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Abstract

In this paper, we study the effectiveness of compression on bitmap indexes. The main oper-
ations on the bitmaps during query processing are bitwise logical operations such as AND, OR,
NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations
on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized
compression schemes, like the byte-aligned bitmap code (BBC), are usually faster in performing
logical operations than the general purpose schemes, but in many cases they are still orders
of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes
operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-
aligned hybrid code (WAH). Tests on both synthetic and real application data show that the
new scheme significantly outperforms well-known compression schemes at a modest increase in
storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH
performs logical operations about 12 times faster and uses only 60% more space. Compared
to the uncompressed scheme, in most test cases WAH 1is faster while still using less space. We
further verified with additional tests that the improvement in logical operation speed translates

to similar improvement in query processing speed.



1 Introduction

Bitmap indexes have been discussed extensively in the literature because of their usefulness in
various database applications such as data warehouses[4, 6, 17, 25]. Generally, a bitmap index
consists of a set of bitmaps and queries can be answered using bitwise logical operations on the
bitmaps. Figure 1 shows a set of such bitmaps for the attribute R of a tiny table (T) consisting of
only eight tuples (rows). The attribute R can have one of four values, A, B, H and W, representing
Races: Asian, Black, Hispanic and White. There are four bitmaps each representing whether the
value of R is one of the four choices. For convenience, we have labeled the four bit sequences
b1,...,bs. To process a query such as “select * from T where R=A or R=B”, one performs the
bitwise logical operation by OR by. Since bitwise logical operations are well supported by computer
hardware, bitmap indexes are very efficient to use [17]. In many data warehouse applications
[4, 17, 25], bitmap indexes are better than the tree based schemes, such as the B-tree. According
to the performance model proposed by Jiirgens and Lenz [11], the bitmap indexes are likely to be
even more competitive in the future as the disk technology improves. In addition to supporting
complex queries on one single table as shown in this paper, researchers have also demonstrated
that they can accelerate complex queries involving multiple tables [19]. Realizing the value of the
bitmap indexes, most major DBMS vendors have implemented them in their products.

The example shown in Figure 1 is the simplest form of the bitmap index which we will call the
traditional bitmap index. It may use more space than what is practical, especially for attributes
with high cardinalities, i.e., attributes with a large number of distinct values. One solution proposed
is to use a more complex encoding scheme for generating the bitmaps. One well-known scheme is
the bit-sliced index [18], that encodes n distinct values using logon bits and creates a bitmap for

each binary digit of the value indexed. This is related to the binary encoding scheme discussed



bitmap index
OID | R || = =B =H =W

1] A 1 0 0 0
2| B 0 1 0 0
3|IW | 0 0 0 1
4| H 0 0 1 0
5| W | 0 0 0 1
6| W O 0 0 1
7| B 0 1 0 0
SIW | 0 0 0 1

bl bg b3 b4

Figure 1: A sample bitmap index for attribute R.

elsewhere [4, 12, 23, 25]. A drawback of this scheme is that to answer each query, most of the
bitmaps have to be accessed, and possibly multiple times. There are also a number of schemes that
generate more bitmaps than the bit-sliced index but access less of them during query processing.
Examples of these are the attribute value decomposition [4], interval encoding [5] and the K-of-N
encoding [23]. In this paper, we explore a strategy for reducing the index size by compression.
Since compression can be applied on any bitmap, an efficient compression scheme should benefit
all bitmap indexes no matter what encoding scheme is used. In this paper, we study the effect of
compression on the traditional bitmap index. Since we no longer discuss other schemes, we simply
refer to the traditional bitmap index as the bitmap index.

One simple option to compress the bitmaps is to use one of the text compression algorithms,
such as LZ77 (used in gzip) [14]. These algorithms are well-studied and effective in reducing file
sizes. However, performing logical operations on the compressed data are usually significantly
slower than on the uncompressed data. To address this performance issue, a number of special
algorithms have been proposed. Johnson and colleagues have conducted extensive studies on their
performance [10, 1]. From their studies, we know that the logical operations using these specialized

schemes are in general faster than those using gzip. One of such specialized algorithm, named the



Byte-aligned Bitmap Code (BBC), is known to be very efficient. It is used in a commercial database
system, ORACLE [2, 3]. However, even with BBC, logical operations on the compressed data still
can be orders of magnitudes slower than on the uncompressed data in many cases.

In this paper, we propose a simple algorithm for compressing the bitmap indexes that improves
the speed of logical operations by an order of magnitude at a cost of small increase in space.
We call the method the Word-aligned Hybrid (WAH) compression scheme. We demonstrate that
this algorithm not only supports faster logical operations but also enables the bitmap index to be
applied to attributes with high cardinalities. In general, the bitmap indexes are said to be effective
for attributes with low cardinalities, say, < 100. On scientific data where most of the attributes
are of high cardinality, the bitmap index may not be effective. Our tests show that by using WAH
compression, we can achieve good performance even on scientific data sets.

From their performance studies, Johnson and colleagues came to the conclusion that one has to
dynamically switch among different compression schemes in order to achieve the best performance
[1]. We found that since WAH is significantly faster than earlier compression schemes, there is no
longer the need to switch compression schemes in a bitmap indexing software. In short, the new
compression scheme not only improves the performance of the bitmap indexes but also simplifies the
indexing software. Additionally, a number of other common indexing schemes such as the signature
file [7, 9, 13] and the bit transposed files [23] may also benefit from this efficient compression
algorithm.

The remainder of this paper is organized as follows. In Section 2 we review three commonly used
compression schemes and identify their key features. These three were selected as representatives
in our performance comparisons. Section 3 contains the description of the word-aligned hybrid
code (WAH). Section 4 contains some timing results of the bitwise logical operations. Some timing

information on processing range queries are presented in section 5. A short summary is given in



Section 6.

2 Review of byte based schemes

In this section, we briefly review three well known schemes for representing bitmaps and intro-
duce the terminology needed to described our new scheme. These three schemes are selected as
representatives from a number of schemes studied previously [10, 24].

A straightforward way of representing a bitmap is to use one bit of computer memory for each
bit of the bitmap. We call this the literal (LIT) bit vector®. This is the uncompressed scheme and
logical operations on uncompressed bitmaps are extremely fast.

The second type of scheme in our comparisons is the general purpose compression schemes such
as gzip [14]. They are highly effective in compressing data files. We use gzip as the representative
because it is usually faster than others in decompressing the data files.

As mentioned earlier, there are a number of compression schemes that offer good compression
and also allow fast bitwise logical operations. One of the best known schemes is the Byte-aligned
Bitmap Code (BBC) [2, 3, 10]. The BBC scheme performs bitwise logical operations efficiently and
it compresses almost as well as gzip. We use BBC as the representative for these types of schemes.
Our implementation of the BBC scheme is a version of the two-sided BBC code [24, Section 3.2].
This version performs as well as the improved version by Johnson [10]. In both Johnson’s tests
[10] and ours, the time curves for BBC and gzip (marked at LZ in [10]) cross at about the same
position.

Many of the specialized bitmap compression schemes, including BBC, are based on the basic

idea of run-length encoding that represents consecutive identical bits (also called a fill or a gap)

1We use the term bit vector to describe the data structure used to represent the compressed bitmaps.



by their bit value and their length. The bit value of a fill is called the fill bit. If the fill bit is zero,
we call the fill a 0-fill, otherwise it is a 1-fill. Compression schemes generally try to store repeating
bit patterns in compact forms. The run-length encoding is among the simplest of these schemes.
This simplicity allows logical operations to be performed efficiently on the compressed bitmaps.

Different run-length encoding schemes commonly differ in their representations of the fill lengths
and the short fills. A naive run-length code may use a word to represent any fill length. This is
ineffective because it uses more space to represent short fills than in the literal scheme. One common
improvement is to represent the short fills literally. The second improvement is to use as few bits
as possible to represent the fill length. Given a bit sequence, the BBC scheme first divides it into
bytes and then groups the bytes into runs. Fach BBC run consists of a fill followed by a tail of
literal bytes. Since a BBC fill always contain a number of whole bytes, it represents the fill length
as the number of bytes rather than the number of bits. In addition, it uses a multi-byte scheme to
represent the fill lengths [2, 10]. This strategy often uses more bits to represent a fill length than
others such as ExpGol [16]. However it allows for faster operations [10].

Another property that is crucial to the efficiency of the BBC scheme is the byte alignment.
This property limits a fill length to be an integer multiple of bytes. More importantly, is ensures
that during any bitwise logical operation a tail byte is never broken into individual bits. Because
working on individual bits is much less efficient than working on whole bytes on most CPUs, byte-
alignment is crucial to the operational efficiency of BBC. Removing the alignment requirement may
lead to better compression. For example, the ExpGol scheme [16] can compress better than BBC
partly because it does not obey the byte alignment. However, bitwise logical operations on ExpGol

bit vectors are often much slower than on BBC bit vectors [10].



3 Word based schemes

Most of the known compression schemes are byte based, that is, they access computer memory one
byte at a time. On most modern computers, accessing one byte takes as much time as accessing one
word [20]. A computer CPU with MMX technology offers the capability of performing a single op-
eration on multiple bytes. This may automatically turn byte accesses into word accesses. However,
because the bytes in a compressed bit vector typically have complex dependencies, logical opera-
tions implemented in high-level languages are unlikely to take advantage of the MMX technology.
Instead of relying on the hardware and compilers, we developed a new scheme that accesses only
whole words. It is named the word-aligned hybrid code (WAH). We have previously considered a
number of word-based schemes and this is the most efficient one in our tests [24].

The word-aligned hybrid (WAH) code is similar to BBC in that it is a hybrid between the run-
length encoding and the literal scheme. Unlike BBC, WAH is much simpler and it stores compressed
data in words rather than in bytes. There are two types of words in WAH: literal words and fill
words. In our implementation, we use the most significant bit of a word to distinguish between a
literal word (0) and a fill word (1). This choice allows one to easily distinguish a literal word from
a fill word without explicitly extracting the bit. The lower bits of a literal word contain the bit
values from the bitmap. The second most significant bit of a fill word is the fill bit and the lower
bits store the fill length. WAH imposes the word-alignment requirement on the fills, it requires
that all fill lengths be integer multiples of the number of bits in a literal word. The word-alignment
ensures that logical operation functions only need to access words not bytes or bits.

Figure 2 shows a WAH bit vector representing 128 bits. In this example, we assume each
computer word contains 32 bits. Under this assumption, each literal word stores 31 bits from the

bitmap and each fill word represents multiple of 31 bits. If the machine has 64-bit words, each



128 bits 1,20%0,3%1,79%0,25%1

31-bit groups 1,20%0,3*%1,7*0 620 10%0,21%1 4x1
groups in hex 40000380 00000000 00000000 OO1FFFFF 0000000F
VVAlI(heX) 40000380 80000002 OO1FFFFF 0000000F

Figure 2: A WAH bit vector. Each WAH word (last row) represents a multiple of 31 bits from the
bit sequence, except the last word that represents the four leftover bits.

A | 40000380 80000002 OO1FFFFF 0O0OOOOOF
B | C0000002 7COO01E0 3FE00000 00000003
C | 40000380 80000003 00000003

Figure 3: A bitwise logical AND operation on WAH compressed bitmaps, C = A AND B.

literal word would store 63 bits from the bitmap and each fill would have a multiple of 63 bits.
The second line in Figure 2 shows how the bitmap is divided into 31-bit groups and the third line
shows the hexadecimal representation of the groups. The last line shows the values of the WAH
words. The first three words are normal words, two literal words and one fill word. The fill word
80000002 indicates a 0-fill of two-word long (containing 62 consecutive zero bits). Note that the
fill word stores the fill length as two rather than 62. In other word, we represent the fill length as
multiple of the literal word size. The fourth word is the active word that stores the last few bits
that can not be stored in a normal word, and another word (not shown) is needed to stores the
number of useful bits in the active word.

The logical operation functions are easy to implement but are tedious to describe. To save
space, we refer the interested reader to a technical report [24]. Here we only briefly describe one
example, see Figure 3. In this example, the first operand of the logical operation is the one in
Figure 2. To perform a logical operation, we basically need to match each group of 31 bits from
both operands and generate the groups for the result using the hardware support to perform the

operations between groups of 31 bits. Each column of the table is reserved to represent one such



group. A literal word occupies the location for the group and A fill word is given at the space
reserved for the first group it represents. The first 31-bit group of the result C is the same as that
of A because the corresponding group in B is part of a 1-fill. The next three groups of C contain
only zero bits. The active words are always treated separated.

The logical operations can be directly performed on the compressed bitmaps and the time needed
by one such operation on two operands is related to the sizes of the compressed bitmaps. Let the
compression ratio be the ratio of size of a compressed bitmap to its uncompressed counterpart.
When the average compression ratio of the two operands are less than 0.5, the logical operation

time is expected to be proportional to the average compression ratio [24].

4 Performance of the logical operations

In this section, we discuss the performance of the logical operations. Ultimately we are interested
in enhancing the speed of query processing. However, because logical operations are the main
operations on the bitmaps and their performances are directly affected by the compression schemes,
we discuss the performances of the logical operations in this section and leave the performance of
query processing for the next section.

The WAH compression scheme are compared against the three schemes reviewed in Section 2.
The tests are conducted on three sets of data, a set of random bitmaps, a set of bitmaps generated
from a Markov process and a set of bitmap indexes on some real application data. Fach synthetic
bitmap has 100 million bits. The synthetic data are controlled through two parameters, the bit
density and the clustering factor. In a bitmap, the bit density is the fraction of bits that are one
and the clustering factor is the average length of the 1-fills. The random bitmaps are generated

according to the bit density and the Markov process generates bitmaps with specified bit density and



clustering factor. In our tests, we restrict all synthetic bitmaps to have bit density no more than 1/2.
Since all compression schemes can compress 0-fills and 1-fills equally well, the performance for high
bit density cases should be the same as low bit densities ones. When necessary to distinguish the
two type of synthetic bitmaps, we refer to them as the random bitmaps and the Markov bitmaps
according to how they are generated. The real application is a high-energy physics experiment
called STAR? [21, 22]. The data used in our tests can be viewed as one relational table consisting
of about 2.2 million tuples and 500 attributes. The bitmaps used in this test are bitmap indexes
on a set of 12 most frequently queried attributes.

We have conducted a number of tests on different machines and found that the relative per-
formances among the different compression schemes are independent of the specific machine ar-
chitecture. This characteristic was also observed in a different performance study [10]. The main
reason for this is that most of the clock cycles are consumed by branching operations such as “if”
tests and “loop condition” tests. These operations only depend on the clock speed not on most
other parameters such as cache size, memory size, memory bandwidth, the number of instructions
issued per clock cycle, and so on. For this reason, we only report the timing results from a Sun
Enterprise 450% that is based 400 MHz UltraSPARC II CPUs. The test data were stored in a file
system striped across five disks connected to an UltraSCSI controller and managed by a VERITAS
Volume Manager?. The VERITAS software distribute files across the five disks to maximize the 10
performance. The machine has four gigabytes (GB) of RAM which is large enough to store each
of our test case in memory. The cache size is 4 MB. In most cases, this cache is too small to store
the two operands and the result of a logical operation.

Because of space limitations, we only show performance of the logical OR operations in the

?Information about the project is also available at http://www.star.bnl.gov/STAR.
*Information about the E450 is available at http://www.sun.com/servers/workgroup/450.
*Information about VERITAS Volume Manager is available at http://www.veritas.com/us/products.
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following graphs. On the same machine, a logical AND operation typically takes slightly less time
than a logical OR operation on the same bit vectors, and a logical XOR operation typically takes
slightly more time. In general, if WAH is X times faster than BBC in performing a logical OR
operation, the same would also be true for the two other logical operations.

The most likely scenario of using these bit vectors in a database system is to read a number of
them from disks and then perform bitwise logical operations on them. In most cases, the bit vectors
simply need to be read into memory and stored in the corresponding in-memory data structures.
Only the gzip scheme needs a significant amount of CPU cycles to decompress the data files into
the literal representation before actually performing the logical operations. In our tests involving
gzip, only the operands of logical operations are compressed; the results are not. This is to save
time. Had we compressed the result as well, the operations would take several times longer than
those reported in this paper because the compression process is more time-consuming [24]. We use
the direct method for both BBC and WAH. In other word, a logical operation directly operates on
two compressed operands and produces a compressed result. It is one of the four strategies studied
by Johnson [10]. We have chosen the direct method because it requires less memory and is often
faster than the alternative methods.

Figure 4 shows the time it takes to perform the bitwise logical OR operations on the random
bitmaps. Each data point shows the time to perform a logical operation on two bitmaps with similar
bit densities. Figure 4(a) shows the logical operation time and Figure 4(b) shows the total time
including the time to read the two bitmaps from files. In most cases, the IO time is a relatively small
portion of the total time for BBC and WAH. Neglecting the IO time does not significantly change
the relative performance between WAH and BBC. In an actual application, once the bitmaps are
read into memory, they are likely to be used more than once. The average cost of a logical operation

would be close to what is shown in Figure 4(a). From now on when showing the logical operation
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Figure 4: CPU seconds needed to perform a bitwise OR operation on two random bitmaps.

time, we will not include the 10 time.

Among the schemes shown, it is clear that WAH uses much less time than either the BBC or
the gzip schemes. In all test cases, the gzip scheme uses at least three times more time than the
literal scheme. In almost half of the test cases, BBC takes more than ten times longer than WA

When the bit density is about 1/2, the random bitmaps are not compressible by any compression
scheme. In these cases, our implementation of BBC and WAH are able to perform nearly as fast
as the literal scheme by not compressing the results. In Figure 4, the lines for BBC and WAH fall
on top of the one for the literal scheme at bit density of 1/2.

In Figure 4 we see that when bit density is above 0.01, WAH performs logical operations slower
than the literal scheme. Since on the uncompressed bitmaps WAH can perform logical operations
as well as the literal scheme, we might store those dense bitmaps without compression and expect
the logical operations to be as fast as in the literal scheme. However, doing so significantly increases
the space requirement and it does not even guarantee the speed of logical operation is always the

fastest. This leads us to take a more careful look at the compression effectiveness and factors that
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Figure 5: The sizes of the compressed bit vectors. The symbols for the Markov bitmaps are marked
with their clustering factors.

determine the logical operation speed.

Figure 5 shows the sizes of the four types of bit vectors. Each data points in this figure represent
the average size of a number of bitmaps with the same bit density and clustering factor. As the
bit density increases from 0.0001 to 0.5, the bit sequences become less compressible and it takes
more space to represent them. When the bit density is 0.0001, all four compression schemes use
less than 1% of the disk space required by the literal scheme. At a bit density of 0.5, the test
bitmaps become incompressible and the compression schemes all use slightly more space than the
literal scheme. In most cases, WAH uses more space than the two byte based schemes, BBC and
gzip. For bit density between 0.001 and 0.01, WAH uses about 2.5 (~ 8/3) times the space as
WBC bit vectors. In fact, in extreme cases, WAH may use four times as much space as BBC.
Fortunately, these cases do not dominate the total space required by a bitmap index. In a typical
bitmap index, the set of bitmaps contains some that are easy to compress and some that are hard
to compress, and the total size is dominated by the hard to compress ones. Since most schemes use

about the same amount of space to store these hard to compressible ones, the differences in total
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Figure 6: Logical operation time is almost proportional to compression ratio. The STAR bitmap
indexes are on the 12 most queried attributes.

sizes are usually much smaller than the extreme cases. For example, on the set of STAR data, the
bitmap indexes compressed using WAH are about 60% bigger than those compressed using BBC,
see Iigure 7. This is a fairly modest increase in space compared to the increase in speed.

To verify that the logical operation time is proportional to the sizes of the operands, we plotted
the timing results of the two sets of synthetic bitmaps together in Figure 6(a) and the results on
the STAR bitmaps in Figure 6(b). In both cases, the compression ratio is used as the horizontal
axes. Since in each plot, the bitmaps are of the same length, the sizes are directly proportional
to the compression ratios. In each plot, a symbol represents the average time of logical operations
on bitmaps with the same size. The dashed and dotted lines are produced from linear regressions.
Most of the data points near the center of the graphs are close to the regression lines. Those logical
operations involving bit vectors with high compression ratios are nearly constant. For very small
bit vectors, where the logical operation time is measured to be a few microseconds, the logical
operations time deviates from the linear relation because of the overheads such as the timing

overhead, function call overhead and other lower order terms in the complexity expression. The
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regression lines for WAH and BBC are about a factor of ten apart in both plots.

The performance differences between WAH and BBC can be attributed to three main factors.

1. The encoding scheme of WAH is much simpler than BBC. WAH has only two kinds of words
and one test is sufficient to determine the type of any given word. In contrast, our implemen-
tation of BBC has four different types of runs, other implementations have even more [10]. It
may take up to three tests in order to decide which run type a header byte is. After deciding

the run type, many clock cycles may also be needed to fully decode a run.

2. During the logical operations, WAH always accesses whole words, while BBC accesses bytes.
On most bitmaps, BBC needs more time to load its data from the main memory to CPU

registers than WAL

3. BBC can encode shorter fills more compactly than WAH, however, this comes at a cost. Fach
time BBC encounters a short fill, say a fill with less than 8 bytes, it starts a new run. WAH
typically represent such a short fill literally. It is much faster to operate on a WAH literal
word than on a BBC run. This situation is common when bit density is greater than 0.01 in

random bitmaps.

If we sum up the execution time of all logical operations performed on the STAR bitmaps for
each compression scheme, the total time for BBC is about 12 times that of WAH. Much of this
difference can be attributed to the factor 3 discussed above. There are a number of bitmaps that
can not be compressed by WAH but can be compressed by BBC. When operating on these bitmaps,
WAH is nearly 100 times faster than BBC. On very sparse bit vectors, WAH is about four to five
times faster than BBC.

Compared to the literal scheme, the BBC scheme is faster in a fraction of the test cases, however,

WAH is faster in more than 60% of the test cases. In the worst case, BBC can be nearly 100 times
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slower than the literal scheme, but WAH is only 6 times slower. It might be desirable to use the
literal scheme in some cases. To reduce the complexity of the software, we suggest one to use WAH
but only use the literal words. Regarding whether to store random bitmaps with bit density greater

than 0.01 without compression, we recommend that the bitmaps be compressed.

5 WAH improves bitmap index effectiveness

This research was originally motivated by the need to manage the volume of data produce by the
STAR experiment. The frequently queried attributes, the tags, can be organized as a relational
table consisting of millions of tuples and hundreds of attributes. A typical query is a range query
involving a handful of attributes. If Energy and NumParticles are two attributes of the table, a
query on them might be “Energy > 15 GeV and 7 <= NumParticles < 13”. In addition, most
user queries may involve different attributes and different number of them. Queries of this form,
which we call ad hoc range queries, are particularly difficult for most database systems. For example,
if a B-tree index is created for each attribute, ORACLE usually selects one of them to resolve part
of the query and then scans the table to fully resolve the query. This approach often takes more
time than simply scanning the table without using an index.

Commonly used multidimensional indexing schemes such as variations of R-tree [8] are not
effective for two reasons. Most of these schemes are only effective when the number of attributes
are no more than ten, but the STAR data has hundreds of attributes. In addition, if a query does
not involve all attributes indexed, these multidimensional indexes are not effective in processing
the query. A number of researchers have confirmed that the projection index and the bitmap index
are among the fastest schemes in processing ad hoc range queries [11, 17, 18]. The projection index

is simply another name for vertical partitioning a relational table where one stores the values of an
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attribute consecutively rather than storing the values of a tuple consecutively. In this case, queries
are processed by performing comparisons on the values. In later discussions, we will refer to this
as the projection scan.

Our goal is to demonstrate that WAH compression scheme can improve the performance of the
bitmap indexing scheme. To do this, we perform two sets of tests. The first one is on some low
cardinality attributes and the second is on some high cardinality attributes. The bitmap index
is usually thought to be efficient for low cardinality attributes. In this case, we show that the
WAH compressed indexes are not only smaller than the uncompressed ones but are also more
efficient in answering range queries. When the cardinalities are high, it is impractical to generate
the uncompressed indexes. In this case, we show that the WAH compressed indexes are still of
reasonable sizes and can process range queries faster than the BBC compressed indexes and the
projection index. The high cardinality case are of particular interests to us because the most
frequently queried attributes of the STAR data have high cardinality.

In our tests, the low cardinality attributes are the 12 attributes with the lowest cardinalities
from the STAR data, and the high cardinality attributes are the 12 attributes that are most likely
to be queried by a physicist. All low cardinality attributes are four-byte integers and the frequently
queried attributes are mostly four-byte integers and floating-point values along, but one has eight-
byte floating-point values. The total size for the first set is about 104 MB and the second one is
113 MB.

Figure 7 shows the sizes of the bitmap indexes. Four columns are displayed in each table.
Column ‘¢’ shows the cardinalities of the attributes. Columns marked ‘WAH’ and ‘BBC’ are our
stand-alone implementations of the compressed bitmap indexes. The column marked ‘ORACLE’
shows the sizes of the bitmap indexes in ORACLE. Since ORACLE implements a BBC compressed

bitmap index, conceptually it is equivalent to our BBC compressed bitmap index.
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c WAH BBC ORACLE c WAH BBC ORACLE
4 10196 8733 335037 40 1964 1534 340946
4 305296 164665 421074 40 1972 1599 340573
18 1510740 924035 1077269 116 10339232 3393224 3473910
19 1437892 842359 1001476 367 10585524 3164756 3572127
24 1703456 975465 1127116 371 23436 16622 350916
25 1729380 988060 1140852 1688 11855904 3858185 4271522
33 33568 9516 334420 1807 16182848 4922029 5414222
35 151808 39254 349970 3786 10973128 3827861 4122542
35 151708 39222 349771 76920 19849220 8874753 8642620
35 151808 39257 349797 514516 20807036 18059791 15606417
40 1964 1534 330128 818300 33036432 28014187 25763032
40 1972 1599 329785 1255695 52427916 43689012 39122608
total total
312 7189788 4033699 7146695 2673646 186084612 117823553 111021435
(1) 12 low cardinality attributes (2) 12 most commonly queried attributes

Figure 7: Sizes (Bytes) of the bitmap indexes stored in various schemes.

In the first data set, there are a total of 312 distinct values, i.e., there are 312 bitmaps in the
bitmap indexes. Without compression, 312 bitmaps use about 84MB. All three versions of the
compressed bitmap indexes are less than 10% of this size and are less than 7% of the data size.

In the second data set, there are more than 2.6 million distinct values. Without compression,
the bitmap index size would be more than 720GB (more than 6000 times the data size). Both BBC
and WAH are very effective because the majority of the bitmaps are very sparse. The total size
of each set of the compressed bitmap indexes is about the same size as the data. These sizes are
comparable to those used B-tree and others.

Figure 8 shows the average query processing time of three compressed bitmap indexes and the
projection index on the high cardinality data set. The three bitmap indexes are the same as in
Figure 7. The query processing time is measured from the client side, and therefore includes network
communication time as well as the time to actually answer the query. The ad hoc range queries

are generated by randomly selecting some attributes and constructing a query with the specified
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Figure 8: The average query processing time of random range queries on the 12 most queried
attributes of the STAR data.

query box size. The query boz is defined to be the ratio of the volume of the hypercube formed by
the ranges to the total volume of the attributes [15]. For example, let the values of Energy be in
the range of 0 to 30 GeV and NumParticles in the range of 1 to 15, the query box size of “Energy
> 15 GeV and 7 <= NumParticles < 13”7 is 15/31 x 6/15 = 0.19. Given a query box size, the
shape of the query box is allowed to vary. For simplicity, we only use conjunctive queries; that
is the conditions on each attribute are joined together using the AND operator. Typically, as the
query box size increases and the number of attributes increases, it takes more time to process the
query.

We also show the time used by the projection index, marked as ‘p scan’, short for the projection
scan, in Figure 8. The projection index only access the attributes involved in a query and is much
faster than most indexing strategies [18]. For example, on our test machine, ORACLE takes about
6.5 seconds to scan a table with 12 attributes while the projection scan only need 0.56 (~ 6.5/12)
seconds. Had we actually stored all 500 attributes in the table, ORACLE would take nearly 5

minutes to perform its scan operation. Clearly, the projection scan is fast. We also take full
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advantage of the fast bitmap data structure implemented to store the intermediate result. When
evaluating conjunctive queries, the result of the left side can be used as the mask to limit the
amount work during the evaluation of the right side. A sophisticated execution planner like the one
in ORACLE can easily determine an evaluation order that minimizes the total amount of work.
However, our stand-alone indexing software does not have such a planner. Nevertheless, simply
using a mask has reduced the amount of work tremendously. This is reflected in the case where
the projection scan time is always quite close to 0.56 seconds.

We see that WAH compressed bitmap indexes are significantly more efficient than the BBC
compressed indexes. When there are two attributes per query, WAH compressed indexes are about
four times faster than the stand-alone BBC compressed indexes and 10 times faster than ORACLE.
When there are five attributes per query, WAH compressed indexes are nearly five times faster than
the stand-alone BBC compressed indexes and 14 times faster than ORACLE. In all cases, our WAH
compressed bitmap indexes are at least twice as fast as the projection index. When the query box
sizes are small, it can be orders of magnitudes faster than the projection scan.

We saw in the previous section that on the average, WAH can perform logical operations 12
times faster than BBC, but in this section we observe that the query processing speed only differs
by a factor of four to five. This is in part because much of the time is spent on performing logical
operations on very sparse bitmaps where WAH was measured to be about four to five times faster
than BBC. In addition, we have only improved the speed of logical operations which is only one
part of the time spent in query processing. Other operations such as network communication, query
parsing, and locking overhead, which can amount to a few milliseconds, become more important
after we have significantly reduced the logical operation time.

Comparing ORACLE’s implementation of BBC with our own, we found that ORACLE’s im-

plementation performs slower than ours. This is clearly evident when a large number of logical
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Figure 9: The average query processing time of random range queries on the 12 low cardinality
attributes of the STAR data.

operations are needed as in the case of processing range queries on high cardinality attributes, see
Figure 8. Next, we examine whether the same behavior persists on low cardinality attributes.
Figure 9 shows the average query processing time on the 12 low cardinality attributes. From
Figure 9 we see that it always takes less time to use the WAH compressed bitmap indexes. The two
versions of BBC compressed bitmap indexes (the stand-alone version and the Oracle version) take
about the same amount of time when there are two attributes in a query. However, ORACLE takes
less time than the stand-alone version when there are five attributes in a query. This is because
ORACLE uses a better execution plan than the stand-alone version. For example, if NumParticles
actually have only three values, 1, 3, and 15, even tough our sample query “Energy > 15 GeV and
7 <= NumParticles < 13” has a query box size of 0.19, it generates no hits. If the condition on
NumParticles is evaluated first, there is no need to evaluation the condition on Energy. Since
the stand-alone version has not implemented any query planning functionality, it evaluates the
condition on Energy first and wastes time. The query planning functionality clearly is important

to have. However, by the fact that the two versions of BBC compressed indexes use about the
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same amount of time when there are two attributes per query, we can infer that the BBC in the
stand-alone version is at least as efficient as the one in ORACLE.

Figure 9 also contains the timing information of the uncompressed bitmap indexes, marked as
“LIT.” The BBC compressed indexes often takes more time than the uncompressed indexes, but
the WAH compressed indexes are always faster. In many cases, the WAH compressed indexes only

need half the time used by the uncompressed indexes to process the same queries.

6 Summary

It is well accepted that 1/O dominates the operational efficiency of out-of-core indexing methods.
Thus, most indexing techniques focus on minimizing 1/0. For bitmap indexing, this assumption is
incorrect. Qur test results show that the computation time dominates the total time. In addition,
as main memories become cheaper, we expect that ”popular” bitmaps remain in memory once there
are used. For these reasons, we pursued the course of improving the computational efficiency of
operations over bitmaps. Specifically, we were interested in compression schemes that are able to
support fast bitwise logical operations. The best existing bitmap compression schemes are byte-
aligned. In this paper, we presented a word-aligned scheme WAH, that is not only much simpler
but is also very CPU-friendly. This ensures that the logical operations are performed efliciently.
Tests on a set of real application data show that it is 12 times as fast as BBC while using only 60%
more space.

We show that our WAH scheme performs exceptionally well for skewed data, i.e. when the
value distribution on each attribute is skewed. In this case bitmaps are either very sparse or
very full and they compress well. For low skewed data (i.e. close to random data) compression is

ineffective, and the uncompressed bitmap scheme performs better, but not much better than WAH.
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Since most interesting data is skewed, using WAH in all cases is a good choice. However, if one
chooses to leave the data uncompressed when compression is ineffective, then we recommend using
the uncompressed version of WAH (effectively wasting one bit of a 32 bit word) since it will work
smoothly and efficiently with other WAH compressed bitmaps. This approach permits the use of
WAH with mixed skewness of the attribute value distributions.

We also demonstrated from our tests that improving the compression scheme actually improve
the query answering speed, not only logical operations. Tests show that WAH compressed indexes
are not only smaller than the uncompressed indexes they are also more efficient in answering queries.
Due to various overheads involved in query processing (parsing, locking, network communication)
the improvement in query processing is about a factor of four or five rather than 12 for logical
operations only. Still, we believe that even for relational database implementations which use
bitmap indexes, it is worthwhile to use WAH instead of BBC.

The bitmap index is often thought to be effective only on low cardinality attributes. By using

WAH, we also demonstrated that it is effective even for attributes with thousands of distinct values.
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