
Efficient Indexing Technology for
Data Mining of Scientific Data

Arie Shoshani
(and colleagues)

Lawrence Berkeley National Laboratory

ICDM Conference
Nov 28-30, 2005

2

Scientific Data Mining

• What’s special about it
• Observing spatial behavior over time
• Identifying known patterns
• Selecting subsets from billions of objects based on attribute

properties
• Looking for rare objects based on attribute properties
• Dynamic data exploration – real time response
• Visualization / summary statistics

• Implication
• Need very efficient indexing over multidimensional space of

attributes
• Bitmap indexing is particularly suitable
• A compute-efficient method - FastBit

Observing spatial behavior over time

4

Combustion: Flame Front Tracking

T1 T2

T4T3

Need to perform:
• Cell identification

Identify all cells that satisfy user
specified conditions, such as,
“600 < Temperature < 700
AND HO2 concentration > 10-7”

• Region growing
Connect neighboring cells
into regions

• Region tracking
Track the evolution of the
regions (i.e., features)
through time

All steps perform with
Bitmap structures

5

Indexing Requirements

• Search over large spatio-temporal data
• Combustion simulation: 1000x1000x1000 mesh with 100s of chemical

species over 1000s of time steps
• Supernova simulation: 1000x1000x1000 mesh with 10s of variables

per cell over 1000s of time steps

• Common searches are partial range queries
• Temperature > 1000 AND (pressure > 106 OR

(10-6 < HO2 < 10-7)))

• Features
• Search time proportional to number of hits
• Index generation linear with data values

(require read-once only)

6

FastBit-Based Multi-Attribute Region
Finding is Theoretically Optimal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10000 110000 210000 310000 410000

Number of line segments

re
gi

on
 g

ro
w

in
g

tim
e

(s
ec

)
Time required to identify regionsFlame Front discovery

(range conditions for multiple measures)
in a combustion simulation (Sandia)

On 3D data with over 110 million points,
region finding takes less than 2 seconds

7

Multi-Variable Visualization
of Combustion Data Set

a) Query: CH4 > 0.3 b) Q: temp < 3

d) Q: CH4 > 0.3 AND
temp < 4

c) Q: CH4 > 0.3 AND
temp < 3

8

Performance Results of FastBit-VTK

Isosurface Extraction for Combustion Data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11

Isovalue

Ti
m

e
[s

ec
]

vtkMarchingCubes vtkContourFilter vtkKitwareContourFilter DEX

VTK rendering time: 0.2 – 2 seconds.

DEX is on average a factor of three to four faster than
the best isosurface algorithm of VTK.

Identifying Known Patterns

10

Network Traffic Flow Analysis

• Each record is a complete network communication session
• Source IP, Destination IP, Start time, Duration, Protocol, Data

volume, State, Flag, Transfer Rate, …
• Goals

• Parallel visual data analysis framework
• High-speed forensics
• Large scale profiling

• Intrusion Detection System (BRO) log shows
• Jul 28 17:19:56 AddressScan 221.207.14.164 has scanned 19 hosts
• Jul 28 19:19:56 AddressScan 221.207.14.88 has scanned 19 hosts
• FastBit integrated with data analysis environment (for visualization)

• Using FastBit/Vis can be used to explore what else might be going
on

11

Scans from the Two Hosts

• Query: select ts/(60*60*24)-12843, IPR_C, IPR_D where IPS_A=221 and
IPS_B=207 and IPS_C=14 and IPS_D in (88, 164)

• Picture: scatter plot (dots) of the three selected variables
• Two lines indicating two sets of scans
• Note: a lot more than 19 hosts scanned

12

Are There More Scans?

• Query: select ts/(60*60*24)-12843, IPR_C, IPR_D where
IPS_A=221 and IPS_B=207

• More scans from the same subnet

13

Selecting subsets from billions of objects based
on attribute properties

Need: increase number of scans to be searched

Search over 2.5 billion objects
(42 weeks)

Can this be done
in real time?

14

Who Is Doing It? - real time response

• Query: select IPS_C, IPS_D where IPS_A==221 and IPS_B==207
• Generate: the histogram of the IPS_C and IPS_D
• Five IP addresses started most of the scans!

Looking for rare objects
based on attribute properties

16

The STAR Experiment
at Brookhaven National Laboratory

• STAR: Solenoidal Tracker At RHIC; RHIC: Relativistic Heavy Ion Collider
• 600 participants / 50 institutions / 12 countries / in production since 2000
• ~100 million collision events a year, ~5 MB raw data per event, several levels of

summary data
• Generated 3 petabytes and 5 million files

Read-only data, write-once read-many (WORM) data

17

Typical Scientific Exploration Process

• Generate large amounts of raw data
• large simulations
• collect from experiments

• Post-processing of data
• analyze data (find particles produced, tracks)
• generate summary data

• e.g. momentum, no. of pions, transverse energy
• Number of properties is large (50-100)

• Analyze data
• use summary data as guide
• extract subsets from the large dataset

• Need to access events based on partial
properties specification (range queries)

• e.g. (0.1 < AVpT < 0.2) ^ (numberOfPrimaryTracks > 1000)
• apply analysis code

18

STAR Event Catalog with FastBit

• STAR data is organized into several levels
• The Event Catalog indexes all tags but only maintains

references to other levels

RAW DATA

Event Summary

Analysis Object

Tags

5 MB

1 KB

Levels of STAR data

100 KB

1 MB

Event Catalog
MSS

MSS

MSS

19

An Example of Using the Grid Collector:
Searching Problem in STAR

• One of the primary goals of STAR is to search for Quark
Gluon Plasma (QGP)

• A small number (~hundreds) of collision events may contain
the clearest evidence of QGP

• Using high-level summary data, researchers found 80
special events
• Have track distributions that may indicate presence of QGP

• Further analysis needs to access more detailed data
• Detailed data are large (terabytes) and reside on HPSS (MSS)
• May take many weeks to manually migrate to disk

20

Grid Collector Features

Key features of the Grid Collector:
• Providing transparent object access
• Selecting objects based on their attribute values
• Improving analysis system’s throughput
• Enabling interactive distributed data analysis

21

Grid Collector Speeds up Analyses

• Legend
• Selectivity: fraction of events needed by the analysis
• Speedup = ratio of time to read events without GC and with GC
• Speedup = 1: speed of the existing system (without GC)

• Results
• When searching for rare events, say, selecting one event out of 1000 (selectivity =

0.001), using GC is 20 to 50 times faster
• Even using GC to read 1/2 of events, speedup > 1.5

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
selectivity

sp
ee

du
p

Sample 1

Sample 2

Sample 3

1

10

100

1000

0.00001 0.0001 0.001 0.01 0.1 1
selectivity

sp
ee

du
p

Sample 1

Sample 2

Sample 3

less selective more selective

22

Grid Collector Facilitates Difficult
Analyses

• Searching for anti-3He
• Lee Barnby, Birmingham, UK
• Previous studies identified collision

events that possibly contain anti-
3He, need further analysis

• Searching for strangelet
• Aihong Tang, BNL
• Previous studies identified

events that behave close to
strangelets, need further
investigation

• Without Grid Collector, one has to retrieve many files from mass
storage systems and scan them for the wanted events – may take weeks
or months, no one wants to actually do it

• With Grid Collector, both jobs completed within a day

FastBit:
Compute-Efficient Bitmap Indexing

24

Efficient Indexing

• Efficient search is necessary to
facilitate real-time data mining
over a very large number of
objects
• Millions-Billions of objects
• Each having multiple (hundreds)

attributes
• Attributes may be categorical or

numeric
• {A1, A2, …, An} form a

multidimensional space where
objects are points in that space

Object ID A1 A2 A3 A4 …
0

1

2

.

.

.

108

.

.

.

109

25

Why use bitmap indexing?

• Goal: efficient search of multi-dimensional data
• Indexes for data that needs to be updated

• e.g. family of B-Trees
• Sacrifice search efficiency to permit dynamic update

• Space-partitioning multi-dimensional indexes
• e.g. R-tree, Quad-trees, KD-trees, …
• Don’t scale for large number of dimensions
• Are inefficient for partial searches (subset of attributes)

• Bitmap indexes are good for:
• Non-updatable data
• Partial range queries
• Multi-attribute queries (multi-dimensional)
• Use compression methods

• Bitmap indexes can use compression methods
• To reduce size of index
• Logical operation on compressed data

QUAD-tree

KD-tree

B-tree

26

Bit-Sliced Index

• Take advantage that index need to be is append only
• partition each property into bins

• (e.g. for 0<Np<300, have 300 equal size bins)
• for each bin generate a bit vector
• compress each bit vector (some version of run length encoding)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

property 1

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

property 2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

property n

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

. . .

27

Basic Bitmap Index

2 < A < 5

• First commercial version
• Model 204, P. O’Neil, 1987

• Easy to build
Data

values : faster than building B-
trees

• Efficient to query: only bitwise logical
operations
• A < 2 b0 OR b1
• 2<A<5 b3 OR b4

• Efficient for multi-dimensional
queries

• Use bitwise operations to combine the
partial results

• Size: one bit per distinct value per
object

• Definition: Cardinality == number of
distinct values

• Compact for low cardinality
attributes only, say, < 100

• Need to control size for high
cardinality attributes

0
1
5
3
1
2
0
4
1

b0

1
0
0
0
0
0
1
0
0

b1

0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
1
0

0
0
1
0
0
0
0
0
0

=3 =4 =5

b2 b3 b4 b5

=0 =1 =2

A < 2

28

Run Length Encoding

Uncompressed:
00000000000011110000000000000001000000001111100000000 000000

Compressed:
12, 4, 1000,1,8, 5,492

Practical considerations:
- Store very short sequences as-is (literal words)
- Count bytes/words rather than bits (for long sequences)
- Use first bit for type of word: literal or count
- Use second bit of count to indicate 0 or 1 sequence

[literal] [31 0-words] [literal] [31 0-words]
[00 0F 00 00] [80 00 00 1F] [02 01 F0 00] [80 00 00 0F]

Other ideas
- repeated byte patterns, with counts
- Well-known method use in Oracle: Byte-aligned Bitmap Code (BBC)

Advantage:
Can perform logical operations such as: AND, OR, NOT, XOR, …
And COUNT operations directly on compressed data

29

The Special Compression Method in
FastBit Is Compute-Efficient

Example: 2015 bits
10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111

Main Idea: Use run-length-encoding, but..
group bits into 31-bit groups

31 bits 31 bits 31 bits…
Merge neighboring 0 or 1 groups

Count=63 (31 bits)31 bits 31 bits

Encode each group using one word

• Name: Word-Aligned Hybrid (WAH) code
• Key features: WAH is compute-efficient because it

Uses the run-length encoding (simple)
Allows operations directly on compressed bitmaps
Never breaks any words into smaller pieces during operations

30

Bitmap Indices Encoding

a) list of attributes b) equality encoding c) range encoding

Equality encoding compresses very well
Range encoding optimized for one-sided range queries, e.g. temp < 3

31

Time to Evaluate a Single-Attribute Range
Condition in FastBit is Optimal

• Evaluating a single attribute range condition may require
OR’ing multiple bitmaps

• Both analysis and timing measurement confirm that the query
processing time is at worst proportional to the number of hits

Worst case:
Uniform
Random Data

Realistic
case:
Zipf Data

Bitmaps
in an index

A range

BBC: Byte-aligned Bitmap Code
The best known bitmap compression

32

Multi-attribute Range Queries
Low Cardinality Attributes

5-attribute queries

2-attribute queries

• Bitmap indices are known to work well for low cardinality attributes
• WAH compressed index is faster than uncompressed index (3X)

and BBC compressed index (3X)

Legend: Query box is the relative volume of the box formed by the range conditions

33

Multi-Attribute Range Queries
High Cardinality Attributes

2-attribute queries 5-attribute queries

• WAH works efficiently on HIGH CARDINALITY as well!

• WAH compressed indexes are 10X faster than DBMS,
5X faster than our own version of BBC
• Based on 12 most queried attributes from STAR, average attribute

cardinality 222,000

34

Trade-off of Compression Schemes

uncompressedWAH

space

speed

better

gzip

BBC

ExpGol
PacBits

35

FastBit provides real time search
of up to a billion elements

Search over 2.5 billion objects
on a single processor

Search over 2.5 billion objects
on a 42 processor

Rate on a single processor:
- about 15 sec per billion

on a 1D query
- about 40 sec per billion

on a 2D query

Speedup on parallel processors:
50% - 90% of ideal depending on
balancing factor

36

Can be Easily Parallelized
for Very Large Indexes

• Partition bitmaps horizontally

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

property 1

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

property 2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

property n

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

. . .

Processor 1

Processor 2

Processor 3

Processor 4

...
• Concatenate partial results
• Open last and first word only – possible because of 31 bit words

Other Application Domains

38

On-Line Analytical Processing (OLAP)

• Consists of multi-dimensional (cross-product) object space
• e.g. city X sex X age

• Each Dimension can be based on a Category Hierarchy
• e.g. state city

• Each multi-dimensional object has one (or more) summary element
associated with it

• e.g. average_income, population, …

AgeID SexID CityID Ave_Income

SexID SexCode SexString

AgeID Age Age_Group

CityID City_name City_size

Fact Table

Dimension
Table

Dimension
Table

Dimension
Table

X

S

C

C

CC

average-income

city

sex

age

age-group C state

X

S

CC

CC

CCCC

average-

sex

age

age-group

-

39

Applying FastBit for Information Searching

• FastBit can be used to represent:
• Events, relationships as high-

dimensional structures
• Ontology as highly compressible

multi-dimensional structures
• Potential to provide

• On-line search capability over very
large high-dimensional objects

• Dynamic incremental index building

Person

john

SF
Mint
Bldg

Jan 7,
2002

Events/facts

Location

Institution

Time

Visited

SF

Location

LA

Location

Sacramento

Location

California

Location

Ontology

…

Event_ID Action Person Location Institution Time

12375 Visit John SF Mint Bldg 02.01.07
12388 Visit Mary SF Mint Bldg 02.01.10

… … … … … …

State City address

California SF Flower St
California SF Folk St

California LA Alvarado St

… … …

… … …

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

State
0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

City

40

Representing Semantic Graphs as Bitmaps

Edge_ID edge-type from-node from-type to-node to-type

12375 works-at 3365 person 377 workplace

… … … … … …

Person_ID Name Birthplace Age Sex Address Country

3365 John Germany 32 M 13 main St. USA

… … … … … … …

680257 lives-in 320045 person 4005 town

320045 Maria US 24 F 7 Ortega St. Mexico

Edge Connectivity (very large)

Person node attributes (small-medium)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
1
1
1
0
1
1
1
0
1
1

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Country

Workplace_ID Name type-of-business Address Country

3365 SF Mint print money 13 Market St. USA

… … … … …

re
st

ric
t restrict

Workplace node attributes (small-medium)

3365 J&J Hardware store 1 James Rd. USA

Los Angeles

Mexico City

San Francisco, CA

Columbus, OH …

41

Summary: FastBit Technology

• Main ideas
• Take advantage of append-only data
• Vertical partitioning – touch only attributes in query
• Binning – touch only bins in ranges specified
• Use compression that permits efficient logical operation on

uncompressed bitmaps
• Straight-forward parallelism – horizontal partitioning of bitmaps,

and concatenation of result bitmaps
• Results

• Real-time compute-optimized search for multi-dimensional data
• Particularly effective for partial range queries
• Small index size – on average about 50% of data size
• Search only part of index – time proportional to size of result
• Dynamic building of index – 1 sec per million elements
• Scales to billions of objects and hundreds of attributes per object
• Found effective and useful for on-line scientific data exploration

FastBit Technology Details

Contacts:
John Wu, Arie Shoshani, Ekow Otoo,

Kurt Stockinger

http://sdm.lbl.gov/fastbit

http://sdm.lbl.gov/fastbit

	Efficient Indexing Technology for Data Mining of Scientific Data
	Scientific Data Mining
	Observing spatial behavior over time
	Combustion: Flame Front Tracking
	Identifying Known Patterns
	Network Traffic Flow Analysis
	Scans from the Two Hosts
	Are There More Scans?
	Selecting subsets from billions of objects based on attribute properties
	Who Is Doing It? - real time response
	Looking for rare objects based on attribute properties
	The STAR Experiment at Brookhaven National Laboratory
	STAR Event Catalog with FastBit
	An Example of Using the Grid Collector:Searching Problem in STAR
	Grid Collector Features
	Grid Collector Speeds up Analyses
	Grid Collector Facilitates Difficult Analyses
	FastBit: Compute-Efficient Bitmap Indexing
	Basic Bitmap Index
	The Special Compression Method in FastBit Is Compute-Efficient
	Time to Evaluate a Single-Attribute Range Condition in FastBit is Optimal
	Multi-attribute Range QueriesLow Cardinality Attributes
	Multi-Attribute Range QueriesHigh Cardinality Attributes
	Trade-off of Compression Schemes
	FastBit provides real time search of up to a billion elements
	Can be Easily Parallelized for Very Large Indexes
	Other Application Domains
	On-Line Analytical Processing (OLAP)
	Applying FastBit for Information Searching
	Representing Semantic Graphs as Bitmaps
	Summary: FastBit Technology
	FastBit Technology Details

