing a bitmap is
to use one bit of computer memory for each bit of the
bitmap. We call this the literal (LIT) bit vector2. This
is the uncompressed scheme and logical operations on
uncompressed bitmaps are extremely fast.

The second type of scheme in our comparisons is
the general purpose compression scheme such as gzip
[17]. They are highly effective in compressing data files.
We use gzip as the representative because it is usually
faster than others in decompressing the data files.

As mentioned earlier, there are a number of com-
pression schemes that offer good compression and
also allow fast bitwise logical operations. One of the
best known schemes is the Byte-aligned Bitmap Code
(BBC) [2, 3, 13]. The BBC scheme performs bit-
wise logical operations efficiently and it compresses
almost as well as gzip. We use BBC as the represen-
tative for these types of schemes. Our implementation
of the BBC scheme is a version of the two-sided BBC
code [29, Section 3.2]. This version performs as well as

2 We use the term bit vector to describe the data structure used
to represent the compressed bitmaps.

the improved version by Johnson [13]. In both John-
son’s tests [13] and ours, the time curves for BBC and
gzip (marked at LZ in [13]) cross at about the same po-
sition.

Many of the specialized bitmap compression
schemes, including BBC, are based on the basic idea of
run-length encoding that represents consecutive iden-
tical bits (also called a fill or a gap) by their bit value
and their length. The bit value of a fill is called the fill
bit. If the fill bit is zero, we call the fill a 0-fill, oth-
erwise it is a 1-fill. Compression schemes gener-
ally try to store repeating bit patterns in compact
forms. The run-length encoding is among the sim-
plest of these schemes. This simplicity allows logical
operations to be performed efficiently on the com-
pressed bitmaps.

Different run-length encoding schemes commonly
differ in their representations of the fill lengths and
the short fills. A naive run-length code may use a word
to represent all fill lengths. This is ineffective because
it uses more space to represent short fills than in the
literal scheme. One common improvement is to repre-
sent the short fills literally. The second improvement
is to use as few bits as possible to represent the fill
length. Given a bit sequence, the BBC scheme first di-
vides it into bytes and then groups the bytes into runs.
Each BBC run consists of a fill followed by a tail of lit-
eral bytes. Since a BBC fill always contains a number
of whole bytes, it represents the fill length as the num-
ber of bytes rather than the number of bits. In addi-
tion, it uses a multi-byte scheme to represent the fill
lengths [2, 13]. This strategy often uses more bits to
represent a fill length than others such as ExpGol [20].
However it allows for faster operations [13].

Another property that is crucial to the efficiency of
the BBC scheme is the byte alignment. This property
limits a fill length to be an integer multiple of bytes.
More importantly, it ensures that during any bitwise
logical operation a tail byte is never broken into in-
dividual bits. Because working on individual bits is
much less efficient than working on whole bytes on most
CPUs, byte-alignment is crucial to the operational ef-
ficiency of BBC. Removing the alignment may lead to
better compression. For example, the ExpGol scheme
[20] can compress better than BBC partly because it
does not obey the byte alignment. However, bitwise log-
ical operations on ExpGol bit vectors are often much
slower than on BBC bit vectors [13].

3. Word based schemes

Most of the known compression schemes are byte
based, that is, they access computer memory one byte



at a time. On most modern computers, accessing one
byte takes as much time as accessing one word [24].
A computer CPU with MMX technology offers the ca-
pability of performing a single operation on multiple
bytes. This may automatically turn byte accesses into
word accesses. However, because the bytes in a com-
pressed bit vector typically have complex dependen-
cies, logical operations implemented in high-level lan-
guages are unlikely to take advantage of the MMX tech-
nology. Instead of relying on the hardware and com-
pilers, we developed a new scheme that accesses only
whole words. It is named the word-aligned hybrid code
(WAH). We have previously considered a number of
word-based schemes and this is the most efficient one
in our tests [29].

The word-aligned hybrid (WAH) code is similar to
BBC in that it is a hybrid between the run-length en-
coding and the literal scheme. Unlike BBC, WAH is
much simpler and it stores compressed data in words
rather than in bytes. There are two types of words in
WAH: literal words and fill words. In our implemen-
tation, we use the most significant bit of a word to
distinguish between a literal word (0) and a fill word
(1). This choice allows one to easily distinguish a lit-
eral word from a fill word without explicitly extract-
ing the bit. The lower bits of a literal word contain the
bit values from the bitmap. The second most signifi-
cant bit of a fill word is the fill bit and the lower bits
store the fill length. WAH imposes the word-alignment
requirement on the fills, it requires that all fill lengths
be integer multiples of the number of bits in a literal
word. The word-alignment ensures that logical opera-
tion functions only need to access words not bytes or
bits.

Figure 2 shows a WAH bit vector representing 128
bits. In this example, we assume each computer word
contains 32 bits. Under this assumption, each literal
word stores 31 bits from the bitmap and each fill word
represents a fill with a multiple of 31 bits. If the ma-
chine has 64-bit words, each literal word would store
63 bits from the bitmap and each fill would have a
multiple of 63 bits. The second line in Figure 2 shows
how the bitmap is divided into 31-bit groups and the
third line shows the hexadecimal representation of the
groups. The last line shows the values of the WAH
words. The first three words are normal words, two lit-
eral words and one fill word. The fill word 80000002

indicates a 0-fill of two-word long (containing 62 con-
secutive zero bits). Note that the fill word stores the fill
length as two rather than 62. In other word, we repre-
sent the fill length as multiples of the literal word size.
The fourth word is the active word that stores the last
few bits that can not be stored in a normal word, and

another word (not shown) is needed to stores the num-
ber of useful bits in the active word.

The logical operation functions are easy to imple-
ment but are tedious to describe. To save space, we re-
fer the interested reader to a technical report [29]. Here
we only briefly describe one example, see Figure 3. In
this example, the first operand of the logical opera-
tion is the one in Figure 2. To perform a logical opera-
tion, we basically need to match each group of 31 bits
from both operands and generate the groups for the re-
sult using the hardware support to perform the oper-
ations between groups of 31 bits. Each column of the
table is reserved to represent one such group. A literal
word occupies the location for the group and a fill word
is given at the space reserved for the first group it rep-
resents. The first 31-bit group of the result C is the
same as that of A because the corresponding group in
B is part of a 1-fill. The next three groups of C con-
tain only zero bits. The active words are always treated
separated.

Figure 3 shows a decompressed version of the three
bitmaps involved in the operation for the purpose of il-
lustration only. The logical operations can be directly
performed on the compressed bitmaps and the time
needed by one such operation on two operands is re-
lated to the sizes of the compressed bitmaps. Let the
compression ratio be the ratio of size of a compressed
bitmap and its uncompressed counterpart. When the
average compression ratio of the two operands are less
than 0.5, the logical operation time is expected to be
proportional to the average compression ratio [29].

4. Performance of the logical operations

In this section, we discuss the performance of the
logical operations. Ultimately we are interested in en-
hancing the speed of query processing. However, be-
cause logical operations are the main operations on the
bitmaps and their performances are directly affected by
the compression schemes, we discuss the performances
of the logical operations first.

The WAH compression scheme are compared
against the three schemes reviewed in Section 2.
The tests are conducted on three sets of data, a
set of random bitmaps, a set of bitmaps gener-
ated from a Markov process and a set of bitmap
indexes on some real application data. Each syn-
thetic bitmap has 100 million bits. The synthetic data
are controlled through two parameters, the bit den-
sity and the clustering factor. In a bitmap, the bit den-
sity is the fraction of bits that are one and the cluster-
ing factor is the average length of the 1-fills. The ran-
dom bitmaps are generated according to the bit density



128 bits 1,20*0,3*1,79*0,25*1

31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1 4*1

groups in hex 40000380 00000000 00000000 001FFFFF 0000000F

WAH (hex) 40000380 80000002 001FFFFF 0000000F

Figure 2. A WAH bit vector. Each WAH word (last row) represents a multiple of 31 bits from the bit se-
quence, except the last word that represents the four leftover bits.

decompressed
A 40000380 00000000 00000000 001FFFFF 0000000F

B 7FFFFFFF 7FFFFFFF 7C0001E0 3FE00000 00000003

C 40000380 00000000 00000000 00000000 00000003

compressed
A 40000380 80000002 001FFFFF 0000000F

B C0000002 7C0001E0 3FE00000 00000003

C 40000380 80000003 00000003

Figure 3. A bitwise logical AND operation on WAH compressed bitmaps, C = A AND B.

and the Markov process generates bitmaps with a spec-
ified bit density and clustering factor. The goal of
this test is to examine the performance of the dif-
ferent compression schemes under various condi-
tions. However to limit the number of test cases,
we restrict all synthetic bitmaps to have bit den-
sity no more than 1/2. Since all compression schemes
can compress 0-fills and 1-fills equally well, the per-
formance on high bit density bitmaps should be the
same as on their complements. When necessary to dis-
tinguish the two type of synthetic bitmaps, we refer to
them as the random bitmaps and the Markov bitmaps
according to how they are generated. The real applica-
tion is a high-energy physics experiment called STAR
[25, 26]. The data used in our tests can be viewed
as one relational table consisting of about 2.2 mil-
lion tuples and 500 attributes. The bitmaps used in
this test are bitmap indexes on a set of 12 most fre-
quently queried attributes.

We have conducted a number of tests on differ-
ent machines and found that the relative performances
among the different compression schemes are indepen-
dent of the specific machine architecture. This char-
acteristic was also observed in a different performance
study [13]. The main reason for this is that most of
the clock cycles are consumed by branching operations
such as “if” tests and “loop condition” tests. These op-
erations only depend on the clock speed. For this rea-
son, we only report the timing results from a Sun En-

terprise 4503 that is based 400 MHz UltraSPARC II
CPUs. The test data were stored in a file system striped
across five disks connected to an UltraSCSI controller
and managed by a VERITAS Volume Manager4. The
VERITAS software distribute files across the five disks
to maximize the IO performance. The machine has four
gigabytes (GB) of RAM which is large enough to store
each of our test cases in memory. The secondary cache
size is 4 MB. In most cases, this cache is too small to
store the two operands and the result of a logical op-
eration.

Because of space limitations, we only show perfor-
mance of the logical OR operations in the following
discussions. On the same machine, a logical AND op-
eration typically takes slightly less time than a logi-
cal OR operation on the same bit vectors, and a logi-
cal XOR operation typically takes slightly more time.
In general, if WAH is X times faster than BBC in per-
forming a logical OR operation, the same would also
be true for the two other logical operations.

The most likely scenario of using these bit vectors
in a database system is to read a number of them from
disks and then perform bitwise logical operations on
them. In most cases, the bit vectors simply need to
be read into memory and stored in the correspond-
ing in-memory data structures. Only the gzip scheme

3 Information about the E450 is available at
http://www.sun.com/servers/workgroup/450.

4 Information about VERITAS Volume Manager is available at
http://www.veritas.com/us/products.



needs a significant amount of CPU cycles to decom-
press the data files into the literal representation be-
fore actually performing the logical operations. In our
tests involving gzip, only the operands of logical opera-
tions are compressed; the results are not. This is to save
time. Had we compressed the result as well, the oper-
ations would take several times longer than those re-
ported in this paper because the compression process
is more time-consuming [29]. We use the direct method
for both BBC and WAH. In other word, a logical op-
eration directly operates on two compressed operands
and produces a compressed result. It is one of the four
strategies studied by Johnson [13]. We have chosen the
direct method because it requires less memory and is
often faster than the alternative methods.

Figure 4 shows the time it takes to perform the bit-
wise logical OR operations on the random bitmaps.
Each data point shows the time to perform a logi-
cal operation on two bitmaps with similar bit densi-
ties. Figure 4(a) shows the logical operation time and
Figure 4(b) shows the total time including the time
to read the two bitmaps from files. In most cases, the
IO time is a relatively small portion of the total time
for BBC and WAH. Neglecting the IO time does not
significantly change the relative performance between
WAH and BBC. In an actual application, once the
bitmaps are read into memory, they are likely to be
used more than once. The average cost of a logical op-
eration would be close to what is shown in Figure 4(a).
From now on when showing the logical operation time,
we will not include the IO time.

Among the schemes shown, it is clear that WAH
uses much less time than either BBC or gzip. In all
test cases, the gzip scheme uses at least three times
more time than the literal scheme. In almost half of
the test cases, BBC takes more than ten times longer
than WAH.

When the bit density is about 1/2, the random
bitmaps are not compressible by WAH. For conve-
nience, we refer to the bit vectors only literal words as
the decompressed bit vectors. Usually, each logical op-
eration function takes two compressed bit vectors and
generates a compressed result, but the functions that
perform logical operations on decompressed bit vec-
tors always generate decompressed results. It’s easy to
see that the logical operations on decompressed WAH
bit vectors is nearly as fast as on the literal bit vec-
tors. Unless one explicitly decompress a BBC bit vec-
tor, it is very unlikely to have a decompressed BBC bit
vector. Even with bit density of 1/2, a BBC bit vec-
tor still contains a number of short fills. Even if we ex-
plicitly decompress the bit vectors, operations on de-
compressed BBC bit vectors are not as efficient as on

literal bit vectors. In Figure 4, the line for WAH falls
on top of the one for the literal scheme at bit den-
sity of 1/2 but the line for BBC only shows a slight
dip.

In Figure 4 we see that when bit density is above
0.01, WAH performs logical operations slower than
the literal scheme. Since on the uncompressed bitmaps
WAH can perform logical operations as well as the lit-
eral scheme, we might store those dense bitmaps with-
out compression and expect the logical operations to be
as fast as in the literal scheme. However, doing so sig-
nificantly increases the space requirement and it does
not even guarantee the speed of logical operation is al-
ways the fastest. This leads us to take a more careful
look at the compression effectiveness and factors that
determine the logical operation speed.

Figure 5 shows the sizes of the four types of bit vec-
tors. Each data point in this figure represents the av-
erage size of a number of bitmaps with the same bit
density and clustering factor. As the bit density in-
creases from 0.0001 to 0.5, the bit sequences become
less compressible and it takes more space to represent
them. When the bit density is 0.0001, all four com-
pression schemes use less than 1% of the disk space re-
quired by the literal scheme. At a bit density of 0.5, the
test bitmaps become incompressible and the compres-
sion schemes all use slightly more space than the lit-
eral scheme. In most cases, WAH uses more space than
the two byte based schemes, BBC and gzip. For bit
density between 0.001 and 0.01, WAH uses about 2.5
(∼ 8/3) times the space as BBC bit vectors. In fact,
in extreme cases, WAH may use four times as much
space as BBC. Fortunately, these cases do not domi-
nate the total space required by a bitmap index. In a
typical bitmap index, the set of bitmaps contains some
that are easy to compress and some that are hard to
compress, and the total size is dominated by the hard
to compress ones. Since most schemes use about the
same amount of space to store these hard to compress
ones, the differences in total sizes are usually much
smaller than the extreme cases. For example, on the
set of STAR data, the bitmap indexes compressed us-
ing WAH are about 60% bigger than those compressed
using BBC, see Figure 7. This is a fairly modest in-
crease in space compared to the increase in speed.

To verify that the logical operation time is propor-
tional to the sizes of the operands, we plotted the tim-
ing results of the two sets of synthetic bitmaps together
in Figure 6(a) and the results on the STAR bitmaps in
Figure 6(b). In both cases, the compression ratio is used
as the horizontal axes. Since in each plot, the bitmaps
are of the same length, the sizes are directly propor-
tional to the compression ratios. In each plot, a sym-
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Figure 4. CPU seconds needed to perform a bitwise OR operation on two random bitmaps.
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Figure 5. The sizes of the compressed bit vectors. The symbols for the Markov bitmaps are marked with their
clustering factors.

bol represents the average time of logical operations
on bitmaps with the same size. The dashed and dot-
ted lines are produced from linear regressions. Most of
the data points near the center of the graphs are close
to the regression lines. Those logical operations involv-
ing bit vectors with high compression ratios are nearly
constant. For very small bit vectors, where the logi-
cal operation time is measured to be a few microsec-
onds, the logical operations time deviates from the lin-
ear relation because of the overheads such as the tim-

ing overhead, function call overhead and other lower
order terms in the complexity expression. The regres-
sion lines for WAH and BBC are about a factor of ten
apart in both plots.

The performance differences between WAH and
BBC can be attributed to three main factors.

1. The encoding scheme of WAH is much simpler
than BBC. WAH has only two kinds of words
and one test is sufficient to determine the type
of any given word. In contrast, our implementa-
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Figure 6. Logical operation time is almost proportional to compression ratio. The STAR bitmap indexes are
on the 12 most queried attributes.

tion of BBC has four different types of runs, other
implementations have even more [13]. It may take
up to three tests in order to decide the run type of
a header byte. After deciding the run type, many
clock cycles may still be needed to fully decode a
run to determine the fill length or the tail value.

2. During the logical operations, WAH always ac-
cesses whole words, while BBC accesses bytes. On
most bitmaps, BBC needs more time to load its
data from the main memory to CPU registers than
WAH.

3. BBC can encode shorter fills more compactly than
WAH, however, this comes at a cost. Each time
BBC encounters a short fill, say a fill with less than
8 bytes, it starts a new run. WAH typically rep-
resent such a short fill literally. It is much faster
to operate on a WAH literal word than on a BBC
run. This situation is common when bit density is
greater than 0.01 in random bitmaps.

If we sum up the execution time of all logical oper-
ations performed on the STAR bitmaps for each com-
pression scheme, the total time for BBC is about 12
times that of WAH. Much of this difference can be at-
tributed to factor 3 discussed above. There are a num-
ber of bitmaps that can not be compressed by WAH
but can be compressed by BBC. When operating on
these bitmaps, WAH is nearly 100 times faster than
BBC. On very sparse bit vectors, WAH is about four
to five times faster than BBC.

Compared to the literal scheme, BBC is faster in a
fraction of the test cases, however, WAH is faster in
more than 60% of the test cases. In the worst case,
BBC can be nearly 100 times slower than the literal
scheme, but WAH is only 6 times slower. It might be
desirable to use the literal scheme in some cases. To re-
duce the complexity of the software, we suggest one
to use WAH but only use the literal words. Regard-
ing whether to store random bitmaps with bit density
greater than 0.01 without compression, we recommend
that the bitmaps be compressed.

5. WAH improves bitmap index effec-

tiveness

In this section, we use a set of real application data
from STAR to demonstrate the effectiveness of WAH
compressed bitmap index. The frequently queried at-
tributes can be organized as a relational table consist-
ing of millions of tuples and hundreds of attributes.
A typical query is a range query involving a hand-
ful of attributes. If Energy and NumParticles are
two attributes of the table, a query on them might be
“Energy > 15 GeV and 7 <= NumParticles < 13”.
In addition, most user queries may involve different at-
tributes and different number of them. Queries of this
form, which we call partial range queries, are particu-
larly difficult for most database systems. For example,
if a B-tree index is created for each attribute, a com-
mercial DBMS usually selects one of them to resolve
part of the query and then scans the table to fully re-



solve the query. This approach often takes more time
than simply scanning the table without using an in-
dex.

Commonly used multidimensional indexing schemes
such as variations of R-tree [11] are not effective for
two reasons. Most of these schemes are only effective
when the number of attributes are no more than ten,
but the STAR dataset has hundreds of attributes. In
addition, if a query does not involve all attributes in-
dexed, these multidimensional indexes are not effective
in processing the query. A number of researchers have
confirmed that the projection index and the bitmap in-
dex are among the fastest schemes in processing par-
tial range queries [14, 21, 22]. The projection index is
simply another name for vertical partitioning a rela-
tional table, we store the values of an attribute consec-
utively rather than storing the values of a tuple con-
secutively. In this case, queries are processed by simply
compare on the values. In later discussions, we will re-
fer to this as the projection scan or p scan for short.

Our goal is to demonstrate that WAH compres-
sion can improve the performance of the bitmap index-
ing scheme. To do this, we perform two sets of tests.
The first one is on some low cardinality attributes and
the second is on some high cardinality attributes. The
bitmap index is usually thought to be efficient for low
cardinality attributes. In this case, we show that the
WAH compressed indexes are not only smaller than
the uncompressed ones but are also more efficient in an-
swering range queries. When the cardinalities are high,
it is impractical to generate the uncompressed indexes.
In this case, we show that the WAH compressed in-
dexes are still of reasonable sizes and can process range
queries faster than the BBC compressed indexes and
the projection index. The high cardinality case are of
particular interests to us because the most frequently
queried attributes of the STAR data have high cardi-
nality.

In our tests, the low cardinality attributes are the 12
attributes with the lowest cardinalities from the STAR
data, and the high cardinality attributes are the 12 at-
tributes that are most likely to be queried by a physi-
cist. All low cardinality attributes are four-byte inte-
gers; the frequently queried attributes are mostly four-
byte integers and floating-point values except one at-
tribute is eight-byte floating-point value. The total size
for the first set is about 104 MB and the second one is
113 MB.

Figure 7 shows the sizes of the bitmap indexes. Four
columns are displayed in each table. Column ‘c’ shows
the cardinalities of the attributes. Columns marked
‘WAH’ and ‘BBC’ are our stand-alone implementa-
tions of the compressed bitmap indexes. The column

marked ‘DBMS’ shows the sizes of the bitmap indexes
in a commercial DBMS. Since the particular DBMS im-
plements a BBC compressed bitmap index, conceptu-
ally it is equivalent to our BBC compressed bitmap in-
dex.

In the first data set, there are a total of 312 dis-
tinct values, i.e., there are 312 bitmaps in all bitmap
indexes. Without compression, 312 bitmaps use about
84MB. All three versions of the compressed bitmap in-
dexes are less than 10% of this size and are less than
7% of the data size.

In the second data set, there are nearly 2.7 million
distinct values. Without compression, the bitmap in-
dex size would be more than 720GB (more than 6000
times the data size). Both BBC and WAH are very ef-
fective in reducing the sizes of the bitmap indexes be-
cause the majority of the bitmaps are very sparse. The
total size of each set of the compressed bitmap indexes
is less than half of the size of the B-tree indexes. Us-
ing the DBMS, the total size of 12 B-tree indexes take
about 400 MB, nearly four times the size of the data.

Figure 8 shows the average query processing time
of three compressed bitmap indexes and the projec-
tion index on the high cardinality data set. The three
bitmap indexes are the same as in Figure 7. The query
processing time is measured from the client side, and
therefore includes network communication time as well
as the time to actually answer the query. The par-
tial range queries are generated by randomly select-
ing some attributes and constructing a query with the
specified query box size. The query box is defined to
be the ratio of the volume of the hypercube formed by
the ranges to the total volume of the attributes [18].
For example, let the values of Energy be in the range
of 0 to 30 GeV and NumParticles in the range of 1
to 15, the query box size of “Energy > 15 GeV and

7 <= NumParticles < 13” is 15/31 × 6/15 = 0.19.
Given a query box size, the shape of the query box
is allowed to vary. For simplicity, we only use conjunc-
tive queries; that is the conditions on each attribute
are joined together using the AND operator. Typically,
as the query box size increases and the number of at-
tributes increases, it takes more time to process the
query.

We also show the time used by the projection index,
marked as ‘p scan’, in Figure 8. The projection index
only access the attributes involved in a query and is
much faster than most indexing strategies [22]. For ex-
ample, on our test machine, the DBMS takes about
6.5 seconds to scan a table with 12 attributes while
the projection scan only need 0.56 (≈ 6.5/12) seconds.
Had we actually stored all 500 attributes in the ta-
ble, the DBMS would take nearly 5 minutes to per-



c WAH BBC DBMS
4 10,196 8,733 335,037
4 305,296 164,665 421,074

18 1,510,740 924,035 1,077,269
19 1,437,892 842,359 1,001,476
24 1,703,456 975,465 1,127,116
25 1,729,380 988,060 1,140,852
33 33,568 9,516 334,420
35 151,808 39,254 349,970
35 151,708 39,222 349,771
35 151,808 39,257 349,797
40 1,964 1,534 330,128
40 1,972 1,599 329,785

total (DBMS B+-Tree: 370,631,794 bytes)
312 7,189,788 4,033,699 7,146,695

c WAH BBC DBMS
40 1,964 1,534 340,946
40 1,972 1,599 340,573

116 10,339,232 3,393,224 3,473,910
367 10,585,524 3,164,756 3,572,127
371 23,436 16,622 350,916

1,688 11,855,904 3,858,185 4,271,522
1,807 16,182,848 4,922,029 5,414,222
3,786 10,973,128 3,827,861 4,122,542

76,920 19,849,220 8,874,753 8,642,620
514,516 20,807,036 18,059,791 15,606,417
818,300 33,036,432 28,014,187 25,763,032

1,255,695 52,427,916 43,689,012 39,122,608
total (DBMS B+-Tree: 408,149,316 bytes)
2,673,646 186,084,612 117,823,553 111,021,435

(1) 12 low cardinality attributes (2) 12 most commonly queried attributes

Figure 7. Sizes (Bytes) of the bitmap indexes stored in various schemes.
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Figure 8. The average query processing time of random range queries on the 12 most queried attributes of
the STAR data.

form its scan operation. Clearly, the projection scan is
fast. We also take full advantage of the fast bitmap data
structure to store the intermediate results. When eval-
uating conjunctive queries, the result of the left side
can be used as the mask to limit the amount work
needed to evaluate the right side. A sophisticated ex-
ecution planner could easily determine an evaluation
order that minimizes the total amount of work. How-
ever, our stand-alone indexing software does not have
such a planner. Nevertheless, simply using a mask has

reduced the amount of work tremendously. This is re-
flected in the case where the projection scan time is al-
ways quite close to 0.56 seconds.

We see that WAH compressed bitmap indexes are
significantly more efficient than the BBC compressed
indexes. When there are two attributes per query,
WAH compressed indexes are about four times faster
than the stand-alone BBC compressed indexes and 10
times faster than the DBMS. When there are five at-
tributes per query, WAH compressed indexes are nearly



five times faster than the stand-alone BBC compressed
indexes and 14 times faster than the DBMS. In all
cases, our WAH compressed bitmap indexes are at least
twice as fast as the projection index. When the query
box sizes are small, it can be orders of magnitudes
faster than the projection scan.

We saw in the previous section that on the average,
WAH can perform logical operations 12 times faster
than BBC, but in this section we observe that the query
processing speed only differs by a factor of four to five.
This is in part because much of the time is spent on
performing logical operations on very sparse bitmaps
where WAH was measured to be about four to five
times faster than BBC. In addition, we have only im-
proved the speed of logical operations which is only one
part of the time spent in query processing. Other op-
erations, such as network communication, query pars-
ing, and locking overhead, used to be insignificant part
of the total execution time now become more impor-
tant after we have dramatically reduced the logical op-
eration time.

Comparing the commercial implementation of BBC
with our own, we found that the commercial imple-
mentation performs slower than ours. This is clearly
evident when a large number of logical operations are
needed, as in the cases of processing queries on high
cardinality attributes, see Figure 8. Next, we examine
whether the same behavior persists on low cardinal-
ity attributes.

Figure 9 shows the average query processing time
on the 12 low cardinality attributes. From Figure 9 we
see that it always takes less time to use the WAH com-
pressed bitmap indexes. The two versions of BBC com-
pressed bitmap indexes (the stand-alone version and
the commercial version) take about the same amount
of time when there are two attributes in a query. How-
ever, the DBMS takes less time than the stand-alone
version when there are five attributes in a query. This
is because the DBMS uses a better execution plan than
the stand-alone version. For example, if NumParticles
actually have only three values, 1, 3, and 15, even
tough our sample query “Energy > 15 GeV and 7 <=

NumParticles < 13” has a query box size of 0.19, it
generates no hits. If the condition on NumParticles is
evaluated first, there is no need to evaluation the con-
dition on Energy. Since the stand-alone version has not
implemented any query planning functionality, it eval-
uates the condition on Energy first and wastes time.
The cost saving due to this query planning function-
ality is more significant when more attributes are in-
volved.

Figure 9 also contains the timing information of the
uncompressed bitmap indexes, marked as “LIT.” The

BBC compressed indexes often takes more time than
the uncompressed indexes, but the WAH compressed
indexes are always faster. In many cases, the WAH
compressed indexes only needs about a third of the
time used by the uncompressed indexes to process the
same queries.

6. Summary

This research was motivated by the need to im-
prove the query response time of a scientific data man-
agement project. Based on the characteristics of the
dataset and queries, the bitmap indexing strategy is a
good choice. However because most of the commonly
queried attributes have a large number of distinct val-
ues, the basic bitmap index takes too much space and
query response time is too long. This paper describes a
compression scheme for addressing these performance
issues. It is well accepted that I/O dominates the opera-
tional efficiency of out-of-core indexing methods. Thus,
most compression schemes designed for bitmap indexes
only attempt to minimize I/O, i.e., reduce the size of
the bitmaps. Compressing bitmap indexes using these
schemes doesn’t lead to optimal query response time.
Our tests show that the computation time dominates
the total time. In addition, as main memories become
cheaper, we expect that “popular” bitmaps will remain
in memory once they are used. For these reasons, we
pursued the course of improving the computational ef-
ficiency of operations over bitmaps. The best existing
bitmap compression schemes are byte-aligned. In this
paper, we presented a word-aligned scheme WAH, that
is not only much simpler but is also very CPU-friendly.
This ensures that the logical operations are performed
efficiently. Tests on a set of real application data show
that it is 12 times as fast as BBC while using only 60%
more space.

We also demonstrated from tests that improving the
compression scheme actually improves the query an-
swering speed, not only logical operations. Tests show
that WAH compressed indexes are not only smaller
than the uncompressed indexes, they also take less
time to answer queries. Compared to the indexes com-
pressed with BBC, the WAH compressed indexes are
faster by a factor of four or five. We did not see a fac-
tor of 12 improvement because the time spent in query
processing are dominated by logical operations on very
sparse bitmaps. On very sparse bitmaps, WAH scheme
is faster than BBC usually by a factor of about four or
five. During query processing there is also some amount
of time spent in parsing the query, obtaining the locks
and so on. The time for these operations have not been
reduced by using a different compression scheme. In
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Figure 9. The average query processing time of random range queries on the 12 low cardinality attributes of
the STAR data.

spite of all these, we believe it is worthwhile to use
WAH instead of BBC to compress bitmap indexes.

The bitmap index is often thought to be effective
only on low cardinality attributes. By using WAH, we
demonstrated that it is effective even for attributes
with thousands of distinct values.
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