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SYNONYMS 
Historical data models 
 
DEFINITION 
Temporal logical models refer to the logical structure of data that captures the temporal behavior and 
operations over such structures.  The term “logical” is used to distinguish such temporal structures from 
the physical storage organization and implementation.  For example, the behavior of temporal events and 
operations over them can be described logically in a way that is independent of the physical structure (e.g. 
linked lists) or indexing of the events.  Temporal logical models include concepts of data values that are 
collected or are changed over time, such as continuous physical phenomena, a series of discrete events, 
and interval data over time.  The challenge is one of having a single comprehensive model that captures 
this diversity of behavior. 
 
HISTORICAL BACKGROUND 
In the 1980’s several researchers focused on dealing with temporal data, both on the modeling concepts 
and on physical organization and indexing of temporal data.  This led to the temporal database field to be 
established, and several books were written or edited on the subject (for example [3, 4, 5]).  Since then, 
the subject continues to appear in specific application domains, or in combination with other concepts, 
such as spatio-temporal databases, and managing streaming data. 
 
SCIENTIFIC FUNDAMENTALS 

The treatment of time in database systems 

Time is a natural part of the physical world and an indispensable part of human activity, yet many 
database models treat temporal behavior as an afterthought.  For example, weather (temperature, clouds, 
and storms) is a continuous phenomenon in time, yet it is treated as discrete events per day or per hour.  
In contrast, some human activities are fundamentally discrete events, such as salary which may change 
annually, but are treated as continuous concepts, where the salary is the same for the duration between the 
discrete events of salary changes.  The main reason for the inconsistent treatment of time is that temporal 
objects and their semantics are not explicit in the data model.  Consider for example, temperature 
measurements at some weather station as shown in Figure 1.   These are represented in conventional 
database systems (such as relational data models) as a two-part concept of time-of-measurement and 
value-of-measurement attributes, but the fact that the measurements are taken at evenly spaced intervals 
(e.g. every half an hour) and that the temperature represents a continuous phenomenon is not captured.  
Consequently, if one asks what the temperature was at 12:35am, no such value exists.  Furthermore, the 
interpolation function associated with getting this value is unknown.  It could be a simple weighted 
averaging of the two nearest values, or a more sophisticated curve interpolation function. 

Temporal data behavior 

Temporal logical models are models designed to capture the behavior of temporal data sequences.  First, 
some examples that illustrate the concepts that need to be captured by the model are presented.  

Example 1: wind velocity.  Usually, the measurements of wind velocity are taken by devices at regular 
time periods, for example every hour.  These are referred to as “time series”.  In this example, the 
measured quantity is not a single value, but has a more complex structure.  It measures the direction of the 
wind and the velocity of the wind, which can be represented as a three-dimensional vector.  The measured 



phenomenon is continuous, of course, but for this application it is determined by the database designers 
that a certain time granularity for queries is desired, such as values by minutes.  Since the values are 
collected only hourly, an interpolation function must be provided and associated with this time sequence.  
The behavior is similar to the temperature behavior shown in Figure 1, except that the measured values 
are three-dimensional vectors for each time point. 
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Figure 1: Continuous behavior of temperature measurements 
 

Example 2: bank account.  The amount of money in the bank account changes when transactions take 
place.  Money can be added or taken out of the account at irregular times.   The value of the account is the 
same for the duration of time between transactions.   This is shown in Figure 2, where the granularity of 
the time points is in minutes.  Note that the days shown should have precise dates in the database.  
Another aspect in this example is that in the case of a deposit of a check, funds may not be available until 
the check clears.  Thus, there are two times associated with the deposit, the time of the transaction, and 
the time when funds are made available.   
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Figure 2: Step-wise constant behavior of a bank account  
 

Example 3: hospitalization visits.   Hospital visits of an individual occur typically at irregular times, and 
each can last a period of time, usually measured in days.  The value associated with the hospital visit time 
sequence is Boolean; that is, only the fact that a visit took place or did not.  This is an example where the 
concept of an interval must be represented in the data model.  This is shown in Figure 3, where the 
granularity is a day, and the interval durations spans days.  Here again, the days shown will have to have 
precise dates in the database. 
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Figure 3: Interval behavior of hospital visits 
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Example 4: store revenue.  Suppose that a store owner wishes to keep in a database the total revenue per 
day.  The time sequence is regular, i.e. a time series (not counting days when the store is closed).  The 
values per day do not represent continuous phenomena, but rather they are discrete in time, collected 
every day at the end of that day.  This is the same as representing discrete events, such as the time of an 
accident, etc.  In general, it does not make sense to apply interpolation to such a time sequence.  However, 
if some data is missing, an interpolation rule could be used to infer the missing values.  This is shown in 
Figure 4.  This is a time series, because only the days of business are shown (Monday – Friday).  

Time…

Figure 4: Discrete behavior of store revenues
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In the example above, only a single time sequence is shown, but there could be a collection of related 
time sequences.  For example, time sequences of the quantity of each item sold in a store.  For each item, 
there is a time sequence.  However, all time sequences in this case have the same behavior, and they are 
collected in tandem per day.  Such groups of related time sequences are referred to as “time sequence 
collections” [1].  As is discussed later, this concept is important for operations performed over collections 
of time sequences.  

Behavioral properties of temporal sequences 

As is evident from the above examples, there are certain properties that can be specified to capture the 
logical behavior of temporal sequences.  Given that such properties are supported by database systems, it 
is only necessary in such systems to store temporal data as time-value pairs in the general case, or simply 
ordered sequences of values for time series.  These properties are discussed next, along with the possible 
category values they can assume. 



Time-granularity:  value and unit 

The time-granularity indicates the time points for which data values can exist in the model.  It is the 
smallest unit of time measure between time points in the time sequence.  For example, if deposits and 
withdrawals to a bank account can be recorded with a minute precision, then the time granularity is said 
to be a minute.  However, in cases where data values can be interpolated, an interpolation-granularity 
needs to be specified as well.  For example, the temperatures shown in Figure 1 are recorded every half an 
hour, and therefore the time granularity is 30 minutes, but given that values can be interpolated up to a 
minute precision, it is necessary to specify that the interpolation-granularity is a minute.  This point is 
discussed further below in the section on “interpolation rule”.  Note that for regular time sequences (time 
series), it is often necessary to describe the origin of the time sequence, and the time granularity is relative 
to that origin.  A formal treatment of time granularity can be found in [6]. 

1) Regularity: regular (time series), irregular 

As mentioned above time series are regular sequence.  They can be described by specifying the “time-
step” between the time points.  The time-step together with the “life span” (described next) specify fully 
the time points for which data values are expected to be provided.  Because of its regular nature, it is not 
necessary to store the time points in the databases – these can be calculated.  However, this is a physical 
implementation choice of the system, and the time values can be stored explicitly to provide faster access.  
Time series are prevalent in many applications, such as statistics gathering, stock market, etc. 

Irregular time sequences are useful for event data that occurs in unpredictable patterns, such as bank 
withdrawals, visits to the library, or making a phone call.  A typical phenomena in such sequences, is that 
most of the time points have no values associated with them.  For example, suppose that the time 
granularity for recording phone calls is a minute.  The time sequence of phone calls will typically be 
mostly empty (or null).  For this reason, irregular time sequences are usually represented as time-value 
pairs in the database. 

Life span: begin-time, end-time 

The life span indicates for what period of time the time sequence is valid.  The begin-time is always 
necessary, and has to be specified with the same precision of the time granularity.  For example, if for the 
temperature time series in Figure 1, the begin-time was January 1, 1:15am, and the granularity was 30 
minutes, then the time points will be 1:15am, 1:45am, 2:15am, etc. 

The life span end-time can be specified as “open-ended”.  That means that this time series is active. 

Behavior type: continuous, step-wise-constant, interval, discrete 

These types were illustrated in the examples of the previous section.  For example 1, on wind velocity, the 
type is continuous.  For example 2, the amount available in a bank account, the type is step-wise-constant.  
For example 3, of hospital visits, the type is interval.  For example 4, the store revenues per day, the type 
id discrete.   Note that the interval type can be considered as a special case of step-wise-constant type 
having the Boolean values (0 or 1).  Another thing worth noting is that discrete time sequences cannot be 
associated with an interpolation rule.   The interpolation rules for the other types are discussed next. 

Interpolation rule: interpolation-granularity, interpolation-function 

The interpolation-granularity has to be specified in order for the underlying system to enforce the data 
points for which interpolation can be applied  in response to queries.  Note that the interpolation-
granularity has to be in smaller units than the time-granularity, and the number of interpolation-
granularity points in a time-granularity unit must be an integer.  For example, while temperature in the 
example of Figure 1 has time-granularity of 30 minutes, the interpolation-granularity can be 5 minute. 

The interpolation-function for the step-wise-constant and interval types are straight-forward, and are 
implied by the type.  But, for a continuous type an interpolation-function must be specified.  It should be 



possible to provide the system with such a function for each continuous time sequence.  If no 
interpolation-function is provided, the system can use a default function. 

Value type: binary, numeric, character, multi-valued, etc. 

This property of temporal sequences is no different from specifying attribute types in conventional 
database systems.  The case of a binary type is special to interval events, and is not always supported by 
conventional system.  Also, multi-valued or multi-component attributes are special requirements for more 
sophisticated time sequences that exist in scientific data, such as the wind velocity in example 2. 

Transaction vs. valid  time: transaction, valid 

Similar to the bank account in example 2 where the deposit time was different from the time when funds 
are available, there are many examples where temporal data is recorded in the database before the data 
values are valid.  This concept was explored extensively in [2], and referred to as “transaction time” and 
“valid time”.  Actually, there are situations where the transaction time can occur after the valid time for 
retroactive cases.  For example, a salary raise can be added to a database in March of some year, but is 
retroactive to January of that year.  This concept has led to an extensive literature on representing it as an 
extension of query languages, including a temporal extension to the SQL query language, referred to as 
TSQL [3].  It is worth noting that other concepts of multiple temporal dimensions were also introduced in 
the literature, in addition to transaction and valid times.  For example, [7] introduced the concept of 
“event time” - times of the events that initiates and terminates the interval validity, and “availability time” 
– the time interval during which facts are available. 

If multiple temporal dimensions are needed in the model, they can be thought of as multiple correlated 
time sequences.  However, in general, each time dimension can have different properties.  For example, 
the transaction time sequence for bank deposits can have a granularity of a minute, while the valid time 
for the available funds can be daily.  

Operation over temporal data 

Because of the inherent time order of temporal data, operations over them, such as “when”, “preceding”, 
“following”, etc. are based on the time order.  Similarly, the concept of a “time window” is natural.  
Various researchers have developed precise semantics to query languages by adding temporal operators to 
existing query languages, including relational query languages, such as SQL, relational algebras, such as 
QUEL, functional query languages, such as DAPLEX, deductive query languages, such a Datalog, and 
entity-relationship languages.  Many such examples can be found in the books on temporal databases [4, 
5].  In order to explain the various operators, they are classified into the following four categories. 

Predicate operators over time sequences 

Predicate operators refer to either specific times or a time interval.  For specific times, the obvious 
predicates include “before”, “after”, “when”, etc.  But, in addition, there are operators that refer to the life 
span, such as “first, and “last”.  For time intervals, operators such as “during” or “interval” are used.  
Also, when specifying an interval, the keyword “now” is used to refer to time sequences that are active, 
such as “interval (01-01-2007, now).  Note that the time values used must be expressed at the granularity 
of the time sequence (or the interpolation-granularity if interpolation is allowed).  In some time 
sequences, it is useful to use an integer to refer to the nth time instance, such as t-33 to mean the 33rd time 
point in the time sequence.  However, this is not included in most proposed query languages. 

Another purpose of predicate operators is to get back the time periods where some condition on the data 
values hold.  For example, suppose that a time sequences represents temperature at some location.  The 
query “get periods where temperature > 100” (the units are °F) will return a (Boolean) interval time 
sequence, where the temperature was greater than 100. Note that “periods” is treated as a keyword. 

 

 



Aggregation operators over time windows 

The usual statistical operators supported by database systems (sum, count, average, min, max) can be 
applied to a specific time window (t_begin, t_end), to the entire time sequence (first, last), or to the 
combinations (first, t_end), (t_begin, last).  In general, “first” or “last” can be substituted by an instance 
number, such as “t-33” mentioned above.  Here, again, the time has to be specified in the granularity of 
the time sequence. 

Another way to apply operators over windows is to combine that with the “group by” concept.  This is 
quite natural for temporal sequence that involve calendar concepts of month, day, minute, second, etc.  
For example, suppose that a time sequence represents daily sales.  One can have a query “sum sales by 
month”.  This is the same as asking for multiple windows, each over the days in each month. 

Aggregation operators over time sequence collections 

In a typical database, time sequences are defined over multiple object instances.  For example, one can 
have in an organization the salary history of all of its employees.  Asking for the “average salary over all 
employees” over time requires the average operation to be applied over the entire collection of time 
sequences.  This operation is not straight forward if all salary raises do not occur at the same time.  This 
operation will generate a time sequence whose time points are the union of all the time points of the time 
sequences, where the average values are performed piecewise on the resulting intervals. 

Similar to the case of aggregation over time windows, where the “group by” operation can be applied, it is 
possible to group by object instances in this case.  For example, if employees are organized by 
departments, one can ask for “average salary over all employees per department”. 

Composition of time sequences 

Composition refers to algebraic operations over different time sequences.  For example, suppose that in 
addition to salary history recorded for each employee in an organization, the history of commissions 
earned is recorded.   In order to obtain “total income”, the salary and the commission time sequences have 
to be added for each employee.  This amounts to the temporal extension of algebraic operations on 
multiple attributes in non-temporal query languages.  

Combinations of the above operators 

It is conceptually reasonable to combine the above operators in query languages.  For example, it should 
be possible to have the aggregation and composition operators applied only to a certain time window, 
such as getting the “average salary over all employees for the last three years”.  Furthermore, it should be 
possible to apply a temporal operator to the result of another temporal operator.  This requires that the 
result of operations over time sequences is either a time sequence or a scalar.   If it is a time sequence, 
temporal operators can be applied.  If it is a scalar (a single value) it can be applied as a predicate value.  
This requirement is consistent with other languages, such as the relational language, where the operation 
on relations always generates a relation or a scalar. 

Additional related concepts 

There are many concepts introduced in the literature that capture other logical aspects of temporal 
operations and semantics.  This broad literature cannot be covered here; instead, several concepts are 
mentioned next.  [8] explores temporal specialization and generalization.  [9] and [10] develop unified 
models for supporting point-based and interval-based semantics.  [11] argues that temporal data models 
have to include explicitly the concept of ordered data, and proposes a formal framework for that.  [12] 
develops a single framework for supporting both time series and version-based temporal data.  There are 
also many papers that discuss how to efficiently support temporal operations (such as aggregation), see 
for example [13, 14].  Finally, temporal aggregation operations on time windows have in explored in the 
context of streaming data – see entries on “stream data management” and “stream mining”. 
 



KEY APPLICATIONS  
Temporal data is ubiquitous.  It naturally exists in applications that have time series data, such as stock 
market historical data, or history of transactions in bank accounts.  In addition, it is a basic requirement of 
scientific databases collecting data from instruments or performing simulation over time steps.  In the 
past, many databases contained only the current (most updated) data, such as current salary of employees, 
current inventories in a store or a warehouse, etc.  The main reason for that was the cost of storage and 
efficiency of processing queries.  One could not afford keeping all the historical data.  More recently, as 
the cost of storage is plummeting, and compute engines are faster and can operate in parallel, historical 
data is routinely kept.  While it is still worth keeping a version for current data for some applications for 
efficiency of access, many applications now use historical data for pattern and trend analysis over time, 
especially in data warehouse applications. 
 
FUTURE DIRECTIONS 
While a lot of research was done on temporal data, the concepts and operations over such data are only 
partially supported, if at all, in commercial and open source database system.  Some support only the 
concept of date_time (it is complex enough, crossing time zones and century boundaries), but the support 
for properties of time sequences and operations over them are still not generally available.  Building such 
database systems is still a challenge. 
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