
TEMPORAL LOGICAL MODELS

Arie Shoshani
Lawrence Berkeley National Laboratory, Berkeley, California

 http://sdm.lbl.gov/~arie

SYNONYMS
Historical data models

DEFINITION
Temporal logical models refer to the logical structure of data that captures the temporal behavior and
operations over such structures. The term “logical” is used to distinguish such temporal structures from
the physical storage organization and implementation. For example, the behavior of temporal events and
operations over them can be described logically in a way that is independent of the physical structure (e.g.
linked lists) or indexing of the events. Temporal logical models include concepts of data values that are
collected or are changed over time, such as continuous physical phenomena, a series of discrete events,
and interval data over time. The challenge is one of having a single comprehensive model that captures
this diversity of behavior.

HISTORICAL BACKGROUND
In the 1980’s several researchers focused on dealing with temporal data, both on the modeling concepts
and on physical organization and indexing of temporal data. This led to the temporal database field to be
established, and several books were written or edited on the subject (for example [3, 4, 5]). Since then,
the subject continues to appear in specific application domains, or in combination with other concepts,
such as spatio-temporal databases, and managing streaming data.

SCIENTIFIC FUNDAMENTALS

The treatment of time in database systems

Time is a natural part of the physical world and an indispensable part of human activity, yet many
database models treat temporal behavior as an afterthought. For example, weather (temperature, clouds,
and storms) is a continuous phenomenon in time, yet it is treated as discrete events per day or per hour.
In contrast, some human activities are fundamentally discrete events, such as salary which may change
annually, but are treated as continuous concepts, where the salary is the same for the duration between the
discrete events of salary changes. The main reason for the inconsistent treatment of time is that temporal
objects and their semantics are not explicit in the data model. Consider for example, temperature
measurements at some weather station as shown in Figure 1. These are represented in conventional
database systems (such as relational data models) as a two-part concept of time-of-measurement and
value-of-measurement attributes, but the fact that the measurements are taken at evenly spaced intervals
(e.g. every half an hour) and that the temperature represents a continuous phenomenon is not captured.
Consequently, if one asks what the temperature was at 12:35am, no such value exists. Furthermore, the
interpolation function associated with getting this value is unknown. It could be a simple weighted
averaging of the two nearest values, or a more sophisticated curve interpolation function.

Temporal data behavior

Temporal logical models are models designed to capture the behavior of temporal data sequences. First,
some examples that illustrate the concepts that need to be captured by the model are presented.

Example 1: wind velocity. Usually, the measurements of wind velocity are taken by devices at regular
time periods, for example every hour. These are referred to as “time series”. In this example, the
measured quantity is not a single value, but has a more complex structure. It measures the direction of the
wind and the velocity of the wind, which can be represented as a three-dimensional vector. The measured

phenomenon is continuous, of course, but for this application it is determined by the database designers
that a certain time granularity for queries is desired, such as values by minutes. Since the values are
collected only hourly, an interpolation function must be provided and associated with this time sequence.
The behavior is similar to the temperature behavior shown in Figure 1, except that the measured values
are three-dimensional vectors for each time point.

°

°

Time (hour/minutes)
12am 12:30 1am 1:30 2am 2:30 3am 3:30 4am 4:30 5am 5:30 6am 6:30 7am

Temperature

50 F°

60 F

70 F

53
x

55
x

54.5
x

56
x

58
x

x
x x x x x x x

x
x

°

°

Time (hour/minutes)
12am 12:30 1am 1:30 2am 2:30 3am 3:30 4am 4:30 5am 5:30 6am 6:30 7am

Temperature

50 F°

60 F

70 F°

°

Time (hour/minutes)
12am 12:30 1am 1:30 2am 2:30 3am 3:30 4am 4:30 5am 5:30 6am 6:30 7am

Temperature

50 F°50 F°

60 F

70 F

53
x

55
x

54.5
x

56
x

58
x

x
x x x x x x x

x
x

Figure 1: Continuous behavior of temperature measurements

Example 2: bank account. The amount of money in the bank account changes when transactions take
place. Money can be added or taken out of the account at irregular times. The value of the account is the
same for the duration of time between transactions. This is shown in Figure 2, where the granularity of
the time points is in minutes. Note that the days shown should have precise dates in the database.
Another aspect in this example is that in the case of a deposit of a check, funds may not be available until
the check clears. Thus, there are two times associated with the deposit, the time of the transaction, and
the time when funds are made available.

Time

$

1,000

2,000

3,000

4,000

5,000

6,000

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 …

Figure 2: Step-wise constant behavior of a bank account

Example 3: hospitalization visits. Hospital visits of an individual occur typically at irregular times, and
each can last a period of time, usually measured in days. The value associated with the hospital visit time
sequence is Boolean; that is, only the fact that a visit took place or did not. This is an example where the
concept of an interval must be represented in the data model. This is shown in Figure 3, where the
granularity is a day, and the interval durations spans days. Here again, the days shown will have to have
precise dates in the database.

Time
Day 1 Day 2 …

Figure 3: Interval behavior of hospital visits

Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11

Hospital
presence

yes

no

Example 4: store revenue. Suppose that a store owner wishes to keep in a database the total revenue per
day. The time sequence is regular, i.e. a time series (not counting days when the store is closed). The
values per day do not represent continuous phenomena, but rather they are discrete in time, collected
every day at the end of that day. This is the same as representing discrete events, such as the time of an
accident, etc. In general, it does not make sense to apply interpolation to such a time sequence. However,
if some data is missing, an interpolation rule could be used to infer the missing values. This is shown in
Figure 4. This is a time series, because only the days of business are shown (Monday – Friday).

Time…

Figure 4: Discrete behavior of store revenues

Store
revenues

$

1,000

2,000

3,000

4,000

5,000

6,000

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri Mon Tue Wed

In the example above, only a single time sequence is shown, but there could be a collection of related
time sequences. For example, time sequences of the quantity of each item sold in a store. For each item,
there is a time sequence. However, all time sequences in this case have the same behavior, and they are
collected in tandem per day. Such groups of related time sequences are referred to as “time sequence
collections” [1]. As is discussed later, this concept is important for operations performed over collections
of time sequences.

Behavioral properties of temporal sequences

As is evident from the above examples, there are certain properties that can be specified to capture the
logical behavior of temporal sequences. Given that such properties are supported by database systems, it
is only necessary in such systems to store temporal data as time-value pairs in the general case, or simply
ordered sequences of values for time series. These properties are discussed next, along with the possible
category values they can assume.

Time-granularity: value and unit

The time-granularity indicates the time points for which data values can exist in the model. It is the
smallest unit of time measure between time points in the time sequence. For example, if deposits and
withdrawals to a bank account can be recorded with a minute precision, then the time granularity is said
to be a minute. However, in cases where data values can be interpolated, an interpolation-granularity
needs to be specified as well. For example, the temperatures shown in Figure 1 are recorded every half an
hour, and therefore the time granularity is 30 minutes, but given that values can be interpolated up to a
minute precision, it is necessary to specify that the interpolation-granularity is a minute. This point is
discussed further below in the section on “interpolation rule”. Note that for regular time sequences (time
series), it is often necessary to describe the origin of the time sequence, and the time granularity is relative
to that origin. A formal treatment of time granularity can be found in [6].

1) Regularity: regular (time series), irregular

As mentioned above time series are regular sequence. They can be described by specifying the “time-
step” between the time points. The time-step together with the “life span” (described next) specify fully
the time points for which data values are expected to be provided. Because of its regular nature, it is not
necessary to store the time points in the databases – these can be calculated. However, this is a physical
implementation choice of the system, and the time values can be stored explicitly to provide faster access.
Time series are prevalent in many applications, such as statistics gathering, stock market, etc.

Irregular time sequences are useful for event data that occurs in unpredictable patterns, such as bank
withdrawals, visits to the library, or making a phone call. A typical phenomena in such sequences, is that
most of the time points have no values associated with them. For example, suppose that the time
granularity for recording phone calls is a minute. The time sequence of phone calls will typically be
mostly empty (or null). For this reason, irregular time sequences are usually represented as time-value
pairs in the database.

Life span: begin-time, end-time

The life span indicates for what period of time the time sequence is valid. The begin-time is always
necessary, and has to be specified with the same precision of the time granularity. For example, if for the
temperature time series in Figure 1, the begin-time was January 1, 1:15am, and the granularity was 30
minutes, then the time points will be 1:15am, 1:45am, 2:15am, etc.

The life span end-time can be specified as “open-ended”. That means that this time series is active.

Behavior type: continuous, step-wise-constant, interval, discrete

These types were illustrated in the examples of the previous section. For example 1, on wind velocity, the
type is continuous. For example 2, the amount available in a bank account, the type is step-wise-constant.
For example 3, of hospital visits, the type is interval. For example 4, the store revenues per day, the type
id discrete. Note that the interval type can be considered as a special case of step-wise-constant type
having the Boolean values (0 or 1). Another thing worth noting is that discrete time sequences cannot be
associated with an interpolation rule. The interpolation rules for the other types are discussed next.

Interpolation rule: interpolation-granularity, interpolation-function

The interpolation-granularity has to be specified in order for the underlying system to enforce the data
points for which interpolation can be applied in response to queries. Note that the interpolation-
granularity has to be in smaller units than the time-granularity, and the number of interpolation-
granularity points in a time-granularity unit must be an integer. For example, while temperature in the
example of Figure 1 has time-granularity of 30 minutes, the interpolation-granularity can be 5 minute.

The interpolation-function for the step-wise-constant and interval types are straight-forward, and are
implied by the type. But, for a continuous type an interpolation-function must be specified. It should be

possible to provide the system with such a function for each continuous time sequence. If no
interpolation-function is provided, the system can use a default function.

Value type: binary, numeric, character, multi-valued, etc.

This property of temporal sequences is no different from specifying attribute types in conventional
database systems. The case of a binary type is special to interval events, and is not always supported by
conventional system. Also, multi-valued or multi-component attributes are special requirements for more
sophisticated time sequences that exist in scientific data, such as the wind velocity in example 2.

Transaction vs. valid time: transaction, valid

Similar to the bank account in example 2 where the deposit time was different from the time when funds
are available, there are many examples where temporal data is recorded in the database before the data
values are valid. This concept was explored extensively in [2], and referred to as “transaction time” and
“valid time”. Actually, there are situations where the transaction time can occur after the valid time for
retroactive cases. For example, a salary raise can be added to a database in March of some year, but is
retroactive to January of that year. This concept has led to an extensive literature on representing it as an
extension of query languages, including a temporal extension to the SQL query language, referred to as
TSQL [3]. It is worth noting that other concepts of multiple temporal dimensions were also introduced in
the literature, in addition to transaction and valid times. For example, [7] introduced the concept of
“event time” - times of the events that initiates and terminates the interval validity, and “availability time”
– the time interval during which facts are available.

If multiple temporal dimensions are needed in the model, they can be thought of as multiple correlated
time sequences. However, in general, each time dimension can have different properties. For example,
the transaction time sequence for bank deposits can have a granularity of a minute, while the valid time
for the available funds can be daily.

Operation over temporal data

Because of the inherent time order of temporal data, operations over them, such as “when”, “preceding”,
“following”, etc. are based on the time order. Similarly, the concept of a “time window” is natural.
Various researchers have developed precise semantics to query languages by adding temporal operators to
existing query languages, including relational query languages, such as SQL, relational algebras, such as
QUEL, functional query languages, such as DAPLEX, deductive query languages, such a Datalog, and
entity-relationship languages. Many such examples can be found in the books on temporal databases [4,
5]. In order to explain the various operators, they are classified into the following four categories.

Predicate operators over time sequences

Predicate operators refer to either specific times or a time interval. For specific times, the obvious
predicates include “before”, “after”, “when”, etc. But, in addition, there are operators that refer to the life
span, such as “first, and “last”. For time intervals, operators such as “during” or “interval” are used.
Also, when specifying an interval, the keyword “now” is used to refer to time sequences that are active,
such as “interval (01-01-2007, now). Note that the time values used must be expressed at the granularity
of the time sequence (or the interpolation-granularity if interpolation is allowed). In some time
sequences, it is useful to use an integer to refer to the nth time instance, such as t-33 to mean the 33rd time
point in the time sequence. However, this is not included in most proposed query languages.

Another purpose of predicate operators is to get back the time periods where some condition on the data
values hold. For example, suppose that a time sequences represents temperature at some location. The
query “get periods where temperature > 100” (the units are °F) will return a (Boolean) interval time
sequence, where the temperature was greater than 100. Note that “periods” is treated as a keyword.

Aggregation operators over time windows

The usual statistical operators supported by database systems (sum, count, average, min, max) can be
applied to a specific time window (t_begin, t_end), to the entire time sequence (first, last), or to the
combinations (first, t_end), (t_begin, last). In general, “first” or “last” can be substituted by an instance
number, such as “t-33” mentioned above. Here, again, the time has to be specified in the granularity of
the time sequence.

Another way to apply operators over windows is to combine that with the “group by” concept. This is
quite natural for temporal sequence that involve calendar concepts of month, day, minute, second, etc.
For example, suppose that a time sequence represents daily sales. One can have a query “sum sales by
month”. This is the same as asking for multiple windows, each over the days in each month.

Aggregation operators over time sequence collections

In a typical database, time sequences are defined over multiple object instances. For example, one can
have in an organization the salary history of all of its employees. Asking for the “average salary over all
employees” over time requires the average operation to be applied over the entire collection of time
sequences. This operation is not straight forward if all salary raises do not occur at the same time. This
operation will generate a time sequence whose time points are the union of all the time points of the time
sequences, where the average values are performed piecewise on the resulting intervals.

Similar to the case of aggregation over time windows, where the “group by” operation can be applied, it is
possible to group by object instances in this case. For example, if employees are organized by
departments, one can ask for “average salary over all employees per department”.

Composition of time sequences

Composition refers to algebraic operations over different time sequences. For example, suppose that in
addition to salary history recorded for each employee in an organization, the history of commissions
earned is recorded. In order to obtain “total income”, the salary and the commission time sequences have
to be added for each employee. This amounts to the temporal extension of algebraic operations on
multiple attributes in non-temporal query languages.

Combinations of the above operators

It is conceptually reasonable to combine the above operators in query languages. For example, it should
be possible to have the aggregation and composition operators applied only to a certain time window,
such as getting the “average salary over all employees for the last three years”. Furthermore, it should be
possible to apply a temporal operator to the result of another temporal operator. This requires that the
result of operations over time sequences is either a time sequence or a scalar. If it is a time sequence,
temporal operators can be applied. If it is a scalar (a single value) it can be applied as a predicate value.
This requirement is consistent with other languages, such as the relational language, where the operation
on relations always generates a relation or a scalar.

Additional related concepts

There are many concepts introduced in the literature that capture other logical aspects of temporal
operations and semantics. This broad literature cannot be covered here; instead, several concepts are
mentioned next. [8] explores temporal specialization and generalization. [9] and [10] develop unified
models for supporting point-based and interval-based semantics. [11] argues that temporal data models
have to include explicitly the concept of ordered data, and proposes a formal framework for that. [12]
develops a single framework for supporting both time series and version-based temporal data. There are
also many papers that discuss how to efficiently support temporal operations (such as aggregation), see
for example [13, 14]. Finally, temporal aggregation operations on time windows have in explored in the
context of streaming data – see entries on “stream data management” and “stream mining”.

KEY APPLICATIONS
Temporal data is ubiquitous. It naturally exists in applications that have time series data, such as stock
market historical data, or history of transactions in bank accounts. In addition, it is a basic requirement of
scientific databases collecting data from instruments or performing simulation over time steps. In the
past, many databases contained only the current (most updated) data, such as current salary of employees,
current inventories in a store or a warehouse, etc. The main reason for that was the cost of storage and
efficiency of processing queries. One could not afford keeping all the historical data. More recently, as
the cost of storage is plummeting, and compute engines are faster and can operate in parallel, historical
data is routinely kept. While it is still worth keeping a version for current data for some applications for
efficiency of access, many applications now use historical data for pattern and trend analysis over time,
especially in data warehouse applications.

FUTURE DIRECTIONS
While a lot of research was done on temporal data, the concepts and operations over such data are only
partially supported, if at all, in commercial and open source database system. Some support only the
concept of date_time (it is complex enough, crossing time zones and century boundaries), but the support
for properties of time sequences and operations over them are still not generally available. Building such
database systems is still a challenge.

CROSS REFERENCES
Data Models, Query Languages, Database Design, Spatial and Multidimensional Databases, Data
Warehouse, Stream Data Management, Stream Mining, Temporal Aggregation, Temporal Join.

RECOMMENDED READING
[1] Arie Segev, Arie Shoshani: Logical Modeling of Temporal Data. SIGMOD Conf. 1987: 454-466.
[2] Richard T. Snodgrass, Ilsoo Ahn: Temporal Databases. IEEE Computer 19 (9): 35-42 (1986)
[3] Richard T. Snodgrass: The TSQL2 Temporal Query Language Kluwer 1995
[4] Abdullah Uz Tansel, James Clifford, Shashi K. Gadia, Sushil Jajodia, Arie Segev, Richard T.
Snodgrass: Temporal Databases: Theory, Design, and Implementation Benjamin/Cummings 1993
[5] Opher Etzion, Sushil Jajodia, Suryanarayana M. Sripada (Eds.): Temporal Databases: Research and
Practice. (The book grow out of a Dagstuhl Seminar, June 23-27, 1997). Lecture Notes in Computer
Science 1399 Springer 1998, ISBN 3-540-64519-5
[6] Claudio Bettini, Xiaoyang Sean Wang, Sushil Jajodia: A General Framework for Time Granularity
and Its Application to Temporal Reasoning. Ann. Math. Artif. Intell. 22 (1-2): 29-58 (1998).
[7] Carlo Combi, Angelo Montanari: Data Models with Multiple Temporal Dimensions: Completing the
Picture. CAiSE 2001: 187-202
[8] Christian S. Jensen, Richard T. Snodgrass: Temporal Specialization and Generalization. IEEE Trans.
Knowl. Data Eng. 6(6): 954-974 (1994)
[9] Cindy Xinmin Chen, Carlo Zaniolo: Universal Temporal Extensions for Database Languages. ICDE
1999: 428-437
[10] Paolo Terenziani, Richard T. Snodgrass: Reconciling Point-Based and Interval-Based Semantics in
Temporal Relational Databases: A Treatment of the Telic/Atelic Distinction. IEEE Trans. Knowl. Data
Eng. 16(5): 540-551 (2004)
[11] Yan-Nei Law, Haixun Wang, Carlo Zaniolo: Query Languages and Data Models for Database
Sequences and Data Streams. VLDB 2004: 492-503
[12] Jae Yong Lee, Ramez Elmasri, Jongho Won: An Integrated Temporal Data Model Incorporating
Time Series Concept. Data Knowl. Eng. 24(3): 257-276 (1998)
[13] Sung Tak Kang, Yon Dohn Chung, Myoung-Ho Kim: An efficient method for temporal aggregation
with range-condition attributes. Inf. Sci. 168(1-4): 243-265 (2004)
[14] Bongki Moon, Inés Fernando Vega López, Vijaykumar Immanuel: Efficient Algorithms for Large-
Scale Temporal Aggregation. IEEE Trans. Knowl. Data Eng. 15(3): 744-759 (2003)

