A Performance Comparison of bitmap indexes”

Kesheng Wu

Ekow J. Otoo

Arie Shoshani

Lawrence Berkeley National Laboratory, Berkeley, CA

{kwu,ejotoo,ashoshani}@Ibl.gov

ABSTRACT

We present a comparison of two new word-aligned schemes
with some schemes for compressing bitmap indexes, includ-
ing the well-known byte-aligned bitmap code (BBC). On
both synthetic data and real application data, the new word-
aligned schemes use only 50% more space, but perform logi-
cal operations on compressed data 12 times faster than BBC.
The new schemes achieve this performance advantage by
guaranteeing that during logical operations every machine
instruction performs useful work on words rather than on
bytes or bits as in BBC.

1. INTRODUCTION

Bitmap indexes are useful for various database applica-
tions such as data warehousing. The data structures used
to represent these bitmaps should be designed to provide ef-
ficient search operations. For applications that access very
large databases, the bitmap indexes can have millions to bil-
lions of bits. It is therefore imperative that the indexes be
stored as compactly as possible. This leads to the devel-
opment of various bitmap compression schemes. However,
most compression algorithms are designed without consid-
eration of the logical operations on the compressed data.
These operations are significantly slower with compression
than without compression. For this reason, most commer-
cial implementations of bitmap indexes don’t compress their
bitmaps. A number of schemes specifically designed to com-
press bitmap indexes have been studied [2]. They are in
general more efficient than the generic compression schemes.
One of them, the byte-aligned bitmap code (BBC), is very
efficient and is used in a commercial system, ORACLE [1].
However, even this scheme can be much slower than the
uncompressed bitmaps [2]. In this work, we propose two
new word-based schemes that are designed to always per-

*This work was supported by the Director, Office of Science,
Office of Laboratory Policy and Infrastructure Management,
of the U.S. Department of Energy under Contract No. DE-
AC03-7T65F00098.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

CIKM 2001 Atlanta, Georgia, USA

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

bitmap index

i | X |[<1 [1,3] [46] >6
T 1] 0 1 0 0
20 4| o 0 1 0
30 7 o 0 0 1
41 61 o 0 1 0

Figure 1: A sample bitmap index for an attribute X
with integer values.

form logical operations on entire words rather than bytes or
bits as in BBC. Thus, they are expected to perform logical
operations faster.

The main conclusion of this paper is that these new word-
aligned schemes take only 50% more space than BBC, but
perform logical operations 12 times faster on both real ap-
plication data and synthetic data. At first, we expected
a performance gain of about a factor of 4 since the logi-
cal operations perform directly on words rather than bytes.
However, because BBC was designed to achieve good com-
pression, it frequently needs to check individual bits within
bytes during logical operations. For this reason, the new
schemes are even more efficient than anticipated [4, 5].

Next, we use an example to illustrate why logical opera-
tions are important to bitmap indexes. Figure 1 shows one
bitmap index for an attribute of a tiny table T consisting
of only one attribute and four tuples (rows). The attribute
X contains integer values that are divided into four ranges
(also called bins). In this case, each bit sequence is associ-
ated with a bin and represents whether a value falls in the
bin or not. To answer a range query, some bit sequences
are combined together using bitwise logical operations. To
process the query

select * from T where X<4;

one performs the logical operation (b3 OR b2), which con-
sists of a bitwise logical OR between b, and b2. We call the
data structure representing the compressed bit sequences bit
vectors. In this work, we briefly describe the word-aligned
compression schemes that define the memory layout of these
bit vectors. More details are available in two technical re-
ports [4, 5].

2. REVIEW OF BYTE BASED SCHEMES

In this section, we briefly review three well known schemes
for representing bitmaps and introduce terms needed to ex-
plain the word-aligned schemes.

A straightforward way of representing a bit sequence is to
use one bit of computer memory for one bit of the sequence.
We call this the literal (LIT) bit vector. It does not compress
bit sequences but the logical operations on literal bit vectors
are extremely simple and fast.

The second type of schemes in our comparisons are the
general purpose compression schemes. We choose gzip as a
representative of such schemes. The underlying algorithm
gzip, LZ77, is known to be asymptotically optimal.

There are a number of compression schemes that offer
good compressions and also allow fast bitwise logical opera-
tions as mentioned earlier. One of the best known schemes
is the BBC scheme [1, 2]. BBC can perform bitwise logical
operations very efficiently compared to other compression
schemes. In addition, it compresses almost as well as gzip.
We use BBC as the representative of the byte based com-
pression schemes.

3. WORD BASED SCHEMES

All known compression schemes are byte based, that is,
they access computer memory one byte at a time. Modern
computers are word based. They read data one word at a
time and can perform operations on whole words. For this
reason, we consider two new word based schemes, the word-
aligned hybrid run-length code (WAH) and the word-aligned
bitmap code (WBC). This section contains brief descriptions
of these schemes; for details see [4, 5].

Like BBC, the new schemes are based on the basic idea
of run-length encoding that represents consecutive identical
bits (also called a fill) by their bit values and lengths. The
bit value of a fill is called the fill bit. If the fill bit is zero,
we call the fill a 0-fill, otherwise it 1s a 1-fill.

An essential property of BBC is the byte alignment prop-
erty. In designing the word-aligned schemes, we need to
define the corresponding word alignment property. After
some careful study [5], we realize that it isn’t enough to en-
sure that the fills are represented by whole words. An addi-
tional requirement is needed to ensure that only whole words
are accessed and operated on during bitwise logical opera-
tions. Next, we explain this requirement on each scheme
separately.

Word-aligned hybrid run-length code. This is based
on the hybrid run-length code (HRL) that represents long
fills using run-length encoding and represents short fills lit-
erally. There are two types of code words in HRL: literal
words and fill words. In our current 32-bit implementation,
we use the Leftmost Bit (LMB) of a word to distinguish be-
tween a literal word (0) and a fill word (1). The lower 31
bits of a literal word contain the bit values of the sequence.
The second leftmost bit of a fill word is the fill bit and the 30
lower bits store the fill length. HRL represents all fills and
literal bits in whole words, however its performance isn’t as
good [5]. The word-aligned hybrid run-length code (WAH)
imposes another requirement on the fills. We regard this
as the word alignment requirement and it demands that all
fill lengths be integer multiples of 31 bits (i.e., literal word
size). We also represent fill lengths in multiples of literal
word size, for example, the length of a 62-bit fill is two (2).

Figure 2 on the next page shows a WAH bit vector repre-
senting a 128-bit sequence. The second line shows how the
bit sequence is divided into 31-bit groups and the third line
shows the hexadecimal representation of the groups. The
last line shows the values of the words used in WAH coding.

LIT gumip BBC WAH WBC
12.4 2.01 2.43 3.60 3.50

Figure 3: Total sizes (MB) of the bitmap indexes
stored in various schemes.

The first three words are normal code words, i.e., two literal
words and one fill word. The fill word 80000002 indicates
a fill of two-word long containing 62 consecutive zero bits.
The fourth word is a special literal word that represents the
four bits that can’t fit into regular code words and the last
word indicates the number of useful bits in fourth one.

Word-aligned bitmap code. This scheme is designed
to mimic the behavior of the BBC scheme. In this case, we
first group bits of a sequence into words, then group words
into runs. A run contains a fill followed by a group of literal
words called a tail. On a 32-bit machine, a literal WBC word
contains 32 bits from the sequence it represents. The word
alignment requirement demands that all fills be multiples of
32 bits. A header word is used for each run. It contains three
pieces of information, the fill bit, the fill length and the tail
length. Both the fill length and the tail length are measured
in number of words. In our current 32-bit implementation,
we use the rightmost 16 bits to store the tail length, the
LMB to store the fill bit and the remaining 15 bits to store
the fill length.

4. PERFORMANCE COMPARISONS

In this section, we present some performance results on
both synthetic data and real application data. The timing
values were obtained on a Sun E 450 running 400 MHz Ul-
traSPARC II. The tests were performed on a dataset from
a real application and a set of synthetic data.

The table in Figure 3 shows the sizes of the same bitmap
index compressed using five different schemes. The index is
for a set high-energy physics data from an experiment called
STAR ! [3]. The dataset contains about 840,000 tuples.
The index is only for the 12 most popular attributes. From
Figure 3, we see that all compressed bit vectors use less than
30% of the space needed by the uncompressed literal scheme
(LIT). The two word-aligned schemes use about 50% more
space than BBC and they use about 80% more space than
the optimal scheme, gzip. This is to be expected since WAH
and WBC are not designed to minimize space but rather to
minimize logical operation time.

Figures 4 and 5 show the logical operation time on the
STAR data and the synthetic data respectively. These two
graphs show the logical operation time against the average
compression ratio of the two operands involved in the op-
eration. The compression ratio is defined as the ratio of
the compressed bit vector size to its uncompressed counter-
part. The logical operation time shown always include the
1O time. To see plots containing separate 1O time and log-
ical operation time, we refer the readers to [4, 5]. Overall,
we see that the two word-aligned schemes usually need less
time than BBC. The word-aligned schemes are always sig-
nificantly faster than gzip and also usually faster than the
literal scheme.

We have hundreds of test cases on the STAR data. If we

'More information about the STAR experiment is available
at http://www.star.bnl.gov/STAR.

128 bits

31-bit groups
groups in hex 40000380
WAH (hex) 40000380

1,20%0,3%1,79%0,25%1
1,20%0,3%1,7¥0 62%0

00000000 00000000 OO1FFFFF
80000002

10%0,21%1 4*1
0000000F

001FFFFF 0000000F 00000004

Figure 2: A WAH bit vector. Each WAH code word (last row) represents a multiple of 31 bits from the bit
sequence, except the last two words that represent the four leftover bits.

10
— LIT
sk BBC £
=x= WBC
-e- WAH M
|| —— gzip
<107} - :
(]
A (-
: © A
: x /"D’ Swd
8 . e
L 1073 .
. ¥
N X,
B "-"-‘:54"‘8 ~e :é
ok gk ee - - 077
-4
10 -
10™ 10° 107 10" 10°

compression ratio

Figure 4: Logical operation time (including I0) on
the STAR data (840,000 bits per bit vector).

sum up the time used in all test cases for each compression
scheme, the total value for BBC is about 12 times as large
as those of either WAH or WBC.

In Figure 4, when the compression ratios are smaller than
1072, BBC appears to use the same amount of time as WAH
and WBC. In these cases, the data files containing the bit
vectors are very small (less than 100 bytes) and the logical
operation time is dominated by the 1O overhead for reading
these small files. It is possible to reduce this overhead us-
ing various strategies in which case the difference between
BBC and the word-aligned schemes would be similar to those
cases where the files are larger.

To quantify how well the compressed schemes perform
against the uncompressed one, we look at the points where
the lines for the compressed schemes cut the LIT line. BBC
cuts it at about 0.03 while the word-aligned schemes cut the
LIT line at about 0.3. Since the bit vectors, compressed
using either WAH or WBC| usually have a compression ra-
tio less than 0.3, logical operations on compressed data are
usually faster than on uncompressed data.

As mentioned before, because the word-aligned schemes
are designed to take full advantage of the computing hard-
ware, we expected them to run faster than byte-aligned
schemes such as BBC. However, the 12-fold difference was
a surprise. To verify that the observed performance differ-
ences are not unique to the STAR data and to see how the
different schemes behave on larger problems, we conducted a
number of tests on synthetic data; see Figure 5. In this case,
each bit vector represents 100 million bits. The dashed, dot-
ted and dash-dotted lines in the figures are linear regression
on the timing data with compression ratios between 1077

1
10 : . . . &
—uT wE
* BBC #*
100 [l * wec ®»
o WAH ~‘5M,'
—~ 28
S 0
$10” Ea
2 o
£ *" o
®10 o B2
I A
= w6
- o
107° ** X
* ok gt
o7, "
-4 al
10 : . .
107 10™ 10 1072 107 10°

compression ratio

Figure 5: Logical operation time (including I0) on
the synthetic data (100 million bits per bit vector).

and 0.3. Within this range, the logical operation time is very
nearly a linear function of the compression ratio. When the
operands of a logical operation are nearly incompressible,
i.e., compression ratios > 0.3, the actual logical operation
time is lower than the regression line. If the compression ra-
tios are extremely small, say < 107*, the 10 overhead again
dominates the total time. Overall, both WAH and WBC use
less than one-tenth the time needed by BBC in performing
the same logical operation. This confirms the performance
advantages observed on the STAR data. Between the two
word-aligned schemes, this test shows that WAH is usually
faster than WBC.

5. REFERENCES

[1] G. Antoshenkov and M. Ziauddin. Query processing
and optimization in ORACLE RDB. The VLDB
Journal, 5:229-237, 1996.

[2] T. Johnson. Performance measurements of compressed
bitmap indices. In VLDB’99, 1999. Pages 278-289.

[3] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem,
and A. Sim. Multidimensional indexing and query
coordination for tertiary storage management. In
SSDBM’99. Pages 214-225. 1999.

[4] K. Wu, E. J. Otoo, and A. Shoshani. Word-aligned
compressed bitmaps. Technical Report LBNL-47807,
Lawrence Berkeley National Laboratory, Berkeley, CA,
2001.

[5] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg.
Notes on design and implementation of compressed bit
vectors. Technical Report LBNL/PUB-3161, Lawrence
Berkeley National Laboratory, Berkeley, CA, 2001.

