
Optimizing Bitmap Indices With Efficient
Compression

KESHENG WU, EKOW J. OTOO and ARIE SHOSHANI

Lawrence Berkeley National Laboratory

Bitmap indices are efficient for answering queries on low cardinality attributes. In this paper,
we present a new compression scheme called Word-Aligned Hybrid (WAH) code that makes com-
pressed bitmap indices efficient even for high cardinality attributes. We further prove that the new
compressed bitmap index, like the best variants of the B-tree index, is optimal for one-dimensional
range queries. More specifically, the time required to answer a one-dimensional range query is
a linear function of the number of hits. This strongly supports the well-known observation that
compressed bitmap indices are efficient for multi-dimensional range queries because results of
one-dimensional range queries computed with bitmap indices can be easily combined to answer
multi-dimensional range queries. Our timing measurements on range queries not only confirm the
linear relationship between the query response time and the number of hits, but also demonstrate
that WAH compressed indices answer queries faster than the commonly used indices including
projection indices, B-tree indices, and other compressed bitmap indices.

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory—Data com-

paction and compression; H.3.1 [Information Systems]: Content Analysis and Indexing—In-

dexing methods

General Terms: Performance, Algorithms

Additional Key Words and Phrases: Compression, bitmap index, query processing

1. INTRODUCTION

Bitmap indices are known to be efficient, especially for read-mostly or append-only
data. Many researchers have demonstrated this [O’Neil 1987; Chaudhuri and Dayal
1997; Jürgens and Lenz 1999]. Major DBMS vendors including ORACLE, Sybase
and IBM have implemented them in their respective DBMS products. However,
users are usually cautioned not to use them for high cardinality attributes. In this
paper, we present an efficient compression scheme, called Word-Aligned Hybrid
(WAH) code that, not only reduces the index sizes but also guarantees a theoreti-
cally optimal query response time for one-dimensional range queries. A number of

This is a preliminary release of an article accepted by ACM Transactions on Database Systems.
The definitive version is currently in production at ACM and, when released, will supersede this
version.
Copyright 2005 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to Post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212)
869-0481, or permissions@acm.org.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005, Pages 1–0??.

doi>10.1145/1132863.1132864

2 · Kesheng Wu et al.

bitmap index
row b0 b1 b2 b3
ID X =0 =1 =2 =3
1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

Fig. 1. A sample bitmap index. Each column b0 . . . b3 is called a bitmap in this paper.

empirical studies have shown that WAH compressed bitmap indices answer queries
faster than uncompressed bitmap indices, projection indices, and B-tree indices, on
both high and low cardinality attributes [Wu et al. 2001; 2002; Stockinger et al.
2002; Wu et al. 2004]. This paper complements the observations with rigorous
analyses. The main conclusion of the paper is that the WAH compressed bitmap
index is in fact optimal. Some of the most efficient indexing schemes such as B+-
tree indices and B∗-tree indices have a similar optimality property [Comer 1979;
Knuth 1998]. However, a unique advantage of compressed bitmap indices is that
the results of one-dimensional queries can be efficiently combined to answer multi-
dimensional queries. This makes WAH compressed bitmap indices well-suited for
ad hoc analyses of large high-dimensional datasets.

1.1 The basic bitmap index

In this paper, we define a bitmap index to be an indexing scheme that stores
the bulk of its data as bit sequences and answers queries primarily with bitwise
logical operations. We refer to these bit sequences as bitmaps. Figure 1 shows a
set of such bitmaps for an attribute X of a hypothetical table (T), consisting of
eight tuples (rows). The cardinality of X is four. Without loss of generality, we
label the four values as 0, 1, 2 and 3. There are four bitmaps, appearing as four
columns in Figure 1, each representing whether the value of X is one of the four
choices. For convenience, we label the four bitmaps as b0, . . . , b3. When processing
the query “select * from T where X < 2,” the main operation on the bitmaps
is the bitwise logical operation “b0 OR b1.” Since bitwise logical operations are
well supported by the computer hardware, bitmap indices are very efficient [O’Neil
1987].

The earlier forms of bitmap indices were commonly used to implemented in-
verted files [Knuth 1998; Wong et al. 1985]. The first commercial product to make
extensive use of the bitmap index was Model 204 [O’Neil 1987]. In many data ware-
house applications, bitmap indices perform better than tree-based schemes, such
as the variants of B-tree or R-tree [Jürgens and Lenz 1999; Chan and Ioannidis
1998; O’Neil 1987; Wu and Buchmann 1998]. According to the performance model
proposed by Jürgens and Lenz [1999], bitmap indices are likely to be even more
competitive in the future as disk technology improves. In addition to supporting
queries on a single table as shown in this paper, researchers have also demonstrated
that bitmap indices can accelerate complex queries involving multiple tables [O’Neil

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 3

and Graefe 1995].
The simple bitmap index shown in Figure 1 is known as the basic bitmap index.

The basic bitmap index can be built for integer attributes as well as floating-point
values and strings. The main practical difference is that floating-point attributes
typically have more distinct values, and therefore their bitmap indices require more
bitmaps.

There is only one attribute in the above example. With more than one attribute,
typically a bitmap index is generated for each attribute. It is straightforward to
process queries involving multiple attributes. For example, to process a query with
the condition “Energy > 15 GeV and 7 < NumParticles < 13,” a bitmap index
on attribute Energy and a bitmap index on NumParticles are used separately to
generate two bitmaps representing rows satisfying the conditions “Energy > 15
GeV” and “7 < NumParticles < 13,” and the final answer is then generated with
a bitwise logical AND operation on these two intermediate bitmaps.

1.2 Bitmap compression

The above procedure is efficient if indices for both Energy and NumParticles have
only a small number of bitmaps. However, in many applications, especially scientific
applications, attributes like NumParticles and Energy often have thousands or
even millions of distinct values. A basic bitmap index for such an attribute would
contain thousands or millions of bitmaps. The index sizes could be very large.
The author of Model 204 pointed out this problem and suggested a compact row
identifier (RID) list as an alternative [O’Neil 1987]. Since using a RID list makes
it harder to answer multi-dimensional queries, we choose to compress the bitmaps
to reduce the index size instead.

To compress a bitmap, a simple option is to use a text compression scheme, such
as LZ77 (used in gzip) [Gailly and Adler 1998; Ziv and Lempel 1977]. These schemes
are efficient in reducing file sizes. However, performing logical operations on the
compressed bitmaps is usually much slower than on the uncompressed bitmaps,
since the compressed bitmaps have to be explicitly uncompressed before any oper-
ation. To illustrate the importance of efficient logical operations, assume that the
attribute NumParticles can have integer values from 1 to 10,000. Its bitmap index
would have 10,000 bitmaps. To answer a query involving “NumParticles > 5000,”
5000 bitmaps have to be OR’ed together. To efficiently answer this query, it is not
sufficient that the bitmaps are small, the operations on them must be fast as well.

To improve the performance of bitwise logical operations, a number of specialized
schemes have been proposed. Johnson and colleagues have thoroughly studied many
of these schemes [Johnson 1999; Amer-Yahia and Johnson 2000]. From their studies
we know that the logical operations with these specialized schemes are usually faster
than those with LZ77. One such specialized scheme, called the Byte-aligned Bitmap
Code (BBC), is especially efficient [Antoshenkov 1994; Antoshenkov and Ziauddin
1996]. However, in the worst case, the total time required to perform a logical
operation on two BBC compressed bitmaps can still be 100 times longer than on
two uncompressed bitmaps as shown later in Figure 9.

We have developed a number of compression schemes that improve the overall
query response time by improving their worst case performance [Wu et al. 2001;
Wu et al. 2001]. In this paper, we concentrate on the Word-Aligned Hybrid (WAH)

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

4 · Kesheng Wu et al.

code for two main reasons: (1) it is the easiest to analyze, which leads us to prove
an important optimality about the compressed bitmap indices, and (2) it is the
fastest in our tests. In earlier tests, we observed that bitwise logical operations on
WAH compressed bitmaps are 2 to 100 times faster than the same operations on
BBC compressed bitmaps because WAH is a much simpler compression method
than BBC [Wu et al. 2001; Stockinger et al. 2002].

There is a space-time trade-off among these compression schemes. Comparing
BBC with LZ77, BBC trades some space for more efficient operations. Similarly,
WAH trades even more space for even faster operations.

Compressing individual bitmaps is only one way to reduce the bitmap index size.
An alternative strategy is to reduce the number of bitmaps, for example, by using
binning or more complex encoding schemes. With binning, multiple values are
grouped into a single bin and only the bins are indexed [Koudas 2000; Shoshani
et al. 1999; Wu and Yu 1996]. Many researchers have studied the strategy of using
different encoding schemes to reduce the index sizes [Chan and Ioannidis 1998;
1999; O’Neil and Quass 1997; Wong et al. 1985; Wu and Buchmann 1998]. One
well-known scheme is the bit-sliced index that encodes c distinct values using ⌈log2c⌉
bits and creates a bitmap for each binary digit [O’Neil and Quass 1997]. This is
referred to as the binary encoding scheme elsewhere [Wong et al. 1985; Chan and
Ioannidis 1998; Wu and Buchmann 1998]. A drawback of this scheme is that most
of the bitmaps have to be accessed when answering a query. To answer a 2-sided
range query such as “120 < Energy < 140”, most bitmaps have to be accessed
twice. There are also a number of schemes that generate more bitmaps than the
bit-sliced index but access less of them while processing a query, for examples,
the attribute value decomposition [Chan and Ioannidis 1998], interval encoding
[Chan and Ioannidis 1999] and the K-of-N encoding [Wong et al. 1985]. In all
these schemes, an efficient compression scheme should improve their effectiveness.
Additionally, a number of common indexing schemes such as the signature file
[Furuse et al. 1995; Ishikawa et al. 1993; Lee et al. 1995] may also benefit from an
efficient bitmap compression scheme. Compressed bitmaps can also be effective for
purposes other than indexing. In one case, we demonstrated that using compressed
bitmaps significantly speeds up the tracking of spatial features as they evolve in
the simulation of a combustion process [Wu et al. 2003].

1.3 Main results of this paper

The main objective of using an index in a database system is to reduce the query
response time. To achieve this objective, it is important to reduce both the I/O
time and the CPU time required to answer a query. Since the I/O time is known to
be a linear function of the index size, in our analyses we concentrate on the index
size instead of the I/O time. In addition to analyzing the index size, we also analyze
the CPU time required to answer a query. To verify the analyses, we measure the
index sizes and query response time using an implementation for read-only data.
An implementation that accommodates frequent changes such as updates is likely
to introduce extra overhead compared with that for read-only data. In this paper,
we focus on the performance of bitmap indices without considering the update
overhead and leave the topic for the future.

We prove that the index size of an attribute with uniform random data distri-

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 5

bution is the largest among all attributes with the same cardinality. In the worst
case, each bit that is 1 requires two words in the compressed bitmaps, one for stor-
ing the bit that is 1, and one for storing the 0s separating two nearby 1’s. For a
table with N rows, the basic bitmap index illustrated in Figure 1 for any attribute
contains exactly N bits that are 1. Therefore, the maximum size of a WAH com-
pressed bitmap index is 2N words plus some overhead that is proportional to the
number of bitmaps used. In most cases, the overhead is much less than 2N words.
Compared with the commonly used B+-tree index, this maximum size is relatively
small. For example, in a commercial DBMS that we use regularly, a B+-tree index
is observed to use 3N ∼ 4N words.

For answering ad hoc queries, projection indices are known to be the most efficient
[O’Neil and Quass 1997]. A projection index projects out a particular attribute of a
relation, so that all its values can be stored together to provide more efficient data
accesses. If each value fits in a word, then a projection index uses exactly N words.
When answering a one-dimensional range query, we never need to access more than
half of the bitmaps in a bitmap index, and therefore the maximum number of words
accessed using a WAH compressed bitmap index is also N words. Just considering
the I/O time, using a WAH compressed bitmap index never needs more time than
using the corresponding projection index. Indeed, considering I/O alone is sufficient
since WAH is highly compute efficient and the total query response time using a
WAH compressed bitmap index is I/O dominated [Stockinger et al. 2002]. This
suggests that using the WAH compressed bitmap index to answer a user query
should be faster than using the projection index. In this paper, we further confirm
this advantage of the WAH compressed index in Section 7.2.

In addition to analyzing uniform random attributes, we also analyze attributes
generated by a Markov process. Such attributes typically reflect application data
better than uniform random attributes. For example, their compressed index sizes,
like those from application data, can be much smaller than those of uniform random
attributes. Our analysis utilizes a novel technique that makes it possible to compute
the expected size of WAH compressed bitmaps generated from both uniform random
attributes and attributes generated by a Markov process. The new analysis not
only accurately predicts the maximum index size but also indicates what type of
attributes leads to larger indices. In contrast, our previous attempt to analyze the
index size only yielded an upper bound with no indication whether the upper bound
was achievable, or how to achieve it if it is achievable [Wu et al. 2004].

In earlier performance tests, we observed that the time to perform a logical
operation on two compressed bitmaps is proportional to the total size of the two
input bitmaps [Wu et al. 2001; 2002; Stockinger et al. 2002]. In this paper, we
confirm this observation by a formal analysis of the time spent in any bitwise logical
operation (including AND, OR, XOR) on two compressed bitmaps. However, to
answer a range query, it is often necessary to OR a large number of bitmaps. We
also prove that the time required by a special OR algorithm for multiple bitmaps
from a bitmap index is a linear function of the total size of all bitmaps involved.

The time to evaluate a one-dimensional range condition is mostly spent in OR’ing
the bitmaps. Since the time to complete the OR operations is a linear function of
the total size of bitmaps involved, and the total size is at worst a linear function of

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

6 · Kesheng Wu et al.

number of 1’s in all the bitmaps, the query response time is at worst a linear function
of the number of 1’s in the bitmaps, which is the number of hits. By definition, this
query response time is optimal. Numerous timing results are presented in Section 7
of this paper to substantiate the analyses and to compare WAH compressed index
against well-known indices including the projection index and the B+-tree index.

1.4 Outline

The remainder of this paper is organized as follows. In Section 2 we review three
commonly used compression schemes and identify their key features. These three
were selected as representatives for later performance comparisons. Section 3 con-
tains the description of the Word-Aligned Hybrid code (WAH). Section 4 contains
the analysis of bitmap index sizes, and Section 5 presents the analysis of time com-
plexity to answer a range query. We present some performance measurements in
Section 6 and 7 to support the analyses. A short summary is given in Section 8.

2. RELATED WORK ON BYTE-BASED SCHEMES

In this section, we briefly review three well-known schemes for representing bitmaps
and introduce the terminology needed to describe our new scheme. These three
schemes are selected as representatives of a number of different schemes [Johnson
1999; Wu et al. 2001].

A straightforward way of representing a bitmap is to use one bit of a computer
memory for each bit of the bitmap. We call this representation the literal (LIT)
bitmap. This is the uncompressed scheme and logical operations on uncompressed
bitmaps are extremely fast.

The second scheme in our comparisons is the general purpose compression scheme
based on LZ77 called gzip [Gailly and Adler 1998]. The general purpose schemes
are highly efficient in compressing text files. We use gzip as the representative
because it is usually faster than others in decompressing files [Wu et al. 2001].

There are a number of compression schemes that offer good compression and also
support fast bitwise logical operations. The Byte-aligned Bitmap Code (BBC) is a
well-known scheme of this type [Antoshenkov 1994; Johnson 1999]. BBC performs
bitwise logical operations efficiently and it compresses almost as well as gzip. The
BBC implementation used in later performance measurements is a version of the
2-sided BBC code [Wu et al. 2001, § 3.2]. In an earlier comparison against another
implementation 2-sided BBC derived from Johnson’s 1-sided BBC [Johnson 1999],
our implementation takes an average of 5% more space but reduces the average
query response time by about 1/3 [Stockinger et al. 2002]. Because of this per-
formance advantage, we choose to use our implementation of BBC for comparison
with WAH. To better understand its performance advantages and to see how we
might improve it, we next review the key characteristics of BBC.

The first reason that bitwise logical operations on BBC compressed data are more
efficient than on gzip compressed data is that BBC is a lot simpler. Like many of
the specialized bitmap compression schemes, BBC is based on the simple idea of
run-length encoding. It represents a group of consecutive identical bits (also called
a fill or a gap) by its bit value and length. The bit value of a fill is called the fill bit.
If the fill bit is 0, we call the fill a 0-fill, otherwise it is a 1-fill. Different run-length
encoding schemes generally use different strategies to represent run lengths.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 7

Typically, if a fill is short, say one-bit long, the run-length encoding may use
more space than the literal representation. Different run-length encoding schemes
usually differ on what is considered short. However, if a fill is considered short, it
is usually stored literally. This is a practical way to improve the basic run-length
encoding scheme.

Given a bitmap, the BBC compression scheme first divides it into bytes and then
groups the bytes into runs. Each BBC run consists of a fill followed by a tail. A
BBC fill is a consecutive group of bytes where the bits are either all 0 or all 1, and a
tail is a consecutive group of bytes with a mixture of 0 and 1 in each byte. Since a
BBC fill always contains a number of whole bytes, it represents the fill length as the
number of bytes rather than the number of bits. This reduces the space required
for storing the run lengths. In addition, it uses a multi-byte scheme to further limit
the space requirement [Antoshenkov 1994; Johnson 1999]. This strategy often uses
more bits to represent a fill length than others such as ExpGol [Moffat and Zobel
1992]. However it allows for faster operations [Johnson 1999].

BBC leaves fills shorter than a byte in tail bytes. This causes all encoded bits to
be byte-aligned and makes it more efficient to access the encoded bitmaps. More
importantly, during any bitwise logical operations, a tail byte is never broken into
individual bits. Because working on whole bytes is usually more efficient than
working on individual bits, this byte alignment property makes BBC more efficient
than others techniques such as ExpGol.

3. WORD-ALIGNED BITMAP COMPRESSION SCHEME

BBC supports more efficient bitwise logical operations than other compression
schemes such as LZ77 because it uses a simpler compression algorithm and it obeys
byte alignment [Johnson 1999; Wu et al. 2001; Stockinger et al. 2002]. Since most
general-purpose CPUs can operate on a word more efficiently than on a byte, a com-
pression scheme that observes word alignment may perform even better. Following
this observation, we extended BBC to be word-aligned rather than byte-aligned,
and developed the Word-aligned Bitmap Code (WBC) [Wu et al. 2001]. Similar to
BBC, WBC divides a bitmap into runs, where each run is a fill followed by some tail
words. Each WBC run requires at least one header word. Since a header word can
contain more information than a BBC header byte, we choose to use the simplest
option of having only one type of WBC run instead of four or more types in BBC.
This simplifies WBC and our tests show that WBC performs logical operations two
to four times faster than BBC [Wu et al. 2001].

The fastest compression scheme we developed is the Word-Aligned Hybrid (WAH)
code. In our tests that compare WBC and an early version WAH, we observed that
they used about the same amount of space but WAH can perform logical operations
faster than WBC, in many cases by a factor of two [Wu et al. 2001, Figures 16 – 18].
We believe that much of this performance difference is due to the dependency among
the words in WBC. In particular, a WBC header word has to be fully decomposed
before the tail words and the next header word can be processed. This causes the
CPU pipelines to stall and increases the total processing time. Because of this, we
have chosen to only analyze WAH in this paper. For performance comparisons, we
will compare against the well-known BBC rather than our own WBC.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

8 · Kesheng Wu et al.

128 bits 1*1,20*0,3*1,79*0,25*1

31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1 4*1

literal (hex) 40000380 00000000 00000000 001FFFFF 0000000F

WAH (hex) 40000380 80000002 001FFFFF 0000000F

Fig. 2. A WAH compressed bitmap. Each WAH word (last row) represents a multiple of 31 bits
from the input bitmap, except the last word that represents the four leftover bits.

Similar to WBC and BBC, WAH is also based on the basic idea of run-length
encoding. However, unlike WBC or BBC, WAH does not use any header words or
bytes, which removes the dependency mentioned above. In BBC, there are at least
four different types of runs and a number of different ways to interpret a byte. In
WAH, there are only two types of regular words: literal words and fill words. In our
implementation, we use the most significant bit of a word to distinguish between
a literal word (0) and a fill word (1). This choice allows us to distinguish a literal
word from a fill word without explicitly extracting any bit.

Let w denote the number of bits in a word, the lower (w−1) bits of a literal
word contain the literal bit values. The second most significant bit of a fill word is
the fill bit (0 or 1), and the remaining bits store the fill length. WAH imposes the
word alignment requirement on the fills; all fill lengths are integer multiples of the
number of bits in a literal word, (w−1). For example, on a 32-bit CPU (w = 32),
all fill lengths are integer multiples of 31 bits. In an implementation of a similar
compression scheme without word alignment, tests show that the version with word
alignment frequently outperforms the one without word alignment by two orders
of magnitude [Wu et al. 2001]. The reason for this performance difference is that
the word alignment ensures logical operations only access whole words, not bytes
or bits.

Figure 2 shows the WAH compressed representation of 128 bits. We assume that
each computer word contains 32 bits. Under this assumption, each literal word
stores 31 bits from the bitmap, and each fill word represents a multiple of 31 bits.
The second line in Figure 2 shows the bitmap as 31-bit groups, and the third line
shows the hexadecimal representation of the groups. The last line shows the WAH
words also as hexadecimal numbers. The first three words are regular words, the
first and the third are literal words and the second one is a fill word. The fill word
80000002 indicates a 0-fill of two-word long (containing 62 consecutive 0 bits). Note
that the fill word stores the fill length as two rather than 62. The fourth word is the
active word, it stores the last few bits that could not be stored in a regular word1.

For sparse bitmaps, where most of the bits are 0, a WAH compressed bitmap
would consist of pairs of a fill word and a literal word. If the bitmap is truly sparse,
say only one bit in 1000 is 1, then each literal words would likely contain a single
bit that is 1. In this case, for a set of bitmaps to contain N bits of 1, the total size
of all compressed bitmap is about 2N words. In the next section, we will give a
rigorous analysis of sizes of compressed bitmaps.

1Note that we need to indicate how many bits are represented in the active word, and we have
chosen to store this information separately (not shown in Figure 2). We also chose to store the
leftover bits as the least significant bits in the active word so that during bitwise logical operations
the active word can be treated the same as a regular literal word.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 9

uncompressed (in 31-bit groups)
A 40000380 00000000 00000000 001FFFFF 0000000F

B 7FFFFFFF 7FFFFFFF 7C0001E0 3FE00000 00000003

C 40000380 00000000 00000000 00000000 00000003

compressed
A 40000380 80000002 001FFFFF 0000000F

B C0000002 7C0001E0 3FE00000 00000003

C 40000380 80000003 00000003

Fig. 3. Bitwise logical AND operation on WAH compressed bitmaps, C = A AND B.

The detailed algorithms for performing logical operations are given in the ap-
pendix. Here we briefly describe one example (C = A AND B) as shown in Figure 3.
To perform a logical AND operation, we essentially need to match each 31-bit group
from the two operands, and generate the corresponding groups for the result. Each
column of the table is reserved for one such group. A literal word occupies the
location for the group and a fill word is given at the first space reserved for the
fill. The first 31-bit group of the result C is the same as that of A because the
corresponding group in B is part of a 1-fill. The next three groups of C contain
only 0 bits. The active words are always treated separately.

When two sparse bitmaps are lined up for a bitwise logical operation, we expect
most of the literal words not to fall on top of each other or adjacent to each other.
In this case, the results of logical OR and XOR are as large as the total size of the
two input bitmaps. It is easy to see that the time required to perform these logical
operations would be linear in the total size of the two input bitmaps. We have
observed this linearity in a number of different tests [Wu et al. 2001; 2002; 2004].
We formally show this linearity in Section 5.

The version of WAH presented in this paper has two important improvements
over the earlier version [Wu et al. 2001]. The first change is that we use the mul-
tiple of (w − 1) bits to measure the fill length rather than the number of bits.
The second change is that we assume the length of a bitmap can be represented
in one computer word. These changes allow us to store a fill of any length in one
fill word, which reduces the complexity of encoding and decoding procedures. In
addition, our current implementation of the bitwise logical operations also takes ad-
vantages of short-cuts available for the specific logical operations, while the original
performance measurement [Wu et al. 2001] use the generic algorithm shown in the
appendix. All of these changes improved the efficiency of bitwise logical operations.

Operations on WAH compressed bitmaps should be faster than the same opera-
tions on BBC compressed bitmaps for three main reasons.

(1) The encoding scheme of WAH is simpler than BBC, therefore the algorithms
for performing logical operations are also simpler. In particular, the header
byte of a BBC run is considerably more complex than any WAH word.

(2) The words in WAH compressed bitmaps have no dependency among them,
but the bytes in BBC have complicated dependencies. Therefore, accessing
BBC compressed bitmaps is more complicated and more time consuming than
accessing WAH compressed bitmaps.

(3) BBC can encode short fills, say those with less than 60 bits, more compactly

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

10 · Kesheng Wu et al.

than WAH. However, this comes at a cost. Each time BBC encounters such a
fill it starts a new run, while WAH represents such fills in literal words. It takes
much less time to operate on a literal word in WAH than on a run in BBC.

One way to improve the speed of bitwise logical operations on bitmaps with many
short fills is to decompress all the short fills. Indeed, decompressing all short fills in
both WAH and BBC could decrease the time to perform bitwise logical operations
on these bitmaps. However, it usually increases the time to perform operations
between a uncompressed bitmap and another compressed bitmap. It is possible
that decompressing selected bitmaps could reduce the average query response time,
but in all tests, the query response time increased rather than decreased. Further
investigation may reveal exactly what to decompress to improve the query response
time; however, we will leave that for future work. For the remainder of this paper,
unless explicitly stated, all bitmaps are fully compressed.

4. COMPRESSED SIZES OF BITMAP INDICES

In this section, we examine the space complexity of the WAH compression scheme.
A compressed bitmap index typically consists of three parts: the bitmaps, the
attribute values, and the data to associate each bitmap with an attribute value.
Usually, the data to associate a bitmap with an attribute value is trivial to account
for. The main quantity to be computed for the space complexity analysis is the total
size of all bitmaps in a compressed bitmap index. Without loss of generality, we
only consider integer attributes when computing the total size of bitmaps. We give
exact formulas for two types of attributes, the uniform random attributes and the
attributes generated from a Markov process. As the attribute cardinality increases,
the expression for the uniform random attributes asymptotically approaches the
upper bound [Wu et al. 2004]. The index sizes of attributes generated from the
Markov process can be much smaller than those of uniform random attributes. The
main steps to compute the total size of bitmaps include computing the number of
counting groups, computing the sizes of individual bitmaps, and finally the total
sizes of all bitmaps in an index. These three steps are each described in the following
subsection.

4.1 The counting groups

We need to define a few symbols to represent the basic quantities to be discussed.
A list of frequently used symbols is in Figure 4. Let w be the number of bits in a
computer word. On a 32-bit CPU, w = 32, and on a 64-bit CPU, w = 64. In the
following analyses, we assume the number of bits N of a bitmap (or equivalently
the number of rows) can be represented in a computer word2, i.e., N < 2w.

Given a bitmap, the WAH compression scheme divides the bits into (w−1)-bit
groups. For convenience, we call a (w−1)-bit group a literal group. For a bitmap

2If the database contains more records than 2w rows, multiple bitmaps can be used each to
represent a subset of the rows. To improve the flexibility of generating the indices and caching
the indices in memory, a bitmap may contain only a few million bits, corresponding to a small
partition of the data. This will create more than c bitmaps. The total size of the bitmap index
due to the per bitmap overhead will increase accordingly; however, the number of words required
to represent the bulk of 0s and 1s will not change.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 11

c : Cardinality of an attribute, the number of distinct values in the dataset.
d : The bit density, the fraction of bits that are 1.
f : Clustering factor of a bitmap, the average number of bits in 1-fills.
h : Number of 1s in a bitmap.
H : Number of hits of a query.
I : Number of iterations. Iw number of iteration through the main while-loop in Algorithm

generic op defined in the Appendix.
L : Total length of all 1-fills in a WAH compressed bitmap (in number of words). Ly is the

total length of 1-fills in y.
m: Number of regular words in WAH compressed bitmap, mR(d) is the expected number

words for a random bitmap and mM (d, f) is the expected number of words for a bitmap
generated from a two-state Markov process.

M : The maximum number of regular words required to store N bits using WAH compression,
M = ⌊N/(w − 1)⌋.

N : Number of bits in a bitmap, also number of records in a table.
s : Expected size of a compressed bitmap index, sU is the index size for an uniform random

attribute and sM is the index size of an attribute generated from a Markov process.
t : Time to perform a bitwise logical operation, tG using generic op, tI using inplace or.
T : Time to answer a one-dimensional range query, TG using generic op only, TI using

inplace or only.
w : Word size, the number of bits in a word, typically, 32 or 64.

Fig. 4. A list of frequently used symbols.

with N bits, there are ⌈N/(w− 1)⌉ such groups, the first M ≡ ⌊N/(w− 1)⌋ groups
each contains (w−1) bits. They can be represented by regular words in WAH. The
remaining bits are stored in an active word. The regular words could all be literal
words, each representing one literal group. In later discussions, we refer to this as
the decompressed form of WAH. This form requires M words plus the active word
and the word to record the number of bits in the active word, this gives a total of
M + 2 words.

A bitmap can be represented by WAH compression scheme in less than M + 2
words if some of the literal groups are fills. A WAH fill is a set of neighboring literal
groups that have identical bits. In this context, the word alignment properties refers
to the fact that all fills must span integer numbers of literal groups. In the example
bitmap shown in Figure 2, the longest fill without the word alignment restriction
contains 79 bits of 0. However, with the restriction, the longest fill only contains
62 bits.

Lemma 1. If a word contains more than five bits, w > 5, then any fill of 2w bits
or less can be represented in one WAH fill word.

Proof. A WAH fill word dedicates w−2 bits to represent the fill length, therefore
the maximum fill length is 2w−2 − 1. Since the fill length is measured in number
of literal groups, the maximum number of bits represented by one fill word is
(w − 1)(2w−2 − 1). When w > 5, (w − 1)(2w−2 − 1) > 2w.

To minimize the space required, this lemma indicates that we should use one fill
word to represent all neighboring literal groups that have identical bits. Naturally,
we define a WAH fill to contain all neighboring literal groups with identical bits.
The number of regular words in a WAH compressed bitmap is equal to the number
of fills plus the number of literal groups. However, since a fill can be of any length,

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

12 · Kesheng Wu et al.

31-bit groups 40000380 00000000 00000000 001FFFFF

counting groups 40000380 00000000

00000000 00000000

00000000 001FFFFF

Fig. 5. Breaking the 31-bit groups from Figure 2 into three counting groups.

counting the number of fills is messy. Instead we define an auxiliary concept called
the counting group to simplify the counting procedure. A counting group always
consists of two consecutive literal groups, and the counting groups are allowed to
overlap. For a bitmap with M literal groups, there are exactly M − 1 counting
groups, as illustrated in Figure 5. The next lemma states how the counting groups
are related to fills.

Lemma 2. A WAH fill that spans l literal groups generates exactly (l−1) count-
ing groups that are fills.

Proof. To prove this lemma, we first observe that any l literal groups can be
broken into (l − 1) counting groups. If the l literal groups form a fill, then the
(l − 1) counting groups are also fills. The two literal groups at the ends may be
combined with their adjacent groups outside the fill to form up to two counting
groups. According to our definition of a WAH fill, the groups adjacent to the fill
must be one of the following: (1) a fill of a different type, (2) a literal group with a
mixture of 0 bits and 1 bits, or (3) null, i.e., there is no more literal groups before
or after the fill. In the last case, no more counting groups can be constructed. In
the remaining cases, the counting groups constructed with one literal group inside
the fill and one literal group outside the fill are not fills. Therefore the fill generates
exactly (l − 1) counting groups that are fills.

Combining the above two lemmas gives an easy way to compute the number of
words needed to store a compressed bitmap.

Theorem 3. Let G denote the number of counting groups that are fills and let
M denote the number of literal groups. Then the number of regular words in a
compressed bitmap is M − G.

Proof. The number of regular words in a compressed bitmap is the sum of the
number of fills and the number of literal groups that are not fills. Let L be the
number of fills of a bitmap and let li be the size of ith fill in the bitmap, according
to the previous lemma it must contribute (li − 1) counting groups that are fills. By
definition, G ≡

∑L
i=1(li − 1). The number of fills is L =

∑L
i=1 li −

∑L
i=1(li − 1),

and the number of groups that are not in any fills is M −
∑L

i=1 li. Altogether, the
number of fills plus the number of literal groups is

(

L
∑

i=1

li −
L
∑

i=1

(li − 1)

)

+

(

M −
L
∑

i=1

li

)

= M −
L
∑

i=1

(li − 1) = M − G.

One important consequence of this theorem is that to compute the size of a
compressed bitmap we only need to compute the number of counting groups that

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 13

are fills. Because the counting groups have a fixed size, it is relatively easy to
compute G for random bitmaps.

4.2 Sizes of random bitmaps

Now that we have the basic tool for counting, we can examine the size of some ran-
dom bitmaps. The bitmaps that are hardest to compress are the random bitmaps
where each bit is generated independently following an identical probability distri-
bution. We refer to this type of random bitmaps as uniform random bitmaps or
simply random bitmaps. These bitmaps can be characterized with one parameter;
the bit density d, which is defined to be the fraction of bits that are 1 (0 ≤ d ≤ 1).

The efficiency of a compression scheme is often measured by the compression
ratio, which is the ratio of its compressed size to its uncompressed size. For a
bitmap with N bits, the uncompressed scheme (LIT) needs ⌈N/w⌉ words, and the
decompressed form of WAH requires M + 2 words. The compression ratio of the
decompressed WAH is (⌊N/(w − 1)⌋ + 2)/⌈N/w⌉ ≈ w/(w − 1). All compression
schemes pay an overhead to represent incompressible bitmaps. For WAH, this
overhead is one bit per word. When a word is 32 bits, the overhead is about 3%.
The overhead for BBC is about one byte per 15 bytes, which is roughly 6%.

Let d be the bit density of a uniform random bitmap, the probability of finding
a counting groups that is a 1-fill, i.e., 2w − 2 consecutive bits that are 1, is d2w−2.
Similarly, the probability of finding a counting group that is a 0-fill is (1 − d)2w−2.
With WAH compression, the expected size of a bitmap with N bits is

mR(d) ≡ M + 2 − G =

⌊

N

w − 1

⌋

+ 2 −

(⌊

N

w − 1

⌋

− 1

)

(

(1 − d)2w−2 + d2w−2
)

≈
N

w − 1

(

1 − (1 − d)2w−2 − d2w−2
)

. (1)

The above approximation neglects the constant 2, which corresponds to the two
words comprising of the active word and the counter for the active word. We loosely
refer to it as the “per bitmap overhead”. This overhead may become important
when G is close to M , i.e., mR is close to 2. For application where compression
is useful, N is typically much larger than w. In these cases, dropping the floor
operator (⌊⌋) does not introduce any significant amount of error.

The compression ratio is approximately w(1− (1− d)2w−2− d2w−2)/(w− 1). For
d between 0.05 and 0.95, the compression ratios are nearly one. In other words,
these random bitmaps cannot be compressed with WAH. For sparse bitmaps, say
2wd ≪ 1 we have mR(d) ≈ 2dN , because d2w−2 → 0 and (1−d)2w−2 ≈ 1−(2w−2)d.
In this case, the compression ratios are approximately 2wd. Let h denote the
number of bits that are 1. By definition, h = dN . The compressed size of a sparse
bitmap is related to h by the following equation.

mR(d) ≈ 2dN = 2h. (2)

In such a sparse bitmap, all literal words contain only a single bit that is 1, and
each literal word is separated from the next one by a 0-fill. On average, two words
are used for each bit that is 1.

Next, we compute the compressed sizes of bitmaps generated from a two-state
Markov process as illustrated in Figure 6. These bitmaps require a second param-

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

14 · Kesheng Wu et al.

1−p

p

q

1−q0 1

Fig. 6. An illustration of the two-state Markov process.

eter to characterize them. We call this parameter the clustering factor f . The
clustering factor of a bitmap is the average number of bits in a 1-fill. The bit den-
sity d and the clustering factor f can fully specify this simple Markov process. Let
the two states of the Markov process be named 0 and 1. A bitmap generated from
this Markov process is a recording of its states. The transition probabilities of the
Markov process are p for going from state 0 to state 1, and q for going from state
1 to state 0. Starting from state 1, the probability of its staying at state 1 for i
more steps is proportional to (1 − q)i. The expected number of bits3 in a 1-fill is
as follows4.

f =

∑

∞

i=0(i + 1)(1 − q)i

∑

∞

i=0(1 − q)i
= q

∞
∑

i=0

(i + 1)(1 − q)i =
1

q
.

Similarly, the average size of a 0-fill is 1/p. The bit density d is (1/q)/(1/p+1/q) =
p/(p + q). The transition probabilities can be expressed in terms of d and f as
follows (Note: f ≥ 1, f ≥ d/(1 − d), and 1 > d > 0):

q = 1/f, and p =
d

(1 − d)f
.

The probability of finding a counting group that is a 0-fill, i.e., (2w−2) consecutive
bits of zero, is (1 − d)(1 − p)2w−3. Similarly, the probability of finding a counting
group that is a 1-fill is d(1 − q)2w−3. Based on these probabilities, we expect the
compressed size to be

mM (d, f) ≡

⌊

N

w − 1

⌋

+ 2 −

(⌊

N

w − 1

⌋

− 1

)

(

(1 − d)(1 − p)2w−3 + d(1 − q)2w−3
)

≈
N

w − 1

(

1 − (1 − d)

(

1 −
d

(1 − d)f

)2w−3

− d

(

f − 1

f

)2w−3
)

. (3)

When 2wd ≪ 1 and f < 10, almost all of the fills are 0-fills. In this case, the
compression ratio is approximately wd

w−1 (1 + (2w − 3)/f). In other word, the size
of a compressed bitmap is nearly inversely proportional to the clustering factor.

3The authors gratefully acknowledge the suggestion from an anonymous referee to simplify the
derivation of f .
4Note

∑

∞

i=0
(1 − q)i = 1/q. Let S ≡

∑

∞

i=0
(i + 1)(1 − q)i, since

∑

∞

i=0
(i + 1)(1 − q)i = 1/q +

∑

∞

i=1
i(1 − q)i = 1/q + (1 − q)

∑

∞

i=0
(i + 1)(1 − q)i, S = 1/q + (1 − q)S. Therefore, S = 1/q2.

The computation of f is similar to that of the rehash chain length [O’Neil and O’Neil 2000,
p. 520].

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 15

4.3 Total size of bitmaps

The first index size we compute is for a discrete random attribute following the
simplest uniform probability distribution. Let c be the attribute cardinality, each
value appears with the same probability of 1/c. It is easy to see that the bitmap
corresponding to a value would be a uniform random bitmap with a bit density
d = 1/c. Since a bitmap index consists of c such bitmaps, the total size of the
bitmaps (in number of words) is

sU ≡ cmR(1/c) ≈
Nc

w − 1

(

1 − (1 − 1/c)2w−2 − (1/c)2w−2
)

. (4)

When c is large, (1/c)2w−2 → 0 and (1− 1/c)2w−2 ≈ 1− (2w− 2)/c. The total size
of the compressed bitmap index for a uniform random attribute has the following
asymptotic formula.

sU ≈
Nc

w − 1

(

1 −

(

1 −
2w − 2

c

))

= 2N, (c ≫ 1). (5)

This formula is based on an approximation of Equation 1 which neglected the per
bitmap overhead, the constant 2. Since there are c bitmaps, the total per bitmap
overhead is 2c words. For very large c, a better approximation is

sU ≈ 2N + 2c. (6)

For non-uniform random attributes, let the ith value have a probability of pi.
The total size of the bitmap index compressed with WAH is

sN ≡
c
∑

i=1

mR(pi) ≈
N

w − 1

(

c −
c
∑

i=1

(1 − pi)
2w−2 −

c
∑

i=1

p2w−2
i

)

. (7)

Under the constraint that all the probabilities must sum to one, i.e.,
∑

pi = 1, the
above equation achieves its maximum when all pi are equal. In other words, the
bitmap indices for uniform random attributes are the largest.

In many cases, the probability distribution of a random attribute depends on
existing values. The simplest model that captures this dependency is the Markov
process. An attribute of cardinality c can be modeled by a c-state Markov pro-
cess. For simplicity, we again assume a uniform probability distribution for the
attribute. In other word, from any state, this Markov process has the same tran-
sition probability q to an another state, and it selects one of the c − 1 states with
equal probability. In this case, each bitmap corresponding to the c values are the
same as those generated by the two-state Markov process described earlier. The
total size of the bitmaps is

sM ≡ cmM (
1

c
, f)

≈
Nc

w − 1

(

1 −

(

1 −
1

c

)(

1 −
1

(c − 1)f

)2w−3

−
1

c

(

1 −
1

f

)2w−3
)

. (8)

Figure 7 shows the total bitmap index sizes of a number of different synthetic at-
tributes. The line marked “random” is for the uniform random attributes. The lines
marked with “f=2,” “f=3,” and “f=4” are attributes generated from the Markov

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

16 · Kesheng Wu et al.

101 102 103 1040.25

0.5

1

2

cardinarlity of attribute

si
ze

s
(w

or
ds

 p
er

 a
ttr

ib
ut

e
va

lu
e)

random
f=2
f=3
z=1
z=2

100 102 104 106 1080.05

0.1

0.2

0.5

1

2

4

cardinarlity of attribute

si
ze

s
(1

08 w
or

ds
)

random
f=2
f=3
f=4

(a) n = ∞ (b) n = 108

Fig. 7. The expected size of bitmap indices on random data and Markov data with various
clustering factors.

process with the specified clustering factor f . The two lines marked with “z=1”
and “z=2” are attributes with Zipf distribution where pi ∝ i−z.

Figure 7 displays the total sizes of the bitmaps under two conditions, the infinite
N and the finite N . In the first case, the cardinality is always much less than N .
The vertical axis in Figure 7(a) is s/N . As the cardinality increases, it is easy to
see that s/N → 2. When N is finite, it is possible for c to be as large as N . In this
case, we cannot simply drop the small constants in Equations 1 and 3. If c = N ,
the total size of all bitmaps is nearly 4N words5. The majority of bitmaps have
three regular words plus the active word6. There are a few bitmaps using two or
three words rather than four7. For a large range of high cardinality attributes,
say, c < N/10, the maximum size of WAH compressed bitmap indices is about 2N
words.

For attributes with a clustering factor f greater than one, the stable plateau is
reduced by a factor close to 1/f . Another factor that reduces the total size of the
compressed bitmap index is that the cardinality of an attribute is usually much
smaller than N . For attributes with Zipf distribution, the stable plateau is the
same as the uniform random attribute. However, because the actual cardinality is
much less than N , it is very likely that the size of the compressed bitmap index
would be about 2N words. For example, for an attribute with Zipf distribution
with z = 1 and i < 109, among 100 million values, we see about 27 million distinct
values, and the index size is about 2.3N words. Clearly, for Zipf distributions with
larger z, we expect to see less distinct values and the index size would be smaller.
For example, for z = 2, we see about 14,000 distinct values for nearly any limit on
i that is larger than 14,000. In these cases, the index size is about 2N words. The
following proposition summarizes these observations.

5The exact maximum is 4N − 2w − 2(N%(w − 1)), where operator % denotes modulus.
6Since all active words have the same number of bits, one word is sufficient to store this number.
7The three regular words in the majority of the bitmaps represents a 0-fill, a literal group, and
a 0-fill. There are w bitmaps without the first 0-fill and w bitmaps without the last 0-fill. There
2w bitmaps uses three words each. There are also (N%(w − 1)) bitmaps whose 1 bits are in their
active words. In these bitmaps, only one regular word representing a 0-fill is used.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 17

Proposition 4. Let N be the number of rows in a table, and let c be the cardi-
nality of the attribute to be indexed. Then the total size s of all compressed bitmaps
in an index is such that,

(1) it never takes more than 4N words,

(2) if c < N/10, the maximum size of the compressed bitmap index of the attribute
is about 2N words,

(3) and if the attribute has a clustering factor f > 1 and c < N/10, the maximum
size of its compressed bitmap index is

s ∼
N

w − 1

(

1 +
2w − 3

f

)

,

which is nearly inversely proportional to the clustering factor f .

Proof. In the above proposition, item (2) is a restatement of Equation 5, and
item (3) is an approximation of Equation 8. Item (1) can be proved by verifying
that the maximum space required for an uniform random attributes is achieved
when its cardinality c is equal to N . This can be done by examining the expression
for cmR(1/c) without dropping the small constant or removing the floor operator.
In this extreme case, each bitmap contains only a single bit that is 1. This bitmap
requires at most three regular WAH words plus one active word6. Since there are
N such bitmaps, the space required in this extreme case is 4N words.

When the probability distribution is not known, we can estimate the sizes in a
number of ways. If we only know the cardinality, we can use Equation 4 to give
an upper bound on the index size. If the histogram is computed, we can use the
frequency of each value as the probability pi to compute the size of each bitmap
using Equation 7. We can further refine the estimate if the clustering factors are
computed. For a particular value in a dataset, computing the clustering factor
requires one to scan the data to find out how many times a particular value appears
consecutively, including groups of size one. The clustering factor is the total number
of appearances divided by the number of consecutive groups. With this additional
parameter, we can compute the size the compressed bitmaps using Equation 3.
However, since the total size of the compressed bitmap index is relatively small in
all cases, one can safely generate an index without first estimating its size.

The above formulas only include the size of the compressed bitmaps of an index.
They do not include the attribute values or other supporting information required
by a bitmap index. When stored on disk, we use two arrays in additions to the
bitmaps, one to store the attribute values and the other to store the starting position
of the bitmaps. Since we pack the bitmaps sequentially in a single file, there is no
need to store the end positions of most of the bitmaps except the last one. For an
index with c bitmaps, there are c attribute values and c starting positions. If each
attribute value and each starting position can be stored in a single word, the file
containing a bitmap index uses 2c more words than the total size of bitmaps. For
most high cardinality attributes, the index file size is at most 2N + 4c because the
total bitmap size is about 2N + 2c as shown in Equation 6. In the extreme case
where c = N , the index file size is 6N . It may be desirable to reduce the size in this
extreme case, for example, by using different compression schemes or using an RID

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

18 · Kesheng Wu et al.

list [O’Neil 1987]. In our experience, we hardly ever see this extreme case even for
floating-point valued attributes. The maximum size of WAH compressed bitmap
indices in a typical application is 2N words, and the average size may be a fraction
of N words.

5. TIME COMPLEXITY OF QUERY PROCESSING

To answer a one-dimensional range query using a compressed bitmap index, we
first need to examine the attribute values to determine what bitmaps need to be
OR’ed together as explained in the example given in Section 1.1. Typically, the
bulk of the query processing time is used to read these bitmaps from disk and
perform the bitwise logical operations. Because the time to read the bitmaps is
known to be a linear function of the total size of the bitmaps, we concentrate on
the CPU time required by the logical operations. More specifically, we compute
the time complexity of two algorithms used to perform the logical operations. The
first one called generic op shown in Listing 1 is designed to perform any binary
bitwise logical operations including AND, OR, and XOR. The second one called
inplace or shown in Listing 2 is designed to perform bitwise OR operations only. It
takes a uncompressed bitmap and a compressed bitmap, and places the result in the
uncompressed bitmap. It is intended to OR multiple bitmaps of an index during the
evaluation of a range condition. Because it avoids allocating intermediate results, it
is usually faster than generic op to operate on a large number of bitmaps. Before
we give the detailed analyses, we first summarize the main points.

The time to perform an arbitrary logical operation between two compressed
bitmaps is a linear function of the total size of the two bitmaps. The exception is
when the two operands are nearly uncompressed, in which case the time needed
is constant. The time to perform a logical OR operation between a uncompressed
bitmap and a compressed one is linear in the size of the compressed one. When
OR’ing a large number of sparse bitmaps using inplace or, the total time is linear
in the total size of all input bitmaps. When answering a query, this total size is at
most a constant times the number of hits; therefore, the query response time is at
worst a linear function of the number of hits. This means the compressed bitmap
index is optimal for answering one-dimensional range queries.

The remainder of this section is divided into three subsections each discussing
the complexity of generic op, the complexity of inplace or, and the complexity
of answering one-dimensional range queries respectively.

5.1 Complexity of algorithm generic op

In the appendix, we show four pseudo-code segments to illustrate two algorithms
used to perform bitwise logical operations, generic op and inplace or. The code
segments follow C++ syntax and make use of the standard template library (STL).
The first two listings contain the two main functions and the last two contains
data structures and supporting functions. In these listings, compressed bitmaps
are represented as bitmap objects. In a bitmap, the regular words are stored as
a vector of unsigned integers named vec. The ith regular word can be addressed
as vec[i]. The three key functions used for performing bitwise logical operations
are bitmap::appendLiteral, bitmap::appendFill, and run::decode, where the
first two are shown in Listing 3 and the last one is shown in Listing 4.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 19

mymx+

Iw
M

M/2

M 2M

Fig. 8. The range of possible values for the number of iterations Iw through the main WHILE
loop of function generic op defined in Listing 1.

We first compute the time complexity of algorithm generic op. To do this, we
compute the number of iterations required for the main while-loop, and then show
that the time complexity of each iteration of the main while-loop is bounded by
a constant. In generic op, each iteration either produces a literal word or a fill,
which leads to the following lemma about the number of iterations.

Lemma 5. Let mx denote the number of words in x.vec, let my denote the
number of words in y.vec, and let M denote the number of words in a uncompressed
bitmap, then the number of iterations through the while-loop Iw satisfy the following
condition,

max(mx, my) ≤ Iw ≤ min(mx + my − 1, M).

Proof. To prove this lemma, we observe that each iteration of the while-loop
consumes one word from either operand x or y, or one word from each of them. If
each iteration consumes a word from both operands, it takes at least max(mx, my)
iterations. If each iteration consumes only one word, it may take mx+my iterations.
Because the two operands contain the same number of bits, the last iteration must
consume one word from each operand, the maximum number of iterations is mx +
my − 1. The additional upper bound comes from the fact that each iteration
produces at least one word for the result and the result contains at most M words,
therefore, the main loop requires at most M iterations.

Figure 8 pictorially depicts the range of values for Iw . Both the upper bound and
the lower bound of the ranges are achievable; however, it is less likely to reach the
lower bound than to reach the upper bound. If for every i, x.vec[i] and y.vec[i]
always represent the same number of bits, then every iteration consumes a word
from each operand and Iw = mx = my. This could happen, for example, if x and y
are complements of each other. In a more typical case where the two operands are
not related this way, we expect Iw to be close to its maximum. Since each iteration
generates at most one word for the result z, we have the following corollary from
the above lemma.

Corollary 6. Using the algorithm generic op to perform a bitwise logical op-
eration between x and y gives the following:

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

20 · Kesheng Wu et al.

(a) the number of iterations Iw ≤ min(mx + my, M), and

(b) the result z.vec contains at most Iw words, i.e., the number of words in z.vec,
mz ≤ min(mx + my, M).

A quick examination of the various functions invoked by generic op reveals that
the only function that might take an undetermined amount of time is an STL
function called push back, since this function may need to expand the storage
allocated to z.vec. Because we know the maximum size required, we can allocate
the maximum amount of space for z.vec and avoid the dynamic memory allocation.
Consequently, each invocation of push back would take only a constant amount of
time.

Most functions and operators in generic op are used Iw times except three
functions, the function run::decodewhich is invoked mx+my times, and functions
bitmap::appendLiteral and bitmap::appendFillwhich are invoked a total of Iw

times. Since the cost of both bitmap::appendLiteral and bitmap::appendFill
are bounded by a constant, we can use the a common bound for both of them. This
leads to the formula for the time as follows

tG ≤ Cd(mx + my) + C1Iw (9)

≤ C2(mx + my), (10)

where Cd is the cost of decoding one WAH word, C1 is the cost of all operations
other than decoding compressed words, and C2 is the sum of Cd and C1. This
proves the following theorem.

Theorem 7. The time complexity of function generic op is O(mx + my).

For sparse bitmaps, where mx + my ≪ M , the equality in Equation 10 is actually
achievable.

Algorithm generic op is a generic bitwise logical operation. When implementing
a specific logical operation, such as AND and OR, it is easy to improve upon this
algorithm. For example, in AND operations, if one of the operands is a 0-fill, the
result is a 0-fill, if one of the operand is a 1-fill, the corresponding words in the result
are the same as those in the other operand. Similar special cases can be devised for
other logical operations. These special cases reduce the value of Iw by producing
more than one word in each iteration or consuming more than one word from each
operand. In addition, if we assume that both operands are properly compressed,
when appending a number of consecutive literal words, we may invoke the function
bitmap::appendLiteral only on the first word, and use vector::push back on
the remaining words. Since the chance of discovering fills in a set of literal words is
small, this heuristic reduces the CPU time without significantly increasing the size
of the result.

5.2 Complexity of algorithm inplace or

In an example given in Section 1.2, we need to OR 5,000 bitmaps in order to
answer a query. If each OR operation generates a new compressed bitmap, the
time of memory management may dominate the total execution time. To reduce
the memory management cost, we copy one of the bitmaps to a uncompressed

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 21

bitmap and use it to store the result of the operation8. We call this the in-place
OR operation and denote it as x |= y. In addition to avoiding repeated allocation
of new memory for the intermediate results, the in-place OR also avoids repeatedly
generating 0-fills in the intermediate results.

Following the derivation of Equation 10, we can easily compute the total time
required by algorithm inplace or. Let my denote the number of words in y.vec.
It needs to call function run::decode my times at a cost of Cdmy. Let Ly denotes
the length of all 1-fills in y, the total number of iterations through the inner loop
marked “assign 1-fill” is Ly. Assume each inner iteration takes C4 seconds, then
the total cost of this inner loop is C4Ly. The main loop is executed my times, and
the time spent in the main loop, excluding that spent in the inner loops, should be
linear in number of iterations. This cost and the cost of decoding can be combined
as C3my. The total time of algorithm inplace or is

tI = C3my + C4Ly. (11)

Let dy denote the bit density of y, for sparse bitmaps where 2wdy ≪ 1, Ly =
Nd2w−2

y /(w − 1) → 0. In this case, the above formula can be stated as follows.

Theorem 8. On a sparse bitmap y, the time complexity of algorithm inplace-
or is O(my), where my is the number of regular words in y.

5.3 Optimal time complexity for range queries

In a previous paper, we analyzed five options for OR’ing multiple bitmaps of an
index to answer a range query [Wu et al. 2004]. Those analysis was informal because
we did not establish the complexity of a logical operation involving two operands.
Now that we have formally established the time complexities of a binary logical
operation, we formally analyze two of the most useful options: one using generic-
op only and the other using inplace or only. In tests, we saw that the first option
is more efficient for a relatively small number of bitmaps and the second option
is more efficient for a larger number of bitmaps [Wu et al. 2004]. The theoretical
complexity of query processing is dominated by the second option. In this section,
we show that the time complexity of answering a one-dimensional range query is
linear in the total size of bitmaps involved and linear in the number of hits.

Because the answer to a multi-dimensional range query can be easily computed
from answers to one-dimensional queries, our analysis here concentrates on range
conditions on one attribute. When evaluating these one-dimensional range condi-
tions, e.g., “150 <= Energy < 200,” it is easy to determine the total size of bitmaps
involved. If this total size is more than half of the total size of all bitmaps, we can
evaluate the complement of the range condition and then complement the solution.
This guarantees that we never need to access more than half of the bitmaps.

When processing range conditions involving high cardinality attributes, we may
need to operate on a large number of bitmaps, but the size of each individual bitmap
is much smaller than M . Using generic op to operate on two such bitmaps, the
number of iterations Iw is usually close to the upper bound mx + my. To make it

8This is similar to the basic method used by Johnson [1999], however Johnson’s implementation
involves a literal bitmap and a compressed bitmap, only WAH compressed bitmaps are used in
our case.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

22 · Kesheng Wu et al.

easier to reveal the worst case behavior, we simply assume Iw is mx + my. Under
this assumption, the time used by generic op is tG = C2(mx + my) and the result
z has mx + my regular words. In later discussions, we will refer to this set of
assumptions as the sparse bitmap assumption.

Let m1, m2, . . . , mk denote the sizes of the k compressed bitmaps to be OR’ed.
The time required to call function generic op (k − 1) times is

TG ≤ C2(m1 + m2) + C2(m1 + m2 + m3) + . . . + C2(m1 + m2 + . . . + mk)

= C2

[(

k
∑

i=1

(k + 1 − i)mi

)

− m1

]

. (12)

Assuming all bitmaps have the same size m, the above formula simplifies to TG ≤
C2m(k + 2)(k − 1)/2. In other words, the total time grows quadratically in the
number of input bitmaps9. In an earlier test, we actually observed this quadratic
relation [Wu et al. 2004]. Next we show that a linear relation is achieved with
inplace or.

To use inplace or, we first need to produce a uncompressed bitmap. Let C0

denote the amount of time to produce this uncompressed bitmap. To complete the
operations, we need to call inplace or k times on k input compressed bitmaps.
The total time required is

TI = C0 + C3

k
∑

i=1

mi + C4

k
∑

i=1

Li,

where Li denotes the total length of the 1-fills in the ith bitmap. Under the sparse
bitmaps assumption, the term C4

∑k
i=1 Li in the above equation is much smaller

than others. This leads to

TI ≈ C0 + C3

k
∑

i=1

mi, (13)

which proves the following proposition.

Proposition 9. The time required to OR a set of sparse bitmaps using inplace-
or is a linear function of the total size of input bitmaps.

If all input bitmaps have the same size m, Equation 13 is linear in k, while
Equation 12 is quadratic in k. This indicates that when k is large, using inplace-
or is preferred. When operating on only two bitmaps, generic op is faster. In an
earlier paper, we identified a simple algorithm to ensure the faster option is used
in practice [Wu et al. 2004]. This guarantees that the actual query response time
is never worse than using inplace or alone.

9Note that this quadratic relation holds only if all the intermediate results are also sparse bitmaps.
If some intermediate results are not sparse, we should use Equation 9 rather than Equation 10
to compute the total time. This would lead to a more realistic upper bound on time. When a
small number of bitmaps are involved, using generic op is faster than using inplace or. As the
number of bitmaps increases, before Equation 12 becomes a gross exaggeration, using inplace or

already becomes significantly better [Wu et al. 2004]. For this reason, we have chosen to omit the
formula for dense intermediate results.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 23

Proposition 10. Using a WAH compressed bitmap index to answer one-dimen-
sional range queries is optimal.

Proof. A searching algorithm is considered optimal if the time complexity is
linear in the number of hits H . When using the basic bitmap index to answer a
query on one attribute, the result bitmap is a bitwise OR of some bitmaps from the
index. The number of hits is the total number of 1s in the bitmaps involved. In
cases where a long query response time is expected, there must be a large number
of sparse bitmaps involved. Under the sparse bitmap assumption, the total size of
all bitmaps is proportional to the number of 1s as shown in Equation 2. According
to Proposition 9, the total search time using a compressed bitmap index is linear
in the number of hits. Therefore, the compressed bitmap index is optimal.

We did not label the last two propositions as theorems because there are a number
of factors that may cause the observed time to deviate from the expected linear
relation. Next we describe three major ones.

The first one is that the “constant” C0 actually is a linear function of M . To
generate a uncompressed bitmap, one has to allocate M + 2 words and fill them
with (zero) values. Because the uncompressed bitmap is generated in memory, the
procedure is very fast. The observed value of C0 is typically negligible.

The second factor is the memory hierarchy in computers. Given two sets of sparse
bitmaps with the same number of 1s, the procedure of using inplace or is basically
taking one bitmap at a time to modify the uncompressed bitmap, and the content
of the uncompressed bitmap is modified one word at a time. In the worst case,
the total number of words to be modified is H , which is the same for both sets of
bitmaps. However, because the words are loaded from main memory into the caches
one cache line at a time, this causes some of the words to be loaded into various
levels of caches more than once. Many words are loaded into caches unnecessarily.
We loosely refer to these as extra work. The lower the bit density, the more extra
work is required. This makes the observed value of C3 increase as the attribute
cardinality increases. In the extreme case, H cache lines are loaded, one for each
hit. In short, the value of C3 depends on some characteristics of the data, but it
approaches an asymptotic maximum as the attribute cardinality increases.

The third factor is that the above analysis neglected the time required to deter-
mine what bitmaps are needed to answer a query. Our test software uses binary
searches on the attribute values to locate the bitmaps. Theoretically, a binary
search takes O(log(c)) time. One way to reduce this time would be to use a hash
function which can reduce this time to O(1) [Czech and Majewski 1993; Fox et al.
1991]. Timing measurements show that the binary searches take negligible amount
of time, therefore, we have not implemented the hash functions.

6. PERFORMANCE OF THE LOGICAL OPERATIONS

In this section, we review the performance of bitwise logical operations. Since these
operations are the main operations during query processing, their performance is
important to the overall system performance. This section contains three subsec-
tions, one to describe the experiment setup, one to discuss the logical operation
time, and one to discuss the bitmap index size. The goal is to confirm the formulas
derived in the two previous sections.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

24 · Kesheng Wu et al.

6.1 Experiment setup

In our tests, we measure the performance of the WAH compression scheme along
with the three schemes reviewed in Section 2. The tests are conducted on four
sets of data, a set of random bitmaps, a set of bitmaps generated from a Markov
process and two sets of bitmap indices from real application data. Each synthetic
bitmap has 100 million bits. In our tests, the bit densities of all synthetic bitmaps
are no more than 1/2. Since all compression schemes tested can compress 0-fills
and 1-fills equally well, the performance for high bit density cases should be the
same as their complements. One of the application dataset is from a high-energy
physics experiment called STAR [Shoshani et al. 1999; Stockinger et al. 2000]. The
data used in our tests can be viewed as one relational table consisting of about 2.2
million rows with 500 columns. The bitmap indices used in this test are from the
12 most frequently queried attributes. The second application dataset is from a
direct numerical simulation of a combustion process [Wu et al. 2003]. This dataset
contains about 25 million rows with 16 columns. Both application datasets contain
mostly 4-byte integers and floating-point values, only one attribute in the STAR
dataset has 8-byte floating-point values.

We conducted a number of tests on different machines and found that the rela-
tive performances among the different compression schemes are independent of the
specific machine architecture. This was also observed in a different performance
study [Johnson 1999]. The main reason for this is that most of the clock cycles
are consumed by table look ups and conditional branching instructions such as “if”
tests, “switch” statements and “loop condition” tests. These operations only de-
pend on the clock speed. For this reason, we only report the timing results from
a Sun Enterprise 45010 with 400 MHz UltraSPARC II CPUs. The test data were
stored in a file system striped across five disks connected to an UltraSCSI controller
and managed by a VERITAS Volume Manager11.

To avoid cluttering the graphs, we only show the performance of logical OR
operations. On the same machine, the logical AND operation and the logical XOR
operation typically take about the same amount of time as the logical OR operation.
Usually, the XOR operation takes a few percent more time than the other two.

6.2 Logical operation time scales as predicted

The most likely scenario of using the bitmaps in a database system is to read a
number of them from disks and then perform bitwise logical operations on them.
With most of the compression schemes tested, the logical operations can directly
use the bitmaps stored in files; only gzip needs a significant amount of CPU cycles
to decompress the data files before actually performing the logical operations. In
our tests involving gzip, only the operands of logical operations are compressed;
the results of the operations are not compressed. Had we compressed the result
as well, the operations would have taken several times longer than those reported
in this paper, because the compression process is more time-consuming [Wu et al.
2001]. The timing results for WAH and BBC are for logical operations on two

10Information about the E450 is available at http://www.sun.com/servers/workgroup/450.
11Information about VERITAS Volume Manager is available at http://www.veritas.com/us/-

products.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 25

10−5 10−4 10−3 10−2 10−1 10010−4

10−3

10−2

10−1

100

101

compression ratio

O
R

 ti
m

e
(s

ec
)

LIT
BBC
WAH

10−5 10−4 10−3 10−2 10−1 10010−6

10−5

10−4

10−3

10−2

10−1

compression ratio

O
R

 ti
m

e
(s

ec
)

LIT
gzip
BBC
WAH

(a) all synthetic bitmaps (b) STAR bitmap indices

Fig. 9. Logical operation time is proportional to compression ratio of the operands, and therefore
the total size of the operands. On the STAR bitmap indices, the total CPU time used by BBC is
about 12 times of that of WAH.

compressed bitmaps that produce one compressed result, i.e., the direct method
used by Johnson [1999]. The main objective of this subsection is to verify whether
the logical operation time is proportional to the total sizes of the operands as
Theorem 7 predicts. Since Theorem 7 is only concerned about the CPU time, we
only measured the CPU time.

We measure the CPU time of logical operations on many pairs of bitmaps and
plot the results in two graphs according to the number of bits in the bitmaps. The
timing results on the two sets of synthetic data are in Figure 9(a) and the results
on the STAR bitmaps are in Figure 9(b). In both cases, the compression ratio
(the ratio of a compressed size to its uncompressed counterpart) is shown as the
horizontal axes. Since in each plot, the bitmaps are of the same length, the average
compression ratio is proportional to the total size of the two operands of a logical
operation. In each plot, a symbol represents the average time of logical operations
on bitmaps with the same sizes. The dashed and dotted lines are produced from
linear regressions. Most of the data points near the center of the graphs are close to
the regression lines, which verifies that the time is proportional to the sizes of the
operands. As expected, logical operations on bitmaps with compression ratios near
1 approach a constant. For very small bitmaps, where the logical operation time
is measured to be a few microseconds, the measured time deviates from the linear
relation because of factors such as the timing overhead and function call overhead.
The regression lines for WAH and BBC are about a factor of ten apart in both
plots.

If we sum up the execution time of all logical operations performed on the STAR
bitmaps for each compression scheme, the total time for BBC is about 12 times that
for WAH. Much of this difference can be attributed to the large number of relative
short fills in the bitmaps. BBC is more effective in compressing these short fills, but
it also takes more time to use these fills in bitwise logical operations. In contrast,
WAH typically does not compress these short fills. When performing bitwise logical
operations on these uncompressed fills, WAH can be nearly 100 times faster than
BBC. The performance differences between WAH and BBC are the smallest on

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

26 · Kesheng Wu et al.

0.0001 0.001 0.01 0.1 0.5
104

105

106

107

108

bit density

si
ze

 (b
yt

es
)

LIT
gzip
BBC
WAH

0.0001 0.001 0.01 0.1 0.5
103

104

105

106

107

108

bit density

si
ze

s
(b

yt
es

)

LIT
random
f=2
f=4
f=8
f=32
f=128

(a) random (b) Markov (WAH only)

Fig. 10. The sizes of the compressed bitmaps. The symbols for the Markov bitmaps are marked
with their clustering factors. The dashed lines are predictions based on Equations 1 and 3.

sparse bitmaps. On very sparse bitmaps, WAH is about four to five times faster
than BBC when bitmaps are in memory. When the bitmaps are read from disk,
WAH is about two to three times faster than BBC.

6.3 Sizes of compressed bitmaps agree with analyses

Figure 10 shows the sizes of the four types of bitmaps. Each data point in this figure
represents the average size of a number of bitmaps with the same bit density and
clustering factor. The dashed lines in Figure 10 are the expected sizes according to
Equations 1 and 3. It is clear that the actual sizes agree with the predictions.

As the bit density increases from 0.0001 to 0.5, the bitmaps become less compress-
ible and they take more space. When the bit density is 0.0001, all three compression
schemes use less than 1% of the disk space required by the literal scheme. At a
bit density of 0.5, most bitmaps are incompressible, and all compression schemes
use slightly more space than the literal scheme. In most cases, WAH uses more
space than the two byte-based schemes, BBC and gzip. For bit density between
0.001 and 0.01, WAH uses about 2.5 (∼ 8/3) times the space as BBC. In fact, in
extreme cases, WAH may use four times as much space as BBC. Fortunately, these
cases do not dominate the total space required by a bitmap index. In a typical
bitmap index, the compression ratios of bitmaps vary widely, and the total size is
dominated by bitmaps with the largest compression ratios. Since most schemes use
about the same amount of space to store these incompressible bitmaps, the differ-
ences in total sizes are usually much smaller than the extreme cases. For example,
on the set of STAR data, the bitmap indices compressed with WAH are about 60%
(186/118 ∼ 1.6) bigger than those compressed with BBC as shown in Table I.

7. PERFORMANCE ON RANGE QUERIES

This research was originally motivated by the need to manage the volume of data
produced by the STAR experiment. In this case, the queries on the data are multi-
dimensional range queries. The range conditions on each attribute are of the form
x1 ≤ X < x2, where X is an attribute name, x1 and x2 are two constants. An
equivalent statement in SQL is “select count(*) from T where x1 <= X and X

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 27

10−6 10−5 10−4 10−3 10−2 10−110−2

10−1

100

query size

qu
er

y
re

sp
on

se
 ti

m
e

(s
ec

)

WAH
BBC
DBMS bitmap
LIT

10−6 10−5 10−4 10−3 10−2 10−110−2

10−1

100

101

query size

qu
er

y
re

sp
on

se
 ti

m
e

(s
ec

)

WAH
BBC
DBMS bitmap
DBMS B−tree
projection

(a) 12 lowest cardinality attributes (b) 12 most commonly queried attributes
cardinalities 2 to 40, average 26 cardinalities 40 to 1,200,000, average 223,000

Fig. 11. The average response time of 5-dimensional queries on the STAR dataset. The query size
is the expected fraction of events that are hits.

< x2.” A typical query from STAR involves a handful of this type of conditions
in conjunction. In this section, we use random range conditions for our perfor-
mance measurements12. The main objective is to confirm the analysis presented in
Section 5.

The average query response time shown in Figure 11 and Table I is measured
as the elapsed time by the client program. In this case, all indices from both the
commercial DBMS and our own implementation, except the uncompressed (LIT)
index for high cardinality attributes, fit into memory. The query response time
in this case mostly reflects the in-memory performance of the bitmap compression
schemes. In contrast, the time values shown in Figures 12 and 13 are measured
with cold disks, where nothing is cached in memory13.

7.1 Compressed indices perform well on multi-dimensional queries

Figure 11 shows the average query response time of 5-dimensional range queries
where each query is a conjunction of five random range conditions on the STAR
dataset. The left plot is for low cardinality attributes and the right plot is for high
cardinality attributes. Each data point is the average time of 1000 different queries.
For both high and low cardinality attributes, we see that WAH compressed bitmap
indices use significantly less time than others. On low cardinality attributes, the
uncompressed bitmap indices are smaller than projection indices and B-tree indices,
and are also much more efficient. This agrees with what has been observed by others
[O’Neil and Quass 1997]. We report the performance of a commercial implemen-
tation of the compressed bitmap index to validate our own implementation. Our
implementation of BBC compressed index and the DBMS implementation perform
about as well as the uncompressed bitmap indices (marked LIT in Figure 11) on

12The values x1 and x2 are chosen separately and each is chosen from the domain of X with
uniform probability distribution. If x1 > x2, we swap the two. If x1 = x2, the range is taken to
be x1 ≤ X.
13In this case, before a query is run, the file system containing raw data and indices are unmounted
and mounted again.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

28 · Kesheng Wu et al.

commercial DBMS our bitmap indices
projection B-tree bitmap LIT BBC WAH

12 lowest size (MB) 113 370 7 84 4 7
cardinality time (sec) 0.57 0.85 0.01 0.01 0.007 0.003
12 commonly size (MB) 113 408 111 726,484 118 186
queried time (sec) 0.57 0.95 0.66 - 0.32 0.052

Table I. Total sizes of the indices on STAR data and the average time needed to process a random
one-dimensional range query.

the low cardinality attributes. On the 12 most frequently queried attributes, the
query response time is longer than that on the low cardinality attributes; however,
the WAH compressed indices are still more efficient than others. On these high
cardinality attributes, projection indices are about three times as fast as B-tree
indices; the WAH compressed indices are at least three times as fast as projection
indices.

Table I shows the total sizes of various indices and the average time required
to answer a random one-dimensional query on the STAR data14. We consider the
projection index as the reference method since it is compact and efficient [O’Neil
and Quass 1997]. The projection index size is the same as the raw data, which is
smaller than most indices on high cardinality attributes. The bitmap index sizes
reported are the index file sizes which include the bitmaps, attribute values, and the
starting positions of bitmaps. The particular B-tree reported in Table I is nearly
four times the size of the raw data. We did not generate the uncompressed bitmap
indices for high cardinality attributes because they would take 726 GB of disk space
and clearly would not be competitive against other indices.

On the high cardinality attributes, the WAH compressed bitmap index is about
60% (186/118 ∼ 1.6) larger than the BBC compressed index. In terms of query
response time, the WAH compressed indices are about 13 (0.66/0.052 ∼ 13) times
faster than the commercial implementation of the compressed index, and about 6
(0.32/0.052 ∼ 6) times faster than our own implementation of the BBC compressed
index. In the previous section, we observed that WAH performs bitwise logical
operations about 12 times as fast as BBC. The difference in query response time is
less than 12 for two main reasons. First, the average query response time weighs
operations on sparse bitmaps more heavily because it takes more sparse bitmaps to
answer a query. On sparse bitmaps, the performance difference between WAH and
BBC could be as low as 2. Secondly, the query response time also includes time such
as network communication, parsing of the queries, locking and other administrative
operations. In this test, all indices can fit into memory. For larger datasets, where
more I/O is required during query processing, the relative difference between using
WAH and using BBC would be smaller [Stockinger et al. 2002; Wu et al. 2004].
However, unless the I/O system is extremely slow, say, 2 MB/s, using WAH is
preferred [Stockinger et al. 2002]. This observation was made with two different
BBC implementations, one by the authors and one by Dr. Johnson [Johnson 1999;
Stockinger et al. 2002].

14The size reported for the commercial DBMS are the actual bytes used, not the total size of the
pages occupied.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 29

103 104 105 106 107 108 10910−4

10−3

10−2

10−1

100

101

102

index sizes (bytes)

av
er

ag
e

qu
er

y
tim

e(
se

co
nd

s)

STAR
combustion
synthetic

103 104 105 106 107 108 10910−4

10−3

10−2

10−1

100

101

102

index sizes (bytes)

m
ax

im
um

 q
ue

ry
 ti

m
e(

se
co

nd
s)

STAR
combustion
synthetic

Fig. 12. The average time and the maximum time needed to process a random range query using
a WAH compressed bitmap index.

The bitmap index is known to be efficient for low cardinality attributes. For sci-
entific data such as the one from STAR, where the cardinalities of some attributes
are in the millions, there were doubts as to whether it is still efficient. In Fig-
ure 11(b), we see in many cases where compressed bitmap indices perform worse
than projection indices. However, WAH compressed indices are more efficient than
projection indices in all test cases. This shows that WAH compressed indices are
efficient for both low and high cardinality attributes. Next, we demonstrate that
the WAH compressed indices scales linearly.

7.2 Average query response time scales linearly

Proposition 9 indicates that the query response time is a linear function of the
total size of bitmaps involved. In the worst case, half of the bitmaps are used in
answering a query. Therefore the maximum query response time should be a linear
function of the total size of the bitmap index. Similarly, we would also expect the
average query response time to be a linear of the index size as well.

One thousand random queries were tested for each attribute. The average and
the maximum query response time are reported in Figure 12. All four datasets are
used in this test. Each point in Figure 12 is for one attribute. To illustrate how
WAH compressed indices might behave on even larger datasets, we draw two lines
to represent what can be expected in the average case and in the worst case. Since
the maximum query response time is more closely related to the index size, we see
that the points in Figure 12(b) are indeed close to the trend line than the points in
Figure 12(a).

Next, we make some quantitative observations based on Figure 12 to show that
indeed only half of the bitmaps are read and WAH compress indices perform better
than projection indices. Let S denote the index size in bytes, based on regression,
the average query response time was 10−8S seconds on the particular test machine,
and the maximum query response time was 3.5×10−8S seconds. From earlier tests
shown in Table I, we know that the average reading speed is about 16 MB/s. If
the query response time is spent only to read bitmap indices, the measured worst

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

30 · Kesheng Wu et al.

0 1 2 3 4 5
x 107

0

5

10

15

20

25

number of hits

to
ta

l t
im

e
(s

ec
)

cardinality 100
cardinality 10,000

0 1 2 3 4 5
x 106

0

0.2

0.4

0.6

0.8

1

number of hits

to
ta

l t
im

e
(s

ec
)

measured
maximum

(a) Uniform random data (b) combustion data

Fig. 13. query response time using WAH compressed bitmap indices is at worst linear in the
number of hits.

case time can be used to read about half of the compressed bitmaps15. For high
cardinality attributes, the WAH compressed bitmap index is about twice as large
as the projection index. This suggests that the maximum query response time is
close to the time needed by the projection index. The average query response time
is about a third of the maximum query response time, and also about a third of
the time required by the projection index.

7.3 Query response time is optimal

Next we verify the linear relation predicted in Proposition 10 between the query
response time and the number of hits. Figure 13 shows the time required to answer
random queries on two sets of data, Figure 13(a) for uniform random data and Fig-
ure 13(b) for the combustion data. Each data point is a single query response time
measurement. The performance of bitmap indices for uniform random attributes
is very close to the worst case; therefore, the points follow the expected straight
lines. In general, the straight lines are expected for the maximum time, we see that
this is the case for the combustion data. The slopes of the lines, C3, show some
dependencies on the characteristics of data. For uniform random data, an attribute
with a large cardinality also has a larger C3. In Figure 13(a), C3 for the attribute
with c = 10, 000 is about twice as large as that for the attribute with c = 100. The
slope for the maximum time in Figure 13(b) is slightly smaller than that for the
random attribute with c = 100. This verifies that the worst case query response
time is indeed linear in the number of hits. Therefore, the WAH compressed bitmap
index is optimal for one-dimensional range queries.

15More precisely 56%, which can be computed as follows. Let β be the fraction of bitmaps read,
the time to read it at 16 MB/s is βS

16×106 seconds. The measured time is 3.5×10−8S seconds. The

two time values must be the same, βS

16×106
= 3.5×10−8S, which leads to β = 16×106×3.5×10−8 =

0.56.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 31

8. SUMMARY AND FUTURE WORK

In this paper, we present a compression scheme for bitmaps named the Word-
Aligned Hybrid (WAH) code and demonstrate that it not only reduces the bitmap
index sizes but also improves the query response time. We prove that WAH com-
pressed bitmap indices are optimal for one-dimensional range queries by showing
that the query response time is a linear function of the number of hits. While a
number of indexing schemes such as B+-tree indices and B∗-tree indices have this
optimality property, the WAH compressed bitmap index is more useful because
it is also efficient for arbitrary multi-dimensional range queries. On large high-
dimensional datasets common to many commercial data warehouses and scientific
applications, projection indices are known to be the most efficient for answering
range queries. Our tests on cold caches, where data is always brought in from disk,
show that WAH compressed bitmap indices never perform worse than projection
indices. On average, WAH compressed bitmap indices are three times as fast as
projection indices.

The bitmap index is known to be efficient for low cardinality attributes. A
number of articles in trade journals have advised to not use bitmap indices for
high cardinality attributes. With our analyses and performance measurements, we
show that the WAH compressed bitmap index is also efficient for high cardinality
attributes.

This paper concentrates on the efficiency of using compressed bitmap indices to
answer multi-dimensional range queries. There are many open issues still to be
investigated.

—How do bitmap indices perform on other types of queries, such as θ-joins, top-k
queries, similarity queries and queries with complex arithmetic expressions?

—How to update the bitmap indices in the presence of frequent updates? One
approach might be to mark the bits corresponding to the modified records in the
bitmap indices as invalid, store the updated records separately, say, in memory,
and update indices when the system is idle.

—How does one deal with the extreme case where every value is distinct? In this
case, the compressed bitmap index may be three times as large as the normal
case. Model 204 uses a compact RID list as an alternative to the uncompressed
bitmap index when the attribute cardinality is high [O’Neil 1987]. It might
be worthwhile to consider using a compact RID list instead of the compressed
bitmap index as well.

—How to efficiently generate the bitmap indices and organize them on disk? Our
implementation currently uses high-level I/O functions to lay out the index with-
out considering the intrinsic paging and blocking structure of the file systems.
Systematically studying the index generation process could be an interesting
activity especially if the issues such as paging/blocking, recovery, and maintain-
ability are also considered.

—How does one handle the frequent queries on the same set of attributes? For ad
hoc range queries on high-dimensional data, generating one compressed bitmap
index for each attribute is an efficient approach. However, if some attributes are
frequently used together, it may be more efficient to use a composite index. A

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

32 · Kesheng Wu et al.

WAH compressed version of this composite index should be optimal for range
queries on the indexed attributes. Demonstrating this can also be interesting for
future work.

—How to fully explore the design choices of different compression schemes for
bitmaps? We can not expect any compression scheme to make the compressed
bitmap indices scale better than WAH; however, there might be compression
schemes with smaller scaling constants. In Section 3, we mentioned two poten-
tial ways of improving bitmap compression: one is to decompress some dense
bitmaps and the other is to explore different ways of extending BBC to be word-
aligned. There may be many other options.

—How do other compressed indices scale? There are some indications that BBC
may scale linearly as well [Wu et al. 2004]. It should be an interesting exercise to
formally prove that it indeed scales linearly. It is possible that all compression
schemes based on run-length encoding have this property.

9. ACKNOWLEDGMENTS

The authors wish to express our sincere gratitude to Professor Ding-Zhu Du for
his helpful suggestion of the inequality in Lemma 5, and to Drs. Doron Rotem and
Kurt Stockinger for their help in reviewing the drafts of this paper.

This work was supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

REFERENCES

Amer-Yahia, S. and Johnson, T. 2000. Optimizing queries on compressed bitmaps. In VLDB

2000, Proceedings of 26th International Conference on Very Large Data Bases, September 10-

14, 2000, Cairo, Egypt, A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, Eds. Morgan Kaufmann, 329–338.

Antoshenkov, G. 1994. Byte-aligned bitmap compression. Tech. rep., Oracle Corp. U.S. Patent
number 5,363,098.

Antoshenkov, G. and Ziauddin, M. 1996. Query processing and optimization in ORACLE
RDB. VLDB Journal 5, 229–237.

Chan, C.-Y. and Ioannidis, Y. E. 1998. Bitmap index design and evaluation. In Proceedings

of the 1998 ACM SIGMOD: International Conference on Management of Data. ACM press,
355–366.

Chan, C. Y. and Ioannidis, Y. E. 1999. An efficient bitmap encoding scheme for selection
queries. In SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, A. Delis, C. Faloutsos, and
S. Ghandeharizadeh, Eds. ACM Press, 215–226.

Chaudhuri, S. and Dayal, U. 1997. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record 26, 1 (Mar.), 65–74.

Comer, D. 1979. The ubiquitous B-tree. Computing Surveys 11, 2, 121–137.

Czech, Z. J. and Majewski, B. S. 1993. A linear time algorithm for finding minimal perfect
hash functions. The Computer Journal 36, 6 (Dec.), 579–587.

Fox, E. A., Chen, Q. F., Daoud, A. M., and Heath, L. S. 1991. Order-preserving minimal
perfect hash functions and information retrieval. ACM Trans. Inf. Syst. 9, 3, 281–308.

Furuse, K., Asada, K., and Iizawa, A. 1995. Implementation and performance evaluation
of compressed bit-sliced signature files. In Information Systems and Data Management, 6th

International Conference, CISMOD’95, Bombay, India, November 15-17, 1995, Proceedings,
S. Bhalla, Ed. Lecture Notes in Computer Science, vol. 1006. Springer, 164–177.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 33

Gailly, J. and Adler, M. 1998. zlib 1.1.3 manual. Source code available at http://-

www.info-zip.org/pub/infozip/zlib.

Ishikawa, Y., Kitagawa, H., and Ohbo, N. 1993. Evalution of signature files as set access
facilities in OODBs. In Proceedings ACM SIGMOD International Conference on Management

of Data, May 26-28, 1993, Washington, D.C., P. Buneman and S. Jajodia, Eds. ACM Press,
247–256.

Johnson, T. 1999. Performance measurements of compressed bitmap indices. In VLDB’99,

Proceedings of 25th International Conference on Very Large Data Bases, September 7-10,

1999, Edinburgh, Scotland, UK, M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik,
and M. L. Brodie, Eds. Morgan Kaufmann, San Francisco, 278–289. A longer version appeared
as AT&T report number AMERICA112.

Jürgens, M. and Lenz, H.-J. 1999. Tree based indexes vs. bitmap indexes - a performance
study. In Proceedings of the Intl. Workshop on Design and Management of Data Warehouses,

DMDW’99, Heidelberg, Germany, June 14-15, 1999, S. Gatziu, M. A. Jeusfeld, M. Staudt, and
Y. Vassiliou, Eds.

Knuth, D. E. 1998. The Art of Computer Programming, 2nd ed. Vol. 3. Addison Wesley.

Koudas, N. 2000. Space efficient bitmap indexing. In Proceedings of the ninth international con-

ference on Information knowledge management CIKM 2000 November 6 - 11, 2000, McLean,

VA USA. ACM, 194–201.

Lee, D. L., Kim, Y. M., and Patel, G. 1995. Efficient signature file methods for text retrieval.
IEEE Transactions on Knowledge and Data Engineering 7, 3, 423–435.

Moffat, A. and Zobel, J. 1992. Parameterised compression for sparse bitmaps. In Proc.

ACM-SIGIR International Conference on Research and Development in Information Retrieval,

Copenhagen, June 1992, N. Belkin, P. Ingwersen, and A. M. Pejtersen, Eds. ACM Press, 274–
285.

O’Neil, P. 1987. Model 204 architecture and performance. In 2nd International Workshop in

High Performance Transaction Systems, Asilomar, CA. Lecture Notes in Computer Science,
vol. 359. Springer-Verlag, 40–59.

O’Neil, P. and O’Neil, E. 2000. Database: pronciples, programming, and performance, 2nd ed.
Morgan Kaugmann.

O’Neil, P. and Quass, D. 1997. Improved query performance with variant indices. In Proceedings

ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson,

Arizona, USA, J. Peckham, Ed. ACM Press, 38–49.

O’Neil, P. E. and Graefe, G. 1995. Multi-table joins through bitmapped join indices. SIGMOD

Record 24, 3, 8–11.

Shoshani, A., Bernardo, L. M., Nordberg, H., Rotem, D., and Sim, A. 1999. Multidimen-
sional indexing and query coordination for tertiary storage management. In 11th International

Conference on Scientific and Statistical Database Management, Proceedings, Cleveland, Ohio,

USA, 28-30 July, 1999. IEEE Computer Society, 214–225.

Stockinger, K., Duellmann, D., Hoschek, W., and Schikuta, E. 2000. Improving the perfor-
mance of high-energy physics analysis through bitmap indices. In 11th International Conference

on Database and Expert Systems Applications DEXA 2000, London, Greenwich, UK.

Stockinger, K., Wu, K., and Shoshani, A. 2002. Strategies for processing ad hoc queries on
large data warehouses. In Proceedings of DOLAP’02. McLean, Virginia, USA, 72–79. A draft
appeared as tech report LBNL-51791.

Wong, H. K. T., Liu, H.-F., Olken, F., Rotem, D., and Wong, L. 1985. Bit transposed files.
In Proceedings of VLDB 85, Stockholm. 448–457.

Wu, K., Koegler, W., Chen, J., and Shoshani, A. 2003. Using bitmap index for interactive
exploration of large datasets. In Proceedings of SSDBM 2003. Cambridge, MA, USA, 65–74.
A draft appeared as tech report LBNL-52535.

Wu, K., Otoo, E. J., and Shoshani, A. 2001. A performance comparison of bitmap indexes. In
Proceedings of the 2001 ACM CIKM International Conference on Information and Knowledge

Management, Atlanta, Georgia, USA, November 5-10, 2001. ACM, 559–561.

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

34 · Kesheng Wu et al.

Wu, K., Otoo, E. J., and Shoshani, A. 2002. Compressing bitmap indexes for faster search
operations. In Proceedings of SSDBM’02. Edinburgh, Scotland, 99–108. LBNL-49627.

Wu, K., Otoo, E. J., and Shoshani, A. 2004. On the performance of bitmap indices for high
cardinality attributes. In Proceedings of the Thirtieth International Conference on Very Large

Data Bases, Toronto, Canada, August 31 - September 3 2004, M. A. Nascimento, M. T. Özsu,
D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, Eds. Morgan Kaufmann, 24–35.

Wu, K., Otoo, E. J., Shoshani, A., and Nordberg, H. 2001. Notes on design and implemen-
tation of compressed bit vectors. Tech. Rep. LBNL/PUB-3161, Lawrence Berkeley National
Laboratory, Berkeley, CA.

Wu, K.-L. and Yu, P. 1996. Range-based bitmap indexing for high cardinality attributes with
skew. Tech. Rep. RC 20449, IBM Watson Research Division, Yorktown Heights, New York.
May.

Wu, M.-C. and Buchmann, A. P. 1998. Encoded bitmap indexing for data warehouses. In
Fourteenth International Conference on Data Engineering, February 23-27, 1998, Orlando,

Florida, USA. IEEE Computer Society, 220–230.

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23, 3, 337–343.

Appendix: Algorithms to perform logical operations

Listing 1. Given two bitmaps x and y, perform an arbitrary bitwise logical operation
(denoted by ◦, can be any binary logical operator, such as, AND, OR, and XOR) to
produce a bitmap z.

z = generic op(x, y) {
Input: Two bitmap x and y containing the same number of bits.
Output: The result of a bitwise logical operation as z.

run xrun, yrun;

xrun.it = x.vec.begin(); xrun.decode();
yrun.it = y.vec.begin(); yrun.decode();
WHILE (x.vec and y.vec are not exhausted) {

IF (xrun.nWords == 0) ++xrun.it, xrun.decode();
IF (yrun.nWords == 0) ++yrun.it, yrun.decode();
IF (xrun.isFill)

IF (yrun.isFill)

nWords = min(xrun.nWords, yrun.nWords),
z.appendFill(nWords, (*(xrun.it) ◦ *(yrun.it))),
xrun.nWords -= nWords, yrun.nWords -= nWords;

ELSE
z.active.value = xrun.fill ◦ *yrun.it,
z.appendLiteral(),

-- xrun.nWords, yrun.nWords = 0;
ELSEIF (yrun.isFill)

z.active.value = yrun.fill ◦ *xrun.it,

z.appendLiteral(),
-- yrun.nWords, xrun.nWords = 0;

ELSE

z.active.value = *xrun.it ◦ *yrun.it,
z.appendLiteral(),
xrun.nWords = 0, yrun.nWords = 0;

}
z.active.value = x.active.value ◦ y.active.value;
z.active.nbits = x.active.nbits;

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

Optimizing Bitmap Indices With Efficient Compression · 35

}

Listing 2. Given two bitmaps x and y, perform a bitwise logical OR operation. The
bitmap x is assumed to be uncompressed and the result is written back to x.

inplace or(x, y) {
Input: Two bitmap x and y containing the same number of bits and x is uncompressed.
Output: The result of a bitwise logical OR operation stored in x.

run yrun;
yrun.it = y.vec.begin();

std::vector<unsigned>::iterator xit = x.vec.begin();
WHILE (y.vec is not exhausted) {

yrun.decode();

IF (yrun.isFill)
IF (yrun.fill == 0)

*xit += yrun.nWords;
ELSE {

std::vector<unsigned>::iterator stop = xit;
stop += yrun.nWords;
for (; xit < stop; ++ xit) // assign 1-fill

*xit = 0x7FFFFFFF;
}

ELSE

*xit |= *yrun.it,
++ xit;

++ yrun.it;

}
x.active.value |= y.active.value;

};

Listing 3. Data structure (classes) to store the WAH compressed bitmaps.

class bitmap {
std::vector<unsigned> vec; // list of regular code words
activeWord active; // the active word
class activeWord {

unsigned value; // the literal value of the active word
unsigned nbits; // number of bits in the active word

};
};

bitmap::appendLiteral() {
Input: 31 literal bits stored in active.value.
Output: vec extended by 31 bits.

IF (vec.empty())
vec.push back(active.value); // cbi = 1

ELSEIF (active.value == 0)
IF (vec.back() == 0)

vec.back() = 0x80000002; // cbi = 3

ELSEIF (vec.back() ≥ 0x80000000 AND vec.back() < 0xC0000000)
++vec.back(); // cbi = 4

ELSE

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

36 · Kesheng Wu et al.

vec.push back(active.value) // cbi = 4

ELSEIF (active.value == 0x7FFFFFFF)
IF (vec.back() == active.value)

vec.back() = 0xC0000002; // cbi = 4

ELSEIF (vec.back() ≥ 0xC0000000)
++vec.back(); // cbi = 5

ELSE

vec.push back(active.value); // cbi = 5
ELSE

vec.push back(active.value); // cbi = 3

}

bitmap::appendFill(n, fillBit) {
Input: n and fillBit, describing a fill with 31n bits of fillBit
Output: vec extended by 31n bits of value fillBit.
COMMENT: Assuming active.nbits = 0 and n > 0.

IF (n > 1 AND ! vec.empty())
IF (fillBit == 0)

IF (vec.back() ≥ 0x80000000 AND vec.back() < 0xC0000000)

vec.back() += n; // cbi = 3
ELSE

vec.push back(0x80000000 + n); // cbi = 3

ELSEIF (vec.back() ≥ 0xC0000000)
vec.back() += n; // cbi = 3

ELSE

vec.push back(0xC0000000 + n); // cbi = 3
ELSEIF (vec.empty())

IF (fillBit == 0)

vec.push back(0x80000000 + n); // cbi = 3
ELSE

vec.push back(0xC0000000 + n); // cbi = 3

ELSE
active.value = (fillBit?0x7FFFFFFF:0), // cbi = 3
appendLiteral();

}

Listing 4. An auxiliary data structure used in Listings 1 and 2.

class run { // used to hold basic information about a run
std::vector<unsigned>::const iterator it;
unsigned fill; // one word-long version of the fill
unsigned nWords; // number of words in the run
bool isFill; // is it a fill run
run() : it(0), fill(0), nWords(0), isFill(0) {};
decode() { // nWords and fill not used if isFill=0

isFill = (*it > 0x7FFFFFFF),
nWords = (*it & 0x3FFFFFFF),

fill = (*it≥0xC0000000?0x7FFFFFFF:0);
}

};

ACM Transactions on Database Systems, Vol. V, No. N, July 2005.

