
Disk Cache Replacement Algorithm for Storage Resource

Managers in Data Grids

(Extended Abstract)

Ekow Otoo, Frank Olken and Arie Shoshani

Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS: 50B-3238

University of California

Berkeley, CA 94720

Abstract

We address the problem of cache replacement policies for Storage Resource Managers

(SRM) used in Data Grids. An SRM has a disk storage of bounded capacity that retains

some N objects. A replacement policy is applied to determine which object in the cache

needs to be evicted when space is needed. We present an optimal utility function for ranking

the candidate objects for eviction and then describe an eÆcient algorithm for computing

the replacement policy based on this function. This computation takes time O(logN). We

compare our policy with traditional replacement policies such as Least Frequently Used

(LFU), Least Recently Used (LRU), LRU-K, etc., using simulations of both synthetic and

real workloads of �le accesses to tertiary storage. Our simulations of replacement policies

account for delays in cache space reservation, data transfer and processing. The results

obtained show that our proposed method is the most cost e�ective cache replacement policy

for Storage Resource Managers (SRM).

Keywords and Phrases: �le caching; cache replacement algorithm; trace-driven simulation;

data staging; storage resource management.

1



Disk Cache Replacement Algorithm for Storage Resource Managers in

Data Grids

(Extended Abstract)

Abstract

We address the problem of cache replacement policies for Storage Resource Managers

(SRM) used in Data Grids. An SRM has a disk storage of bounded capacity that retains

some N objects. A replacement policy is applied to determine which object in the cache

needs to be evicted when space is needed. We present an optimal utility function for ranking

the candidate objects for eviction and then describe an eÆcient algorithm for computing

the replacement policy based on this function. This computation takes time O(logN). We

compare our policy with traditional replacement policies such as Least Frequently Used

(LFU), Least Recently Used (LRU), LRU-K, etc., using simulations of both synthetic and

real workloads of �le accesses to tertiary storage. Our simulations of replacement policies

account for delays in cache space reservation, data transfer and processing. The results

obtained show that our proposed method is the most cost e�ective cache replacement policy

for Storage Resource Managers (SRM).

Keywords and Phrases: �le caching; cache replacement algorithm; trace-driven simulation;

data staging; storage resource management.

1 Introduction

A storage resource manager (SRM) [12], in the context of the data-grid infrastructure [3, 8], is

essentially a middle-ware component that facilitates the sharing of data and storage resources. A

key component of its functions is the management of a large capacity disk cache that it maintains.

We address the problem of cache replacement policies for Storage Resource Managers (SRMs),

used in data-grids. An SRM, described subsequently, maintains a large capacity disk for staging

�les and objects of varying sizes that are read from or written to Mass Storage Systems (MSS)

and/or other remote sites. Its role in the data-grid is similar to that of a proxy server or a reverse

proxy server in the World Wide Web. Although SRMs di�er in many respects from proxy and

reverse proxy servers, they share some common service functionalities such as caching of �les or

objects. One di�erence between caching in an SRM and caching in a web-server is that SRMs

typically deal with batched requests of �les or objects that are very large and incur signi�cantly

long delays in transferring and processing them. We address �le/object replacement policies in

SRMs, taking into account the latency delays in retrieving, transferring and processing of the

objects.

2



The Grid [5] may be described as a network of geographically distributed platforms of high

performance heterogeneous computational nodes and data storage resources. Computational

platforms range from super-computers, and large scale cluster-computing farms to desktop work-

stations. Storage resources range from mass storage systems, e.g., tertiary storage system, high

performance storage systems (HPSS), RAID farms and network attached storage(NAS), to work-

station group servers. A data-grid is a network of geographically dispersed nodes of data and

storage resource that is used to eÆciently support data intensive applications through middle-

ware services. A storage resource is accessible by a user, either remotely or locally for creating,

destroying, reading, writing and manipulating �le or object instances. For the purposes of our

discussion in this paper, we will use the terms �le and object interchangeably.

The dataset derived from some scienti�c experiments or observations is maintained in mul-

tiple storage resources that are distributed over wide area networks. The experiments of a

particular project, carried out over a number of years, result in the generation of datasets in the

order of hundreds of terabytes to a few petabytes. These datasets are typically maintained in

mass storage systems or tertiary storage systems. Client applications that run on workstations

or workstations clusters and super-computers make requests for �les/objects that reside on di-

rect attached storage (DAS), a tape storage system or even mass storage system at a remote

site. We will use the term mass storage system or MSS for all large capacity storage systems,

except DAS, for the simple reason that they can potentially incur very long latency in retrieving

the objects resident on them.

Two signi�cant decisions govern the operation of an SRM. Unlike web proxy severs, each of

the requests that arrive at an SRM can be for hundreds or thousands of objects at the same time.

As a result, an SRM generally queues the requests and makes decisions as to which objects are

to be retrieved into its disk cache. When a decision is made to cache a �le it determines which

of the objects currently in the cache may have to be evicted to create space for the incoming

object. The latter decision is generally referred to as a cache replacement policy and it is the

subject of this paper in the context of storage resource managers in the data-grid.

The performance measures of replacement policies are typically expressed by two metrics:

the hit ratio and the byte hit ratio. These metrics are brie
y de�ned in sub-section 4.2. We

introduce a third measure of goodness which we term the average cost per reference. Depending

on the context of the usage of a cache and the factors that are of interest to users, an optimal

3



replacement policy either maximizes the hit ratio, maximizes the byte-hit ratio, minimizes the

average cost per cache reference or some combination of these.

We make three main contributions to disk cache replacement policies in this paper. First, we

give an algorithm for a cache replacement policy that computes the minimum utility function

in time O(logN). The utility function �i(t) is de�ned as

�i(t) =
Ki(t)

(t� t�Ki
)
�

ci(t)

si
;

where, for each object i, si is the size of the object, Ki(t) is the number of references, up to

a maximum of K, made to the object within the time interval [t � t�Ki
], t�Ki

is the time of

the Ki backward reference and ci(t) is the cost of retrieving the object from its source into the

cache at the time t. We call the cache replacement policy, that is based on the above utility

function, the least cost bene�cial based on the K backward references or the LCB-K for short.

Second, we de�ne a new measure for cache replacement policies which we term \average cost

per reference". Using both synthetic and real workload, we show that a policy that replaces

the object in the cache with the minimum utility function as de�ned above gives the minimum

average cost per reference compared with random (RND), least frequently used (LFU) and least

recently used (LRU) replacement policies. The LCB-K replacement policy does not necessarily

maximize either the hit ratio or the byte hit ratio. Third, we present a cache replacement policy

simulation model that takes into account, the latency delays at the source, �le transfer delays

and processing time delays of the objects. An object that is held in the cache during processing

and marked as non-evictable is said to be pinned. We are unaware of any simulation comparisons

of cache replacement policies that consider pinning delays of objects in the cache.

2 Con�guration and Related Works

The use of an SRM helps to ameliorate the latency experienced when users request objects with

long total retrieval times. Its role is to stage in its cache, a single copy of an object that is

requested and then use it to service multiple requests. In some respect, its usage is similar to

that of a proxy server or a reverse proxy server, except that SRMs deal with transfers of objects

that are of the order of gigabytes in size. Figure 1 depicts the positional role of an SRM within

4



DRM

DRM

Network

Site D

HRM

HRM

Hierarchical Storage System

Site C

Clients

Workgroup
Server

Clients Acessing Data from Remote SRMs

Workgroup
Server

Site A

Clients

Site B

Figure 1: Use of a Storage Resource Manager in a Data-Grid

a data-grid.

In environments that deal with object transfers from archival tape storage to clients at

remote sites, the idea of holding �les in disk storage at some site along the transfer path and

then subsequently forwarding it to the client has been called Data Staging [13, 14]. Data staging,

in data intensive wide area networks is a form of shared disk caching and a good replacement

policy should be applicable to it as well. Another related area where the issues we address in

this paper have applicability is in Web-Caching [1, 2, 4, 6]. Caching techniques are e�ective

where reference streams to objects observe two basic principles:

� Locality of Reference: An object that is referenced and read into a cache is often referenced

many times, by the same user, over a very short period.

� Shared Access to Objects: The same object, after it is read into a cache, is also referenced

by di�erent users.

Some earlier works on �le caching in distributed system and the staging of �les on tertiary

storage onto disk, have been presented in [7, 9, 13, 14, 15, 17]. Recent studies on caching have

focused more on web-caching [1, 2, 4, 11, 16]. Cao and Irani [2] present a relative comparison

of various cache replacement policies that have been proposed for web-caching. Their work

discusses some of the merits and concerns of replacements policies such as Least Frequently

Used (LFU), Least Recently Used (LRU), Size, etc. They propose a replacement policy for

5



web-caching called the Greedy-Dual-Size (GDS) [2]. It is a variant of the replacement policy

termed Greedy-Dual (GD) [17], that was originally proposed for main memory caching of �xed

size pages. It is also perceived as a generalization of the LRU when there is some variability in

the cost of reading pages from secondary storage.

2.1 Di�erences between Caching in SRMs and Web-Caching

In principle the objects in web-caching can be of any type and of varying sizes. However web-

caching in proxy servers are realistic only for documents, images, video clips and objects of

moderate size of less than a few megabytes. On the other hand, the �les and objects in SRMs

have sizes of the order of hundreds of megabytes to a few gigabytes. Some of the di�erences

between caching in SRMs and web-caching are summarized in Table 1.

3 Optimal Utility Function

The basic idea of our page replacement policy is to de�ne a utility function �i() for each object

i in the set C of cached objects. An object i is of size si and has retrieval cost ci;r(t) from

site r that varies with time according to when and where it is fetched from. Note that in the

environment of the data-grid there could be replicas of the same object at di�erent sites r. We

will denote cost simply by ci(t), with the understanding that this would be the minimum cost of

retrieving the object into the cache. Let the total number of objects in the cache be N , and let

the number of unpinned objects be N 0. At each instant in time t, when we need to acquire space

of size sj for an object j that is not in cache, we order all the unpinned objects in non-decreasing

order of their utility functions and evict the �rstm objects with the lowest values of �i(t), whose

sizes sum up to or just exceed sj. We always assume that the sizes of the cached objects are

relatively small compared to the total size S, of the cache.

To see why this holds consider a request stream to an SRM denoted by r1; r2; r3; : : : ; ri : : :,

as a sequence of random variables with common stationary probability distribution p1(t); p2(t),

p3(t); : : : ; pn(t), where the probability that ri references the object j is pj(t), i.e., Prob(ri =

j) = pj(t) for all i � 1. Our objective then is to minimize the total cost of retrieving the objects

that are not found in the cache but need to be fetched. Let the set of objects retrieved into the

cache be C, where C � I = f1; 2; : : : ; ng. Then an optimal cache replacement retains the set C

6



Characteristic

Property

Web Caching Disk Caching in SRMs

Object Size Variable size objects of the order of a

few megabytes

Variable size objects of the order of a

few Gigabytes

Cache Size In the order of tens to hundreds of gi-

gabyte

In the order of hundreds of gigabyte

to tens of terabytes

Source La-

tency

A few milliseconds to seconds In milliseconds to minutes

Object Trans-

fer Time

In milliseconds to a few minutes In seconds up to a few hours

Duration of

Object Refer-

ence

Instantaneous In seconds up to a few minutes

Caching Re-

quirement

Optional Mandatory

Batched re-

quests

Typically one request references one

object but may involve a few addi-

tional linked objects.

May involve hundreds of objects in one

request.

Bundle Con-

straint

Only one object is referenced per re-

quest.

Simultaneousaccesses of multiple ob-

jects in the same request.

Cache Consis-

tency

Cognizant of modi�ed documents Predominantly Read-Only and ig-

nores consideration of cache coherence

Network band-

width require-

ment

Standard Internet High speed gigabit networks

Table 1: Summary of Di�erences between Caching in SRMs and Web-Caching

such that

X

i2(I�C)

pi(t) � ci(t); (1)

is minimized subject to

X

i2C

si � S: (2)

Since we assume that the sizes of the cached objects are relatively small compared to the

total size S of the cache, the amount of space left after caching the maximum number of objects

is negligible. The solution space may be restricted to the set C satisfying
P
i2C

si = S. We can

7



restate the problem then as

maximize
X

i2C

pi(t) � ci(t); (3)

subject to

X

i2C

si = S: (4)

Under the above assumption the problem statement expressed by 3 and 4 is equivalent to that

of the fractional Knapsack problem. An optimal solution is given by a simple greedy algorithm

as follows. We rank the items i 2 I in non-increasing order of pi(t) � ci(t)=si and then insert

into the cache the items beginning from the �rst to the last until either all items are inserted or

the constraint (2) is violated.

3.1 Cost Bene�cial Cache Replacement Policy

The cache replacement policy we propose, is based on the optimal utility function de�ned in

the preceeding subsection. Restated di�erently, we have that whenever some object in the cache

needs to be evicted at some instant in time t, the eviction candidate is the one that has the

minimal utility function �i(t) given by

�i(t) =
pi(t) � ci(t)

si
(5)

Similar conclusions are given in [9, 11] but under di�erent assumptions. The problems

studied for which their results are derived are di�erent. The utility function, as expressed by

equation (5), is impossible to apply since we do not know the probabilities and further these

probabilities are not stationary. Under the assumption that the references to the objects are

independent, the arrival rate of references to an individual object i can be approximated by a

Poisson distribution with parameter �i and the probability term in equation (5) can be replaced

by

pi(t) =
�i(t)P

1�j�n

�j(t)
:

8



Since the replacement decision is based only on the relative rankings of pi(t), we can rewrite

equation (5) as

�i(t) = �i(t) �
ci(t)

si
: (6)

To estimate the values of �i(t) we utilize the concepts used in the development of the Least

Recently Used Based on on the Kth backward reference (or LRU-K), page replacement policy.

In the LRU-K [10] the times of the last Ki(t) references to the object i are retained. At time t,

letKi(t) denote the count of the last references made to i up to a maximum of K, 1 � Ki(t) � K:

Let the time of the backward Kth
i reference be denoted by t�Ki

. Then we can approximate the

rate of arrival by

�i(t) =
Ki(t)

t� t�Ki

Since the cost of the future retrieval is also not known, we utilize a best e�ort estimate, denoted

by c0i(t), by deriving it from the last K retrievals. Note that before an object becomes a candidate

for eviction, at least one access for the object must have been made to cache it. Our eviction

candidate then becomes that object with the minimum value of �i(t) where

�0i(t) =
Ki(t)

t� t�Ki

�

c0i(t)

si
(7)

Our disk cache replacement policy, based on the equation (7) is referred to as a Least Cost

Bene�cial replacement policy based on at most K backward references or LCB-K for short.

Using equation (7), the problem of implementing an eÆcient algorithm for quickly ranking the

objects in cache is still non-trivial.

4 The LCB-K Replacement Algorithm

The LCB-K algorithm is based on an approximation of the optimal utility function given by

equation (7). The algorithm makes use of three principal data structures whose detailed im-

plementations are satis�ed with equivalent container types of the Standard Template Library

(STL).

Search Tree Ts: A search tree whose nodes hold the identi�ers of objects that have been

9



accessed. The nodes have �elds for values of Ki(j); ti(j); ci(k); 1 � j � K; 1 � k � K. A

node also maintains a status indicator that speci�es whether the object is in cache and

pinned, is in cache and not pinned or is considered evicted out of the cache.

A Vector Cp[]: This is a vector container whose elements hold information of those objects

that are pinned. In particular the elements of the container have �elds for the count of

the number of pins held on the object.

A Vector Cu[]: This is a vector container of m heap-like structures where m is the number of

partitions of the values c0i=si. Each element Cu[k]; 1 � k �m, is a heap-like data structure.

The root node of Cu[k] holds the minimum valued element of all nodes in the heap. The

vector forms a tournament of heaps for selecting an actual candidate for removal.

4.1 The Simulation Model

In simulating cache replacement polices in SRMs, one needs to account speci�cally for delays

three types of delays:

i the latency incurred at the originating source of the object;

ii the transfer delay in reading the object into the cache, and

iii the holding or pinning delay incurred while a user processes the object after it has been

cached. This may simply involve transfering the object into the users workspace.

Simulations of cache replacement policies that have been studied for virtual memory manage-

ment, database bu�ering, tertiary storage �le staging and web-caching do not normally address

these concerns. We are not aware of any simulations of cache replacement policies that account

for the additional delays in the processing objects after they are cached.

The simulation of the replacement policies is done as a discrete event simulation and identi�es

the occurrences of �ve distinct events for an object request and acts appropriately. The dis-

tinct event times of each requests ri are Arrival Time(ri), Start Caching(ri), End Caching(ri),

Start Processing(ri) and End Processing(ri). An event object (ri = evtObj), is constructed upon

an arrival of a request and inserted into an event queue denoted by evtQueue. An evtObj has a

component eventType that identi�es which event type it is and the time, denoted by schdTime,

at which the event is to occur. The evtQueue is priority queue.

10



The actions taken upon the occurrence of these events are implied by their names. We

give the semantic action of only one to illustrate the idea. Suppose an event object evtObj, is

popped up from the top of the event queue. If eventType(evtObj) = \Start Caching" then the

eventType(evtObj) is set to \End Caching" and the schdTime(evtObj) is set to the scheduled

completion time for retrieving the object into cache. The event object evtObj, is then reinserted

into the priority queue evtQueue.

The simulator is driven by the arrival of �le requests. Let the time of arrival of a request ri for

an object j, be t0 and let the root object of a non-empty evtQueue by denoted by evtQueue(Root)

If t0 is greater than or equal to schdTime(evtQueue(Root)) then evtQueue(Root) is removed and

assigned to evtObj. The simulator acts appropriately according to the event type of evtObj that

has been scheduled. Otherwise if t0 is less than schdTime(evtQueue(Root)) then a series of

actions are carried out that eventually ensures that the object is brought into the cache. In

particular, if the object of size si is not in cache then the simulator runs the cache replacement

algorithm on the vector container Cu[] to free enough space for the incoming object.

It is possible to encounter the situation where the simulator is unable to free enough cache

space for an incoming object. This can easily occur particularly if either there is not enough cache

space allocated to handle the workload or all objects in the cache are pinned. We introduce a new

performance metric in evaluating cache replacement policies which we refer to as \availability".

We de�ne this formally in the next subsection.

4.2 Performance Metrics

The traditional performance metrics that have been used in general to measure the e�ectiveness

of a cache replacement policy are the hit ratio and the byte hit ratio. Given a request stream

(or workload), the hit ratio is de�ned as the ratio of the requests that �nd their objects in cache

(i.e., hits) to the total number of requests. A byte hit ratio is the ratio of the volume of data

(in bytes) hit to the volume of data requested.

In any case these measures provide some insight into the improvement in response times and

savings in bandwidth utilization due to caching. Hit ratio gives the relative savings as a count

of the number of objects hit, while the byte hit ratio measures the relative savings in the volume

of data prevented from being transferred. The measure of byte hit ratio translates to savings in

bandwidth usage and consequently improved response time. None of these measures accounts

11



for the latency at the data source. For example when the data source is from a robotic tape

device where the delay can sometimes be comparable to the data transfer time, the measure

of byte hit ratio does not re
ect it. We introduce a third measure which we call the \Cost

Per Reference". This is de�ned as the ratio of the total cost of retrievals to the total number

of references. This measures the relative savings as the average cost avoided per reference in

retrieving and transferring the object into cache. A lower value of this measure indicates an

e�ective replacement policy. A fourth measure that is relevant to object caching on disk as

opposed to main memory caching is \availability". Given a workload with de�ned arrival times

of each request, we say a request is satis�ed if either the object is already in cache or enough

disk space can be freed to allow the object to be cached. We de�ne availability as the ratio of the

number of requests that were immediately satis�ed to the total number of requests made in a

workload. The minimum cache size for which availability becomes 100% indicates the minimum

cache required to satisfy the given workload. We measure all four performance metrics in our

experimental studies using synthetic and real workloads.

5 Performance Comparison of Some Replacement Policies

We compared the performance of a number of replacement policies, namely LFU, RND, LRU,

LRU-K, MIT-K (i.e., variant of LRU-K) and LCB-K, to evaluate their relative performance

under the di�erent metrics of hit ratio, byte hit ratio, average cost per reference and availability.

We also compared the average times taken by each policy to free enough space for an incoming

object. The simulations used both synthetic workload and a real workload of a three month

�le caching activities of the mass storage system, JasMINE, at Je�erson's National Accelerator

Facility (JLab).

The �le sizes ranged from about 1.0 to 2.1 gigabyte and the time scales are in the order of

minutes. Arrivals in these workload are batched, in the sense that the same request, with the

same submit time can be associated with multiple �le identi�ers. However the workload has

very low locality of reference.

Using the time scale and �le sizes of the workload from JLab as a guide, we generated a

synthetic workload based on a Poisson inter-arrival time with mean 90 seconds. The �le sizes,

in bytes, are uniformly distributed between 500,000,000 and 2,147,000,000. The entire period

12



of request generation is broken into random intervals and we inject locality of reference using

the 80-20 rule, i.e., within each interval of the request stream 80% of the requests are made to

20% of the �les. The length of an interval is uniformly distributed between 1% and 5% of the

generated workload.

5.1 Experimental Results

Figure 2a shows the graphs of the hit ratio versus the cache size, expressed as a percentage of size

of the total workload, for the respective policies of LCB-K, MIT-K, LRU, RND and LFU. The

corresponding graphs of the average cost per reference and byte hit ratio are shown in Figure 2b

and Figure 2c respectively. The average time taken to free suÆcient space to fetch a requested

�le is shown in Figure 2d. There is no signi�cant di�erence between the policies in the values

of the hit ratio except for LFU which is clearly the worst. However in Figure 2d LCB-K gives

the least average cost per reference with LFU showing the worst performance.

The performance graphs using the workload from JLab are shown in Figure 3. Figures 3a,

3b and 3c follow the same trends as in the synthetic workload except that the average cost per

reference, increases with increasing cache size between 1% to 4.2% of the workload. This is due

to the fact that the simulator discards requests that can not be satis�ed in the sense described

in sub-section 4.2. This is the range of cache sizes for which the availability is less than 100%.

The availability graph is shown in Figure 3d. A key observation here is that the availability is

not dependent on replacement policy used but rather it is dependent on the amount of cache

size allocated.

In the development of LRU-K, the authors suggested that values of K = 2 or 3 is suÆcient and

recommended the use of K = 2. We veri�ed this fact in our simulation to see if the performance

measures for LCB-K and MIT-K would be radically di�erent for K = 3 and K = 5 than for

K = 2. The graphs of Figure 4, using the synthetic workload, support the suggestion made

that the use of K � 3 is suÆcient. Note that even for the measure of average cost per reference

shown in Figure 4b, the graphs separate out clearly into two groups; the group for LCB-K and

MIT-K for K = 2; 3; 5. The group for LCB-K clearly gives the better performance measures.

Within each group, there is very little di�erence in the plots.

13



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Hi
t 

Ra
ti

o

Cache Size as % of Total Data Size

Hit Ratio for Synthetic Workload

LCBK (K = 2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(a)

35

40

45

50

55

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Av
er

ag
e 

Re
tr

ie
va

l 
Ti

me
 (

in
 s

ec
s)

Cache Size as % of Total Data Size

Average Retrieval Time Per Reference

LCBK (K = 2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

By
te

 H
it

 R
at

io

Cache Size as % of Total Data Size

Byte Hit Ratio of Synthetic Workload

LCBK (K=2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(c)

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

mi
cr

os
ec

s

Cache Size as % of Total Data Size

Time to Compute Replacement

LCBK (K = 2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(d)

Figure 2: Graphs of Performance Metrics for Synthetic Workload

6 Conclusion and Future Work

Disk �le caching, in storage resource managers, has some characteristic features that make it

di�erent from caching in other domains such as virtual memory, database page bu�ering and

web-caching. In particular, disk �le caching in SRMs involve variable size objects that are very

14



0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25

Hi
t 

Ra
ti

o

Cache Size as % of Total Data Size

Hit Ratio Using Workload from JLab

LCBK (K = 2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(a)

120

140

160

180

200

220

240

0 5 10 15 20 25
Av

er
ag

e 
Re

tr
ie

va
l 

Ti
me

 (
in

 s
ec

s)

Cache Size as % of Total Data Size

Avg. Retrieval Time Per Reference 

LCBK (K = 2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(b)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25

By
te

 H
it

 R
at

io

Cache Size as % of Total Data Size

Byte Hit Ratio Using Workload from JLab

LCBK (K = 2)
MITK (K = 2)
LRU (K = 1)

RND 
LFU 

(c)

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25

% 
Av

ai
la

bi
li

ty

Cache Size as % of Total Data Size

LCBK (K = 2)
LRU (K = 1)

RND 
LFU 

(d)

Figure 3: Graphs of Performance Metrics of Real Workload from Je�erson's National Accelerator

Facility (JLab)

15



0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

% 
Hi

ts

Cache Size as % of Total Data Size

Hit Ratio for K = 2, 3, 5

LCBK (K = 2)
LCBK (K = 3)
LCBK (K = 5)
MITK (K = 2)
MITK (K = 3)
MITK (K = 5)

(a)

34

36

38

40

42

44

46

48

50

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

se
cs

Cache Size as % of Total Data Size

Avg. Cost Per Reference, K = 2, 3, 5

LCBK (K = 2)
LCBK (K = 3)
LCBK (K = 5)
MITK (K = 2)
MITK (K = 3)
MITK (K = 5)

(b)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25

% 
By

te
 H

it
 R

at
io

Cache Size as % of Total Data Size

Byte Hit Ratio, K = 2, 3, 5

LCBK (K = 2)
LCBK (K = 3)
LCBK (K = 5)
MITK (K = 2)
MITK (K = 3)
MITK (K = 5)

(c)

Figure 4: Graphs of Performance Metrics of Synthetic Workload with K = 2, 3, and 5

16



large. The delays caused by source latency, object transfers and processing of the objects once

in the cache are all signi�cant.

We have derived an optimal utility function for determining the objects to be evicted from

the cache of an SRM when space is needed. We have presented an eÆcient method for evaluating

the replacement policy based on the optimality condition using a tournament of heaps. Unlike

traditional simulations of cache replacement policies we also presented a realistic simulation

model that accounts for the delays in processing objects in the cache. Using the simulation

model, we compared the replacement policies of RND, LFU, LRU and MIT-K under the perfor-

mance metrics of hit ratio, byte hit ratio and average cost per reference for both synthetic and

actual workloads.

We conclude that average cost per reference is the most realistic performance metrics for

evaluating disk cache replacement policies for storage resource managers. Under this measure

of performance comparison, the least cost bene�cial replacement policy gives the best result of

the policies compared.

Acknowledgment

We would like to express our sincere gratitude to Andy Kowalski of Je�erson's National Accel-

erator Facility and Don Petravick of Fermi National Laboratory for providing us the workloads

used in our simulation runs. This work is supported by the Director, OÆce of Laboratory

Policy and Infrastructure Management of the U. S. Department of Energy under Contract No.

DE-AC03-76SF00098. This research used resources of the National Energy Research Scienti�c

Computing (NERSC), which is supported by the OÆce of Science of the U.S. Department of

Energy.

References

[1] C. C. Aggarwal and P. S. Yu. On disk caching of web objects in proxy servers. In Proc. Int'l.

Conf. Info and Knowledge Management, CIKM'97, pages 238 { 245, Las Vegas, Nevada,

1997.

[2] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In USENIX Sym-

posium on Internet Technologies and Systems, 1997.

17



[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid: Towards

an architecture for the distributed management and analysis of large scienti�c datasets. J.

Network and Computer Applications, 23(3):187 { 200, 2000.

[4] S. Dar, M. Franklin, B. Jonsson, D. Srivastava, and M. Tan. Semantic data caching and

replacement. In Proc. VLDB Conf., pages 330 { 341, Bombay, India, Sept. 1996.

[5] I. Foster and C. Kesselman, editors. The GRID: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann Publ., San Fracisco, 1999.

[6] D. Guerrero. Caching the web, part 1. Linux Journal, 57, Jan. 1999.

[7] U. Hahn, W. Dilling, and D. Kaletta. Adaptive replacement algorithm for disk caches

in hsm systems. In 16 Int'l. Symp on Mass Storage Syst., pages 128 { 140, San Diego,

California, Mar. 15-18 1999.

[8] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger. Data manage-

ment in an international data grid project. In Proc. 1st IEEE/ACM Int'l. Workshop on

Grid Computing, India, 2000.

[9] F. A Olken. Hopt: A myopic version of the stochopt automatic �le migration. In Proc.

ACM SIGMETRIC Conf. on Mesurement and Modelling of Comput. Syst., pages 39 { 43,

Minneapolis, Minnesota, Aug. 1983.

[10] E. J. O'Neil, P. E. O'Neil, and G. weikum. The lru-k page replacement algorithm for

database bu�ering. In Proc. ACM SIGMOD'93: Int'l. Conf. on Mgmnt. of Data, pages 297

{ 306, Washington, DC, May. 1993.

[11] P. Scheuermann, J. Shim, and R. Vingralek. Watchman: A data warehouse intelligent cache

manager. In Proc. 22nd VLDB Conference, pages 51 { 62, Bombay, India, Sept. 1996.

[12] A. Shoshani, A. Sim, and J. Gu. Storage resource managers: Middleware components for

grid storage, Apr. 15 - 18 2002.

[13] A. J. Smith. Analysis of long term �le reference patterns for application to �le migration

algorithms. IEEE Trans. on Soft. Eng., SE-7(4):403{417, Jul. 1981.

[14] M. Tan, M.D. Theys, H.J. Siegel, N.B. Beck, and M. Jurczyk. A mathematical model,

heuristic, and simulation study for a basic data staging problem in a heterogeneous net-

working environment. In Proc. of the 7th Hetero. Comput. Workshop, pages 115{129,

Orlando, Florida, Mar. 1998.

[15] T. Theodore Johnson and E. L. Miller. Performance measurements of tertiary storage

devices. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB'98, Proc. 24th Int'l.

Conf. on Very Large Data Bases, pages 50 { 61. Morgan Kaufmann, Aug. 24-27 1998.

[16] S. Williams, M Abrams, C. Stanbridge, G. Abdulla, and E. Fox. Removal policies in network

caches for world-wide-web documents. In Proc. of ACM SigComm Conf., 1999.

[17] N. Young. On-line �le caching. In SODA: ACM-SIAM Symposium on Discrete Algorithms

(A Conference on Theoretical and Experimental Analysis of Discrete Algorithms), 1998.

18


