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Scientific Data Mining

• What’s special about it
• Observing spatial behavior over time
• Identifying known patterns
• Selecting subsets from billions of objects based on attribute 

properties
• Looking for rare objects based on attribute properties
• Dynamic data exploration – real time response
• Visualization / summary statistics

• Implication
• Need very efficient indexing over multidimensional space of 

attributes
• Bitmap indexing is particularly suitable
• A compute-efficient method - FastBit



Observing spatial behavior over time
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Combustion: Flame Front Tracking

T1 T2

T4T3

Need to perform:
• Cell identification

Identify all cells that satisfy user 
specified conditions, such as, 
“600 < Temperature < 700 
AND HO2 concentration > 10-7”

• Region growing
Connect neighboring cells 
into regions

• Region tracking
Track the evolution of the 
regions (i.e., features) 
through time

All steps perform with 
Bitmap structures
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Indexing Requirements

• Search over large spatio-temporal data
• Combustion simulation: 1000x1000x1000 mesh with 100s of chemical

species over 1000s of time steps
• Supernova simulation: 1000x1000x1000 mesh with 10s of variables 

per cell over 1000s of time steps

• Common searches are partial range queries
• Temperature > 1000 AND (pressure > 106 OR 

(10-6 < HO2 < 10-7) ) )

• Features
• Search time proportional to number of hits
• Index generation linear with data values

(require read-once only)
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FastBit-Based Multi-Attribute Region 
Finding is Theoretically Optimal
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(range conditions for multiple measures)
in a combustion simulation (Sandia)

On 3D data with over 110 million points,
region finding takes less than 2 seconds
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Multi-Variable Visualization
of Combustion Data Set

a) Query: CH4 > 0.3 b) Q: temp < 3

d) Q: CH4 > 0.3 AND 
temp < 4

c) Q: CH4 > 0.3 AND 
temp < 3
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Performance Results of FastBit-VTK 

Isosurface Extraction for Combustion Data
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VTK rendering time: 0.2 – 2 seconds.

DEX is on average a factor of three to four faster than 
the best isosurface algorithm of VTK.



Identifying Known Patterns
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Network Traffic Flow Analysis

• Each record is a complete network communication session
• Source IP, Destination IP, Start time, Duration, Protocol, Data 

volume, State, Flag, Transfer Rate, …
• Goals

• Parallel visual data analysis framework
• High-speed forensics
• Large scale profiling

• Intrusion Detection System (BRO) log shows
• Jul 28 17:19:56 AddressScan 221.207.14.164 has scanned 19 hosts 
• Jul 28 19:19:56 AddressScan 221.207.14.88 has scanned 19 hosts
• FastBit integrated with data analysis environment (for visualization)

• Using FastBit/Vis can be used to explore what else might be going 
on
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Scans from the Two Hosts

• Query: select ts/(60*60*24)-12843, IPR_C, IPR_D where IPS_A=221 and 
IPS_B=207 and IPS_C=14 and IPS_D in (88, 164)

• Picture: scatter plot (dots) of the three selected variables
• Two lines indicating two sets of scans
• Note: a lot more than 19 hosts scanned
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Are There More Scans?

• Query: select ts/(60*60*24)-12843, IPR_C, IPR_D where 
IPS_A=221 and IPS_B=207

• More scans from the same subnet
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Selecting subsets from billions of objects based 
on attribute properties

Need: increase number of scans to be searched

Search over 2.5 billion objects
(42 weeks)

Can this be done 
in real time?
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Who Is Doing It? - real time response

• Query: select IPS_C, IPS_D where IPS_A==221 and IPS_B==207
• Generate: the histogram of the IPS_C and IPS_D
• Five IP addresses started most of the scans!



Looking for rare objects 
based on attribute properties
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The STAR Experiment 
at Brookhaven National Laboratory

• STAR: Solenoidal Tracker At RHIC; RHIC: Relativistic Heavy Ion Collider 
• 600 participants / 50 institutions / 12 countries / in production since 2000
• ~100 million collision events a year, ~5 MB raw data per event, several levels of 

summary data
• Generated 3 petabytes and 5 million files

Read-only data, write-once read-many (WORM) data
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Typical Scientific Exploration Process

• Generate large amounts of raw data
• large simulations
• collect from experiments

• Post-processing of data
• analyze data (find particles produced, tracks)
• generate summary data

• e.g. momentum, no. of pions, transverse energy
• Number of properties is large (50-100)

• Analyze data
• use summary data as guide
• extract subsets from the large dataset

• Need to access events based on partial
properties specification (range queries)

• e.g. (0.1 < AVpT < 0.2) ^ (numberOfPrimaryTracks > 1000)
• apply analysis code
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STAR Event Catalog with FastBit

• STAR data is organized into several levels
• The Event Catalog indexes all tags but only maintains 

references to other levels

RAW DATA

Event Summary

Analysis Object

Tags

5 MB

1 KB

Levels of STAR data

100 KB

1 MB

Event Catalog
MSS

MSS

MSS
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An Example of Using the Grid Collector:
Searching Problem in STAR

• One of the primary goals of STAR is to search for Quark 
Gluon Plasma (QGP)

• A small number (~hundreds) of collision events may contain 
the clearest evidence of QGP

• Using high-level summary data, researchers found 80 
special events
• Have track distributions that may indicate presence of QGP

• Further analysis needs to access more detailed data
• Detailed data are large (terabytes) and reside on HPSS (MSS)
• May take many weeks to manually migrate to disk
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Grid Collector Features

Key features of the Grid Collector:
• Providing transparent object access
• Selecting objects based on their attribute values
• Improving analysis system’s throughput
• Enabling interactive distributed data analysis
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Grid Collector Speeds up Analyses

• Legend
• Selectivity: fraction of events needed by the analysis
• Speedup = ratio of time to read events without GC and with GC
• Speedup = 1: speed of the existing system (without GC)

• Results
• When searching for rare events, say, selecting one event out of 1000 (selectivity = 

0.001), using GC is 20 to 50 times faster
• Even using GC to read 1/2 of events, speedup > 1.5
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Grid Collector Facilitates Difficult 
Analyses

• Searching for anti-3He
• Lee Barnby, Birmingham, UK
• Previous studies identified collision 

events that possibly contain anti-
3He, need further analysis

• Searching for strangelet
• Aihong Tang, BNL
• Previous studies identified 

events that behave close to 
strangelets, need further 
investigation

• Without Grid Collector, one has to retrieve many files from mass
storage systems and scan them for the wanted events – may take weeks 
or months, no one wants to actually do it

• With Grid Collector, both jobs completed within a day



FastBit: 
Compute-Efficient Bitmap Indexing
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Efficient Indexing 

• Efficient search is necessary to 
facilitate real-time data mining 
over a very large number of 
objects
• Millions-Billions of objects
• Each having multiple (hundreds) 

attributes
• Attributes may be categorical or 

numeric
• {A1, A2, …, An} form a 

multidimensional space where 
objects are points in that space
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Why use bitmap indexing?

• Goal: efficient search of multi-dimensional data
• Indexes for data that needs to be updated

• e.g. family of B-Trees
• Sacrifice search efficiency to permit dynamic update

• Space-partitioning multi-dimensional indexes
• e.g. R-tree, Quad-trees, KD-trees, …
• Don’t scale for large number of dimensions
• Are inefficient for partial searches (subset of attributes)

• Bitmap indexes are good for:
• Non-updatable data
• Partial range queries
• Multi-attribute queries (multi-dimensional)
• Use compression methods

• Bitmap indexes can use compression methods
• To reduce size of index
• Logical operation on compressed data 

QUAD-tree

KD-tree

B-tree
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Bit-Sliced Index

• Take advantage that index need to be is append only
• partition each property into bins 

• (e.g. for 0<Np<300, have 300 equal size bins)
• for each bin generate a bit vector
• compress each bit vector (some version of run length encoding)
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Basic Bitmap Index

2 < A < 5

• First commercial version
• Model 204, P. O’Neil, 1987

• Easy to build
Data

values : faster than building B-
trees

• Efficient to query: only bitwise logical 
operations
• A < 2 b0 OR b1
• 2<A<5 b3 OR b4

• Efficient for multi-dimensional 
queries

• Use bitwise operations to combine the 
partial results

• Size: one bit per distinct value per 
object

• Definition: Cardinality == number of 
distinct values

• Compact for low cardinality 
attributes only, say, < 100

• Need to control size for high 
cardinality attributes
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Run Length Encoding

Uncompressed:
0000000000001111000000000 ......0000001000000001111100000000 .... 000000

Compressed:
12, 4, 1000,1,8, 5,492

Practical considerations:
- Store very short sequences as-is (literal words)
- Count bytes/words rather than bits (for long sequences)
- Use first bit for type of word: literal or count
- Use second bit of count to indicate 0 or 1 sequence

[literal]       [31 0-words]     [literal]       [31 0-words] 
[00 0F 00 00] [80 00 00 1F] [02 01 F0 00] [80 00 00 0F]

Other ideas
- repeated byte patterns, with counts 
- Well-known method use in Oracle: Byte-aligned Bitmap Code (BBC)

Advantage:
Can perform logical operations such as: AND, OR, NOT, XOR, …
And COUNT operations directly on compressed data
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The Special Compression Method in 
FastBit Is Compute-Efficient

Example: 2015 bits
10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111

Main Idea: Use run-length-encoding, but..
group bits into 31-bit groups

31 bits 31 bits 31 bits…
Merge neighboring 0 or 1 groups

Count=63 (31 bits)31 bits 31 bits

Encode each group using one word

• Name: Word-Aligned Hybrid (WAH) code
• Key features: WAH is compute-efficient because it

Uses the run-length encoding (simple)
Allows operations directly on compressed bitmaps
Never breaks any words into smaller pieces during operations
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Bitmap Indices Encoding

a) list of attributes    b) equality encoding                   c) range encoding

Equality encoding compresses very well
Range encoding optimized for one-sided range queries, e.g. temp < 3
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Time to Evaluate a Single-Attribute Range 
Condition in FastBit is Optimal

• Evaluating a single attribute range condition may require 
OR’ing multiple bitmaps

• Both analysis and timing measurement confirm that the query 
processing time is at worst proportional to the number of hits

Worst case:
Uniform
Random Data

Realistic
case:
Zipf Data

Bitmaps
in an index

A range

BBC: Byte-aligned Bitmap Code
The best known bitmap compression
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Multi-attribute Range Queries
Low Cardinality Attributes

5-attribute queries

2-attribute queries

• Bitmap indices are known to work well for low cardinality attributes
• WAH compressed index is faster than uncompressed index (3X)

and BBC compressed index (3X)

Legend: Query box is the relative volume of the box formed by the range conditions
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Multi-Attribute Range Queries
High Cardinality Attributes

2-attribute queries 5-attribute queries

• WAH works efficiently on HIGH CARDINALITY as well!

• WAH compressed indexes are 10X faster than DBMS, 
5X faster than our own version of BBC
• Based on 12 most queried attributes from STAR, average attribute

cardinality 222,000
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Trade-off of Compression Schemes

uncompressedWAH

space

speed

better

gzip

BBC

ExpGol
PacBits
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FastBit provides real time search 
of up to a billion elements

Search over 2.5 billion objects
on a single processor

Search over 2.5 billion objects
on a 42 processor

Rate on a single processor:
- about 15 sec per billion

on a 1D query
- about 40 sec per billion

on a 2D query

Speedup on parallel processors:
50% - 90% of ideal depending on
balancing factor
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Can be Easily Parallelized 
for Very Large Indexes

• Partition bitmaps horizontally
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• Concatenate partial results 
• Open last and first word only – possible because of 31 bit words



Other Application Domains
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On-Line Analytical Processing (OLAP)

• Consists of multi-dimensional (cross-product) object space
• e.g. city X sex X age

• Each Dimension can be based on a Category Hierarchy
• e.g. state city

• Each multi-dimensional object has one (or more) summary element 
associated with it

• e.g.  average_income, population, …

AgeID SexID CityID Ave_Income

SexID SexCode SexString

AgeID Age     Age_Group

CityID City_name City_size

Fact Table

Dimension
Table

Dimension
Table

Dimension
Table

X

S

C

C

CC

average-income

city

sex

age

age-group C state

X

S

CC

CC

CCCC

average-

sex

age

age-group

-
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Applying FastBit for Information Searching

• FastBit can be used to represent:
• Events, relationships as high-

dimensional structures
• Ontology as highly compressible 

multi-dimensional structures
• Potential to provide

• On-line search capability over very 
large high-dimensional objects

• Dynamic incremental index building 
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Representing Semantic Graphs as Bitmaps

Edge_ID edge-type  from-node  from-type  to-node    to-type

12375        works-at      3365         person      377      workplace

… … … … … …

Person_ID Name   Birthplace  Age  Sex      Address     Country

3365         John     Germany    32    M     13 main St.    USA

… … … … … … …

680257      lives-in         320045     person      4005    town

320045       Maria         US         24    F     7 Ortega St.   Mexico

Edge Connectivity (very large)

Person node attributes (small-medium)
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Workplace_ID Name        type-of-business      Address                Country

3365             SF Mint        print money        13 Market St.             USA

… … … … …

re
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t restrict

Workplace node attributes (small-medium)

3365                J&J        Hardware store      1 James Rd.               USA    

Los Angeles

Mexico City

San Francisco, CA

Columbus, OH …
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Summary: FastBit Technology

• Main ideas
• Take advantage of append-only data
• Vertical partitioning – touch only attributes in query
• Binning – touch only bins in ranges specified
• Use compression that permits efficient logical operation on 

uncompressed bitmaps
• Straight-forward parallelism – horizontal partitioning of bitmaps, 

and concatenation of result bitmaps
• Results

• Real-time compute-optimized search for multi-dimensional data
• Particularly effective for partial range queries
• Small index size – on average about 50% of data size
• Search only part of index – time proportional to size of result
• Dynamic building of index – 1 sec per million elements
• Scales to billions of objects and hundreds of attributes per object
• Found effective and useful for on-line scientific data exploration



FastBit Technology Details

Contacts:
John Wu, Arie Shoshani, Ekow Otoo, 

Kurt Stockinger

http://sdm.lbl.gov/fastbit

http://sdm.lbl.gov/fastbit
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