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Query estimation tistics, but an important issue we are addressing is the accuracy of these estimates.
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base estimation possible. We propose an algorithmic approach which makes use of the
principles of information entropy for determining the steps to select or compute the pri-
mary and proxy databases that provide the most accurate target database. We show that
the primary database with the largest number of cells in common with the target database
and the proxy database provides the more accurate estimates. We prove that this is consis-
tent with maximizing the entropy. We provide some experimental results on the accuracy
of the target database estimation in order to verify our results. Furthermore, we investigate
the accuracy results in cases where the dimensions are defined over a hierarchy of catego-
ries and roll-up and drill-down operations are needed to generate the desired target
results.
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1. Introduction

Providing exact answers to queries from large data cubes in OLAP applications can be too slow, and in some cases, the
user may prefer fast approximate answers. A more crucial case is when it is not possible to provide precise answers, such
as in socio-economic applications because only summarized data is available for reasons of privacy. In such cases, it is quite
useful to generate an estimate or approximate answers using approximate query processing techniques. A key issue is the
accuracy of the estimates for aggregate queries (e.g., queries computing SUM or COUNT expressions), which was the focus of
recent research activity (e.g., [3,14,15]).

In a previous paper [15], we discussed the estimation of summary queries, evaluated over multiple source summary dat-
abases. Such a summary query consists of requesting a summary measure of interest (e.g., household income), called target
measure, over a set of category attributes, called target dimensions (e.g., State, Sex). In many cases, it may not be possible to
evaluate such a query from a single source summary database, and two summary databases have to be used. For example,
suppose that one database contains Income by (State, Age, Race) and the second contains population by (State, Age, Educa-
tion_level, Sex). It is possible to estimate the target database Income by (State, Sex) by using the first database as the “primary”
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database (since it has the target measure Income), and using the second database as a “proxy” database (since it has the addi-
tional desired target dimension Sex). Here the population sizes are considered a proxy for the measure Income. The estima-
tion method used to generate the target database is the linear indirect estimator (see Appendix A), which takes advantage of
the fact that the summary databases were derived from the same base data, and consequently are correlated. The proposed
method to estimate efficiently the target database was based on partitioning the dimensions of the source databases into
three types: “target”, “common”, and “non-common” dimensions. We first determine the target dimensions, and classify
the remaining dimensions as common and non-common. In the example above, State and Sex are target dimensions, Age
is a common dimension, and Race and Education_level are non-common dimensions.

In the previous paper mentioned above, we examined two obvious computational methods for computing such a target
database, called the “Full cross product” (F) and the “Pre-aggregation” (P) methods. Essentially, the estimation by the F meth-
od is achieved by first calculating the target measure over the full cross product of the dimensions from both databases using
proportional estimation, and then aggregating over all the non-target dimensions. Since this method requires generating the
full cross product, its cost is high. In contrast, the estimation by the P method consists of aggregating over all the non-target
dimensions of both databases first, and only then generating the cross product using proportional estimation to obtain the
result. The pre-aggregation reduces the size of the cross product greatly, and lowers the cost of generating the estimation.
However, we showed that the P method, while computationally efficient, yields results that are not as accurate as the F
method. We proposed a third method called “Partial Pre-aggregation” (PP) method, which consists of summarizing only
the non-common dimensions first, and then applying the proportional estimation. Using a measure of accuracy, called aver-
age relative error (ARE) (see Appendix B), we proved that the PP method yields the same accuracy as the F method, but re-
duces significantly the computational and space complexity. The reduction in cost is by a factor proportional to the
multiplication of the cardinalities of the non-common dimensions.

In this paper, we consider an open question which was left as future challenge in [15]. The question is how to select a
primary and a proxy database given that there are multiple primary databases available with the same measure and multiple
proxy databases with the desired target dimensions in order to get the most accurate estimation results. This paper is an
extension version of our paper published on the proceedings of DOLAP 2008 [16]. In this extended version, we perform addi-
tional experiments and investigate the accuracy results in cases where the dimensions are defined over a hierarchy of cat-
egories and roll-up and drill-down operations are needed to generate the desired target results.

1.1. The problem
To explain the idea let us consider the following multiple primary databases:

e DBpr = Income(State,Age)

o DBy, = Income(State, Labor status)

e DBprs = Income(Age, Labor status)

e DBpra = Income(State, Age, Labor _status)

and multiple proxy databases:

e DBpx; = Population(State, Age, Sex)

e DBpx, = Population(State, Labor status, Sex)

e DBpx3 = Population(Age, Labor status, Sex)

e DBpxs4 = Population(State, Age, Labor status, Sex)

where the cardinalities of the dimensions are: |State| = 52, |Age| = 4, |Labor_status| = 2, and |Sex| = 2. Note that the two cate-
gories of Labor status are In_ Labor_Force and Not_in_Labor_Force according to US Census Bureau.? Let Income(State, Age,
Labor_status, Sex) be the target database, which should be estimated from the sets of summary databases given above. If
we select the first primary database, i.e., Income(State, Age), then we can apply DBpx, DBpxs, and DBpx4 to estimate the target
database since only these proxy databases contain auxiliary data on the dimensions Labor_status and Sex. Similarly, if we
choose the second primary database, we can only apply DBpx1, DBpxs, and DBpy4. The third primary database needs auxiliary
data on dimensions State and Sex, which are provided by DBy, DBpx,, and DBpxs. Whereas, for the last primary database all
four proxy databases can be applied. This is labeled as Case 1 in Table 1, where we assume that all four primary databases
exist, as well as all four proxy databases exist. We also include in Table 1 three additional cases where only some of the pri-
mary or proxy databases are shown. These cases will be used later to illustrate situations that require special attention.

In all four cases, as we mentioned before, the main goal is to obtain more accurate estimated results for the target data-
base. Thus, to achieve this goal we have to select two source databases, one primary and one proxy databases. The problem is
which databases we should choose from a given set of primary and proxy databases that provide the more accurate estima-
tion results.

2 http://www.census.gov.
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Table 1
Cases.
Cases Primary DBs Proxy DBs
Case (1) DBpr1 DBpx1
DBpry DBpx>
DBpr3 DBpx3
DBFR4 DBF’X4
Case (2) DBpg1 DBpx1
DBpg; DBpx2
DBpg3 DBpx3
DBpxa
Case (3) DBpgq DBpyy
DBpg, DBpxz
DBpgs DBpx3
DBpry4
Case (4) DBpm DBpx1
DBpry DBpx>
DBprs DBpx3

The solution of the problem mentioned above is based on two conjectures. The first one is that the more cells of common
dimensions the primary database shares with the target database, the more accurate are the estimated results. A cell is de-
fined as the smallest element formed by the cross product of the dimensions. Referring to the primary databases shown in
Case 1, DBpg4 not only shares the largest number of cells of common dimensions with the target database but also covers all
the dimensions of the first three primary databases. Note that in this case all common dimensions are target dimensions.
Now, let us consider Case 2 and Case 4. The problem is which primary database should we choose? In the next section,
we will show that basing this decision on the estimate of the maximum entropy provides the most accurate results possible.

The second conjecture is that the proxy database that shares the largest number of cells of the common dimensions with
the primary database provides more accurate results. In Case 1 and Case 2, DBpy4 is such a proxy database. A similar problem
arises when selecting the proxy database in Case 3 and Case 4. In these cases, which approach should be applied in order to
select the proxy database for the estimation of the target database? We discuss this problem in the next section as well.

1.2. Related work

There was a significant amount of work in the literature on approximate query processing. In [11], for instance, the def-
inition of a universal statistical database containing several summary tables which share the same summary measure is
examined. Given a query, a system of linear equations over the universal database is constructed whose solutions satisfy
the query. In [12,13], the problem of evaluating a summary query from a set of summary tables sharing the same variable
and an auxiliary table is discussed. These works propose algorithms which make use of techniques developed in the theory of
acyclic database schemas. In contrast, we focus here on the problem of the accuracy of the query estimation. In our work, we
consider a set of proxy (or auxiliary) databases, which share the same summary measures.

In [5] the authors propose a framework for approximate answers to aggregation queries called online aggregation in
which the base data is scanned in random order at query time and the approximate answer is continuously updated as
the scan proceeds. The approximate query answering (AQUA) [1] system provides approximate answers using small
pre-computed synopses of the underlying base data. In [14], the authors consider the problem of deriving approximately
the original data from the aggregates. They propose a framework for estimating the original values based on the notion
of information entropy. In our work, we use a different approach of estimating the values of the target database by using
additional information from proxy databases. We apply the principles of entropy over the multiple source databases in order
to identify two databases, one primary database and one proxy database, which achieve more accurate results. We prove
formally that the source databases with the largest number of cells in common provide the most accurate results possible.
Based on these results, we propose an algorithmic approach for determining the steps to select or compute the source dat-
abases from multiple summary databases.

The paper is structured as follows. The next section provides the principles of entropy used in this paper. In this section
we also introduce the formal model which provides the basis for a formal analysis of the results in this paper. Section 3 dis-
cusses the problem of selecting two source summary databases from multiple primary and multiple proxy databases in order
to achieve maximum accuracy for the target database. In Section 4, we develop an algorithmic approach for determining the
steps to achieve maximum accuracy, and we prove theorems which show that the source databases with the largest number
of cells in common provide the more accurate estimates. Section 5 illustrates some experimental results on the accuracy of
the target database estimation. In Section 6 we consider the accuracy of results in cases where dimensions have a hierarchi-
cal structure to them, and roll-up or drill-down operations are needed in order to generate the desired target results. Section
7 contains the conclusions.
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2. Principles and formal model
2.1. Principles of entropy

In this section, we recall the principles of maximum entropy and minimum cross-entropy, which will be used in the next
sections. The (Shannon) entropy H of a discrete probability distribution p(x) is the non-negative function

— Y p(x)log p(x) (1)
xeX
where X represents the set of instances. H reaches its maximum value at the uniform distribution over X, i.e., log|X|. In sta-
tistics and information theory, a maximum entropy probability distribution is a probability distribution whose entropy is at
least as great as that of all other members of a specified class of distributions.

Let P(Xy,...,X;) be an n-dimensional discrete probability distribution to be estimated from P'(X;, ..., X,) and the set of all
marginal distribution P;(X;) withi = 1,...,n (“Marginals” is a commonly-used term in Statistics that refers to the summary
of rows and columns in the “margins” of a table). If X = {X;, ..., X, }, we may find P that maximizes the entropy H(P) of P over
all marginal probability distributions such that it satisfies the following constrains:

e every element in P(X) is non-negative value

o« YPX)=1
o P(X;) = Pi(Xy)

Note that in this paper, we will refer to the constraints mentioned above as the consistency conditions. Let ﬁ(X) be the
maximum entropy approximation to P(X). The cross-entropy (or relative entropy or Kullback-Leibler distance) between P(X)
and P(X) measures the similarity of two distribution and is defined as follows:

P(X)
ZP logPX

Minimizing D(P7P) is the same as maximizing the entropy of P. The technique used to compute the maximum entropy
estimate is Iterative Proportional Fitting Procedure-IPFP [4], which starts with the zero approximation P®(X) = P'(X) and deter-
mines the higher-order approximations to P(X) according to the following computation scheme:

@)

first iteration cycle ~ PU(X) ... PM(X)

second iteration cycle P™V(X) ... PRU(X)

h-th iteration cycle ~ P"™(x) ... PIm(x)
where the approximation P"*(X) in the (h+ 1)-th iteration cycle, 1 <i< n, is obtained by fitting the approximation
pm+i=11(Xy to the marginal distribution P;(X;) as follows:

- PAX) e
[hn+i] _ i\Ai [hn+i-1]
plhn+i X) = P[hn+i71](Xi)P n+i X).

This procedure converges monotonically to the maximum entropy estimation. The iterations stop when the estimate at
two consecutive steps are the same or the difference of estimates are less than a pre-defined value.

2.2. Formal model

We use here the formal model defined in [15], which provides the basis for a formal analysis of the results. In the follow-
ing sections, we assume two source summary databases, called DBy and DB, that are used to produce a target database DBr.

The databases are defined as follows: DBp = Mp({A’ 0<ig m}) DB, = MQ<{A’ 0<j< }) and DBy = MT<{A’;O <k< t})

where Mp, Mg, and My are the measures of the corresponding databases, A’ , Ay, and Ak are the corresponding dimensions,
and m, n, and t are the cardinalities of the corresponding dimensions. In deﬁmng a target database over the two source sum-
mary databases, one of the measures, either My or My is selected. Without loss of generality, suppose that M, is selected.
Thus, Mp = Mr. DBy is called the primary database, M, is called the proxy measure, and DBy, is called the proxy database.
Given two source summary databases DBy, and DB, that are used to generate a target database DBy, we can classify the
source database dimensions as belonging to three disjoint groups: target dimensions, common dimensions, and non-com-
mon dimensions. First, we pick the dimensions in the source databases that are specified in the target database for the target
group; then the remaining dimensions are considered common if they are in both source databases, and are considered non-
common otherwise. Note that a target dimension can exist in both source databases. We use the following notation:
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DBp = Mp (A,C,,AE,A,CC,A,T,C>, and DBy = Mg <A8,AS,A(T;,A5), where C,C, and T refer to the common, non-common, and target

dimension-groups, respectively. Note that AS = Ag. and A,T,C = Ag. We use the notation Ar for the group of target dimensions

{A’;O <k< t}. Thus, DB; = My (Ar). Using the notation above, we have Ar = AT UAL UAT . Note that Ag must always exist

to make the proxy summarization meaningful. However, A, and AL may or may not exist. Indeed, if Ag does not exist, then
there is no need to use DBy, since the results can be obtained from DB only.

For instance, let us consider the source summary databases: Income(Age, Labor_status, Sex), and Population(State, Age, Race,
Sex). Let us assume that the summary query expressed over them is Income(State). In this case, Income(State) is the target
summary database, Population(State, Age, Race, Sex) is the proxy database, and Income(Age, Labor_status, Sex) is the primary

r —A" o AT — {State}, A . = s are the non-com-

Population Income Population Income

database. Ar = {State} is the target dimension, where A
mon target dimensions, AS, =A°

Population Income

and A, = {Race}, and AS,,.,, = {Labor status} are the non-common dimensions. As another example, consider the case

Population Income

= {Age, Sex} are the common dimensions between the source summary databases,

where the summary query expressed over the source databases is Income(State, Age), then Ay = {State, Age} and accordingly,
AL ion = Al o = {Age}, AL . (State}, Al = &, and A — A . = {Sex).

Population Income Population Income Population Income

3. Database selection

In this section, we investigate the problem of selecting two source summary databases from multiple primary and multi-
ple proxy databases in order to achieve maximum accuracy for the target database. Only primary databases that have the
same measure as that of the target database need be considered.

The proxy database is selected in order to provide the dimensions missing in the primary database and specified in the
target database. For all four cases shown in Section 1.1, the Sex dimension in the proxy databases is needed for the target
database and is not available from primary databases. We recall the results discussed in [15] regarding the non-common
dimensions or the dimensions which are not specified in the target database but exist in one of the source databases. Accord-
ing to the Partial Pre-aggregation (PP) method, pre-aggregating the source databases over the non-common dimensions, the
estimation results are as accurate as the estimates obtained by first generating the full cross product of all dimensions of the
source databases and then aggregating over non-common dimensions. In this paper, we use this approach in considering
which primary and proxy databases to choose to maximize accuracy.

In the previous section, we conjectured that the primary database which includes the largest number of cells of the
desired target dimensions is the better choice. Let us recall the set of primary databases shown in Case 1, and shown
in Table 2 (where we use the symbol “I” to indicate Income.) By multiplying the cardinalities of the dimensions we obtain
the number of cells for each choice. We use the notation |A| in Table 2 for this product of cardinalities. As can be seen in
Table 2, DBpr4 shares 416 cells for dimensions in common with the target database Income(State, Age, Labor _status, Sex). It
includes more cells with respect to the other three primary databases. An important idea associated with the number of
cells is that of entropy. According to the principles discussed in Section 2.1, given a set of primary databases we have to
choose the one with the largest number of cells to achieve the largest entropy [7]. In Section 4 we prove in the first the-
orem that the more accurate estimate is achieved when the primary database with the largest number of cells in common
with the target database is selected. For the databases shown in Table 2, the largest entropy is achieved by DBpgs. This
primary database also satisfies the three constraints of consistency conditions listed in Section 2.1. Concerning the proxy
databases (see Table 3 where the symbol “P” refers to Population), if there are common dimensions, we conjecture that the
proxy database with the largest number of cells of the common dimensions with the primary database achieves the more
accurate result. In this case, it is DBpxs. This conjecture is also proven in Section 4 where we show in the second theorem
that the more accurate estimate is achieved when the proxy database with the largest number of cells in common with
the primary database is selected.

The relative entropy (or loss of information) of the estimates by applying each primary database to DBpx,4 is shown in
Table 2, fourth column. As can be seen, for DBpg4, the amount of information that we lose is less than the others. This indi-
cates that the estimate obtained by DBpg4 is more similar to that of the real distribution of Income with respect to the other
primary databases. Thus, the combination of DBpgrs and DBpy4 provides the more accurate estimate. The accuracy results are
given in Section 5.

Table 2

Primary databases.
PrimaryDB |A] Entropy D(T, I
DBpgy = I(State, Age) 208 6.45 0.06816
DBpg, = I(State, Labor status) 104 5.54 0.09071
DBpr3 = I(Age, Labor _status) 8 3.49 0.13815
DBpgs = I(State, Age, Labor _status) 416 7.10 0.01623
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Table 3

Proxy databases.
Proxy DB |A]
DBpx1 = P(State, Age, Sex) 416
DBpx, = P(State, Labor _status, Sex) 208
DBpx3 = P(Age, Labor _status, Sex) 16
DBpx4 = P(State,Age, Labor _status, Sex) 832

Now, suppose in Table 2 that only the first three databases are given (i.e., Case 2). In this case, the maximum number of
cells is provided by DBpy, but none of them satisfies the consistency conditions (see Section 2.1). Thus,
Income(State, Age, Labor status) needs to be estimated. For this reason, we have to consider all three primary databases by
applying IPFP to estimate Tncome(StataAge,Laborstatus). This estimate satisfies the above mentioned condition because,
for instance, aggregating that over “Age”, we have Income(State, Labor status), over “Labor_status” we obtain Income
(State,Age) and over “State” we obtain Income(Age, Labor status). This estimate provides maximum entropy and contains
the largest number of cells in common with the target database (this is expressed in the procebure in Section 4). In [13], it
is discussed that this estimate is uniquely determined by the information-theoretic principle of minimum cross-entropy
and its distribution is defined as follows. (For the sake of brevity, the symbols “S”, “A” , and “L” indicate “State”, “Age”,
and “Labor_status”, respectively.)

Tncome[0)(S,A,L) = P(S,A,L)

Tncomel0](S,A, L)
S, Income[0](S,A, L)
Tncome[1](S,A,L)
ZATncome[l}(S,A, L)
Tncome[Z] (S,AL)
S sIncome[2)(S,A, L)
Tncome[E}] (S,A,L)
S, Income(3](S,A, L)

Tncome[1)(S,A, L) = Income(S, A)

Tncome[Z](S,A,L) = Income(S,L)

Tncome[B](S,A L) = Income(A, L)

7ncome[4] (5,A,L) = Income(S,A)

Note that the zero approximation (or initial distribution) is set to the proxy database with the same dimensions of the
estimate of Income. In this example, the proxy is DBpx4, where P(S,A,L) = >, P(S,A, L, Sex).

Case 4 differs from Case 2 in the proxy database computation. In order to apply IPFP to the primary databases, the zero
approximation should be set to P(S,A,L), but this proxy is not provided. Our solution is to estimate ﬁ(S,A,L, Sex) from the
proxy databases. We return to this point in Section 5. The estimate of the primary database is obtained by IPFP, where
the zero approximation is defined by the aggregation over Sex of ﬁ(State,Age, Labor status, Sex) given below:

ﬁ(State,Age,Labor_status,Sex) = P(State, Age, Sex) s P(Smif(’sLt Zl;:r]j t;fgi;iz)s Sex)
Labor _status ’ ’

As a final remark, we emphasize that in each set of databases there can be summary databases which are marginal of a
database in the same set. They are not considered in the database selection because they are redundant.

4. Algorithmic approach
We propose the use of an algorithmic approach for determining the steps to achieve maximum accuracy. The procedure is

essentially based on two theorems introduced below. Using the notation introduced in Section 2.2, we can formulate the fol-
lowing definition and theorems.

Definition 4.1. Let Mp, <A,§R,AE’(,A,§§7A£§>7MP, (A,SI,AE,,A,T,,C,A,CIC> be primary databases, and let My (AC7AS,A£C,A5C) be a

proxy database. We define I\A/ka to be the estimation result of the target database over the primary summary database
Mp, <A§k7AEk,A,T,£,A,T,§>. Similarly, we define Mp, to be the estimation result of target database over the primary database
Mp, <A§,,AE,,A,T,IC,AE;>. The expressions of the estimators above are defined by applying the PP method, according to which

the source databases are aggregated over non-common dimensions first:
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then, linear indirect estimation method is applied:

Mo (AC.ATC ATE>
W, (A1 AT AC AT = My, (AC AT AT )L 2T
P\ PP Qo e | T P\ P e Py C AT¢

Mo (45,47 )

L M AC.ATC,ATE>
= TC 2TC 4C 4TC\ C ATC AT€ Q<Q'QQ

Mp, | Ap, ,Ap, ,Ag: Aq | =Mp | Ap,Ap . Ap, —

Mo (45,47 )
here, M (AS,AY ) = Mg (AS, AT, AX

where, Q( Q7Q>—ZAEE Q| Ag, A g |-
Theorem 4.1. Let Mp, (Agk,Agi,A,T,» ,Mp, (A,ENA,CIC,A,T,,C> be primary databases, and let Mg (Ag,Ag.,Ag> be a proxy database,
where |Ap | < |Ap,| < |AT|,A;§’ C A,ﬁk and & represents common and common-target dimension-groups. Let I\A/ka and Mpl be the esti-

mate of the target database obtained by applying the primary databases Mp, and Mp, to My, respectively. The primary database
Mp, achieves better estimates with respect to Mp,.

Proof. Let the relative entropy of Mp, <A,§k,A,f£ ,A,T,: ,Ag) and Mp, (AIEI,A,T,,C,A,ZIC, ,Ag) with respect to Mp (A,gk,A,T,i ,A,f;Ag) be
defined according to expressions:

~ o~ M
D(Mp,,Mp) = z Mp, log M‘:f

C TE
Mg (AQ,AQ7C,AQ )
C ATC
Mg (A,,k ,A,,k)

Mp (A,Ek AL AL ,Ag>

¢ 41 4T My, (AC AT, AT
¢ C MQ<AQ7AQ7AQ> AN
= Mp (AC AL AT ) log
Z k \ “°P2 TP TPy MQ (AgwA;i)

D(IV[P“MP) = Z Mpllogll\\/l/l—?
Mo (AEAEC AEE>
Mo (A,C,I,A;lc)

Mp (A,S{ AL AL Ag>

C C

€ 4TC 4T¢ Mp, <AC7AT -,AT>

€ ATC 4TC MQ<AQ’AQ7AQ) A

=> | | Mb (A Ap, A, R log
MQ(APNAP,)

We show D(Mp,,Mp) < D(Mp,,Mp), or D(Mp,,Mp) — D(Mp,,Mp) > O as follows:
Mq (Ag,AZf ,AEE)
Mq (A,E,,A,T,IC>

Mp (Ag AL AT Ag>

_ C ATC a1

_ _ ¢ gt MQ<A87A£C~,A£C> H <AP”AP”A”'>

D(Mp,, Mp) — D(Mp,,Mp) =Y MPI<A,C,I,A,T31,AE,> o
MQ(A,,I,API)
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c 1€
Mo (A8A£ AY >
C a1¢
Mo (A”k Ap )

My (Agk AL AL AQ“)

C ATE ATC Mp, AC,ATC,ATC
\ Mo (Ag. Ay LAy K\ TP TP TP
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MQ<APk7APk)
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Setting
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Since >> 79 =35 Mg <A8,A£C,A(T;) =1, and according to Theorem 3.1 (The theorem states the relative entropy obtained
from distributions of the‘observations is positive, see Chapter 2) in [8]

c < C C C
524 fog & DMy (A5, A7 A ). Mo (5.7 ) ) DMy (45,454 ). Mo (45,47 ) )
which leads to the conclusion that 3~ 7% log % > 0. Thus, D(Mp,, Mp) — D(Mp,,Mp) > 0, with equality if and only if:
C ATC 4TC € ATC 4TC
Mp, AP,vAP, 7AP, Mp, APk7APk aAPk

M, (A,C,I,A,T,IC> M, (A,Ek ,Ag) -

e ¢ C C . c C < c C c
Definition 4.2. Let Mp /i,c,,A,E,A,T, LA} ), be primary database, and let Mo, ( Ag, . Ag, . A, . A, |- Mo, ( Ag,- A, Ap,-Ag, ) be proxy
databases. We define Mp, to be the estimation result of the target database by applying the primary database to
Mo, <Agk7Agk’AgwAgk>‘ Similarly, we define Mpl to be the estimation result of target database by applying the primary data-

base to Mg, <A5NASI,A5,7A§>. The expressions of the estimators above are defined by applying the PP method as follows:
Mo, (AS A" A
Qe \ oM My
C  ATC
Mo, (AQk ’AQk>
C T¢ 4I°
MQI (AQI ’ AQ1 ’AQ1>

MQI (Agl AZ)

e, (A7 A7 6,5, ) = Mo (45,7 7 )

~ C e C
Mp, (A,T,C,A,f ,Agl,AS,) — Mp (A,E,A,T,C,A,C )

Theorem 4.2. Let Mp <A,C,,A,§C,A,Tf), be primary database, and let My, (Agk,Agk,Agi),MQl (Agl,Agl,Ag) be proxy databases,
where |Ag,| < |Aq,|,Ag, C Ag,. Let Mp, (A,T,C,A,T,E,Agk,ASD and Mp, (A;C,A,T,E,AEI,A5> be the estimate of the target database
obtained by applying the primary database Mp (A,S,AEC,A,T,C> to My, and My, respectively. The estimate M p, is more accurate than
the estimate Mpl.

Proof. Let the relative entropy of Mp, A,T,C,A,CE,Agk,Agk> and Mp, (A,T,C,A,EE,A&,AEE,> with respect to Mp (AIE,A,CC,A,T,E,AEj be
defined according to the following expressions:
D(Mp,(,Mp) = ZMpklOg%—?
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We show D(I\A/Ip,.,Mp> - D(IWP,(,M,:) > 0 as follows:
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N . MQk (AQk ’ AQk)MQI (AQI ? AQ! ’AQ1>
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Similar to Theorem 4.1, " # ¥ log % > 0 is shown.

To summarize the discussion above, the procedure for determining the steps to achieve maximum accuracy can be
defined by procebure. It is composed of three parts. Note that in step (3), the second part is called for the propose of obtaining
the proxy database which includes maximum common dimensions with the primary databases. O

.¢7:MP<A§,A£C,A£C>

G =

5. Experimental results

PROCEDURE

Input: Given target database DBr, multiple primary databases DBp; with 1 < i < n and multiple proxy databases
DBpy; 1 < j < m databases

Goal: Select two source databases to obtain maximum accuracy for the estimate of DBy

PART 1 - SELECTION OF THE PRIMARY DATABASE

(1) Given that M = Mpg start with selecting a primary database;

(2) Select the primary database whose dimensions cover the dimensions of all other primary databases (indicated by
Apr)

(3) If no such primary database exists run part 2 and then apply IPFP to multiple primary databases with zero
approximation fixed to DBpy pre-aggregated over A,E;;

(4) Once DBpg was chosen (step 2) or estimated (step 3), pre-aggregate the non-common dimensions;

PART 2 - SELECTION OF THE PROXY DATABASE
(5) Consider only DBpy with dimensions Apy = Al U Apg;

(6) If there is no such proxy database, consider proxy databases that have Apy = Ag(, and apply IPFP to multiple proxy
databases;

(7) Once DBpx was chosen (step 5) or estimated (step 6), pre-aggregate the non-common dimensions;

PART 3 - ESTIMATION OF THE TARGET DATABASE

(8) Apply linear indirect estimation method to DBpg, and DBpy.

We discuss the experimental results of the application of our algorithmic approach to the four cases introduced in Section
1.1. For the experimental results, we use the values in the base data to evaluate the estimated errors. We start with Case 1.
We note that DBprq and DBpy4 satisfy step (2) and step (5). In fact, they provide the most accurate results (see Table 4, first
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Table 4

Accuracy results of selected primary and proxy databases in four cases.
Cases DBpg DBpx ARE
Case (1) DBpra DBpx4 0.0962
Case (2) T(S,A,L) DBpx4 0.1464
Case (3) DBpg4 P(S,A,L,Sex) 0.1186
Case (4) 1S.A,L) P(S,A,L,Sex) 0.1625

row). In Case 2, according to step (3), IPFP is applied to the given primary databases. As we mentioned in Section 3, the zero
approximation is fixed to DBpxs Which is pre-aggregated over the non-common target dimension. The convergence of the
estimate of Income is achieved after five iteration cycles. Note that, we could have fixed the zero approximation of IPFP
to every primary database in order to estimate the primary database, but these starting values effect the accuracy of the re-
sults. In fact, the average relative error of the target database is 0.1732 vs. 0.1625 by applying step (3). Overall, the accuracy
result in Case 2 is close to that of Case 4. Similarly, the accuracy result in Case 1 is close to that of Case 3. With respect to Case
1, the accuracy of Case 3 is better than Case 2. It seems that the choice of the primary database effects the accuracy results
more than the choice of the proxy database (see the accuracy of Case 1 and Case 2). In contrast, the accuracy of Case 4 is worse
than the other cases.

Now, we compare accuracy results of the estimates. Specifically, in Table 5, we compare the accuracy results of the esti-
mate of the target database by applying each primary database to P(State, Labor status, Age, Sex) and to the estimate of the
primary database computed according to step (3) of the proposed procedure. Table 6 illustrates the accuracy results of
the estimate of the target database by applying to I(State, Labor status,Age) each given proxy database and the estimated
proxy database computed according to step (6) of the proposed procedure.

Finally, Table 7 shows the accuracy results of the estimate of the target database by applying the estimated primary data-
base T(State, Labor status, Age) to each given proxy database and the estimated proxy database I3(State, Labor status, Age, Sex).
As can be seen, in all cases, when the consistency conditions do not hold, using the estimated databases generates the most
accurate results.

5.1. IPFP and the F and PP methods

In this section, we investigate whether applying the PP method is useful for the IPFP procedure as well. That is, we inves-
tigate whether applying the PP method before performing the IPFP procedure, produces the same ARE as the F method. For a
better illustration of the application of the PP method to the IPFP procedure, additional experiments were carried out. We

Table 5

ARE of T(State, Labor status, Age, Sex) by applying the primary databases to P(State, Labor status, Age, Sex).
Primary DB |A] ARE
I(State, Age) 208 0.3925
I(State, Labor _status) 104 0.3991
I(Age, Labor _status) 8 0.5300
T(State, Age, Labor _status) 416 0.1464

Table 6

ARE of I(State, Labor status, Age, Sex) by applying the primary database I(State, Labor status, Age) to the following proxy databases.
Proxy DB |A| ARE
P(State,Age, Sex) 416 0.2111
P(State, Labor _status, Sex) 208 0.1470
P(Age, Labor status, Sex) 16 0.1439
P(State, Age, Labor status, Sex) 832 0.1186

Table 7_ R

ARE of I(State, Labor status,Age, Sex) by applying the primary database I(State, Labor_status, Age) to proxy databases.
Proxy DB |A| ARE
P(State, Age, Sex) 416 0.2389
P(State, Labor _status, Sex) 208 0.1909
P(Age, Labor status, Sex) 16 0.1827
D(State, Age, Labor_status, Sex) 832 0.1625
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consider different data sets, where DBpr; = Income(Region, Education_level) is the primary database, which represents the to-
tal income (for the sake of brevity, we use simply “income”) of households by Region and Education_level and multiple proxy
databases shown below that represent the number of households by Region, Education_level, Race, Age, and Tenure. The rea-
son for using another example here is to show better the effect of applying PP on the IPFP procedure. In this example, there
are five dimensions, three target dimensions, and two non-common dimensions, whereas in the previous example all dimen-
sions were target dimensions. Group 1

e DBpx; = Household(Region, Age, Education_level)
e DBpx; = Household(Region, Race, Tenure)
e DBpx3 = Household(Education_level, Tenure)

Suppose that the target database is Income by Region, Education_level, and Tenure, where the cardinalities of the dimen-
sions are:

|Region| = 4, |Race| = 4, |Age| = 7, |Education_level| = 9, and |Tenure| = 3.

Note that Race and Age are non-common dimensions. According to the maximum entropy principles discussed in the pre-
vious sections, we have to estimate first Household(Region, Race, Age, Education_level, Tenure) and then apply linear indirect
estimation method to this and the primary database to estimate DBy = Income(Region, Education_level, Tenure). Once the esti-
mate of ﬁousehold(Region, Race,Age, Education_level, Tenure) is obtained by IPFP, we can estimate the target database by the F
method as follows:

T[F)(Region, Race, Age, Education_level, Tenure) = Income(Region, Education_level)

H ousehold(Region, Race, Age, Education_level, Tenure)

X =
" Race Age.Tenure HOUSENOId(Region, Race, Age, Education level, Tenure)

and then aggregate non-common dimensions Race, Age to obtain the target database:

Tncome(Region, Education_level, Tenure) = Z TncomelF)(Region, Race, Age, Education_level, Tenure)
Race Age

The average relative error of the estimates is 0.207456 and shown in Table 8 (see first row, fourth column). If we pre-
aggregate first the non-common dimensions over Household(Region, Race, Age, Education_level, Tenure) as follows:

Household(Region,Education_level,Tenure): Z ﬁousehold(lncome(Region,Race,Age,Education_level,Tenure)
Race Age

and then apply the linear indirect estimation method to estimate the target database as follows:

Tncome[PP](Region, Education_level, Tenure) = Income(Region, Education_level)

Household(Region, Education_level, Tenure)
5" remure HOUSEhOId (Region, Education_level, Tenure)

the average relative error is the same as ARE by the F method.

Overall, once we estimate the maximum entropy of the proxies (i.e., H (Region, Race, Age, Education_level, Tenure)) by
the F method, we can estimate the target database by the PP method, according to step (7) of procepure. Note that
the average relative error of the estimate of the target database by applying the proxies Household(Region,
Race, Tenure) and Household(Education _level, Tenure) to the primary database Income(Region, Education_level), without com-
puting the maximum entropy (by IPFP), are 0.212084 and 0.218138, respectively. In fact, they are higher than the ARE of
the estimate of the target database calculated by applying the estimate of the number of household by the IPFP as
shown above.

Table 8
ARE and time of computations.
Group Method ARE of H ARE of DBy Time (s)
(1) F 0.013960 0.207456 6.900
PP 0.014300 0.207466 1.542
(2) B 0.055471 0.206925 1.020
PP 0.055471 0.206925 0.441
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We emphasize that the PP method is only used in the estimation of the target database. Now, the question is whether we
can use this method to estimate the maximum entropy by the IPFP procedure. In other words, can we apply the PP method or
pre-aggregate first the non-common dimensions over source databases and then apply the IPFP procedure? Do we achieve, in
this way, the same results as applying first the F method in IPFP procedure and then aggregate the non-common dimensions?
This question is addressed through the data set labeled by Group 1 and shown above and the following Group 2 of proxy
databases.

Group 2

e DBpx; = Household(Region, Age)
e DBpx; = Household(Region, Race, Tenure)
e DBpx3 = Household(Education level, Tenure)

We focus first on Group 1 of proxy databases and apply the F method for running the IPFP procedure. Accordingly,
ﬁousehold(Region,Race,Age,Education_level, Tenure) is computed. The number of iteration cycles needed to achieve the con-
vergence and the relative execution time are shown in Table 9.

Then, we apply the PP method. In this case, we pre-aggregate first the dimensions Age and Race in DBpyx; and DBpx,, respec-
tively, and then run the IPFP procedure. In Table 9, we note that the convergence is achieved in 3 iteration cycles, while in the
case of the F method the convergence is obtained by 6 iteration cycles. Consequently, the execution time of IPFP by the F
method is 6.319, while by the PP method is 1.420. Regarding the accuracy, we note that the average relative error of the esti-
mate ﬁ(Region,Education_level, Tenure) are not equal. The case of the F method (see Table 8, third column) is better than the
average relative error of the same estimate by applying the PP method (0.013960 vs. 0.014300). Accordingly, the estimate of
the target database obtained by the application of the linear indirect estimation method on the primary database and the
two estimates of H (Region, Education_level, Tenure) by the F and PP methods mentioned above are also different, i.e.,
0.207456 vs. 0.207466, (see Table 8, fourth column).

Now, we perform the same experiments over the second group of proxies (Group 2) in order to estimate the target data-
base Income(Region, Education_level, Tenure), where Race and Age are non-common dimensions. As we mentioned above, in
order to apply the PP method, we need to pre-aggregate Age in DBpyx; and Race in DBy, respectively, as shown below. Hence,
DBpx1 = Household(Region) is a marginal of DBpx, and as anticipated in Section 3, it is redundant. Thus, IPFP is applied to
DBpyx», and DBpy3, and it consists of one iteration.

e DBpx; = Household(Region)
e DBpx, = Household(Region, Tenure)
e DBpx3 = Household(Education_level, Tenure)

We note that applying the IPFP procedure to estimate Household(Region, Education_level, Tenure) by the F method and the
PP method give the same results in this case, i.e., 0.055471 (see Table 8, third column), and the average relative error of the
estimates is also the same, i.e., 0.206925. In Table 9, the number of iteration cycles to achieve the convergence and time of
executions of IPFP are shown, as well.

What is the difference between these two cases? It turns out that the difference between the above mentioned groups is
related to the schemes of databases. Specifically, the hypergraph formed by the databases over their dimensions in Group 1 is
cyclic, while in Group 2 is acyclic. In order to identify cycles in the hypergraph, one can use the well-known Graham Reduc-
tion algorithm [10]. We note that the basic concepts of hypergraph theory as well as the definitions of an acyclic hypergraph
to implement the IPFP procedure are discussed in [2], where the authors combine a tree-implementation of the IPFP with an
application of the principle of the divide-and-conquer. Based on these studies, and some additional experiments performed
over different data sets, we conjecture that only if the schemes of the databases are acyclic, then the PP method can be ap-
plied in IPFP. However, we have no proof for that. The proof of this conjecture is a future challenge. As a final remark, we
emphasize that cyclic/acyclic condition of the schema of the source databases has no effect on the principles of the maxi-
mum entropy and in both cases the estimation of the maximum entropy is provided by IPFP. These conditions are considered
in order to estimate efficiently the maximum entropy. Accordingly, the main contribution of applying the PP method in IPFP,
when the schemes of source databases are acyclic, consists of saving a significant number of computations and running time
of the procedure.

Table 9
Application of IPFP in groups.
Group Method |A] Iteration of cycles Time (s)
(1) F 3024 6 6.319
PP 108 3 1.420
(2) B 3024 3 0.952
PP 108 1 0.341
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Table 10

ARE of Income computed from aggregate primary databases.
Primary DB Proxy DB Target DB ARE
Income(State, Age) Population(State, Age, Sex) Income(State Age, Sex) 0.72914
Income(State) Population(State, Age, Sex) Tncome(State, Age, Sex) 1.57797
Income(Division, Age) Population(Division, Age, Sex) Tncome(Division, Age, Sex) 0.35277
Income(Division) Population(Division, Age, Sex) Tncome(Division, Age, Sex) 0.63323
Income(Region, Age) Population(Region, Age, Sex) Incume(Regzon Age, Sex) 0.17991
Income(Region) Population(Region, Age, Sex) Tncome(Region, Age, Sex) 0.49911

6. Roll-up and drill-down

In this section, we examine the results obtained in the previous sections for the cases of roll-up and drill-down opera-
tions. We refer to the notation used in [15], and recall them next. We use the notation A}, and A‘Q to represent two different
dimension-levels in the category hierarchy of the same dimension t of DBp and DBg. For example, State — Division are two
dimension-levels in the dimension Geographical_area and Date — Month are two dimension-levels in the dimension Time.
We use the notation for lower and higher category levels as Aj" — A5 of target dimension A}. Similarly, A" — Ag" of target

dimension A&. Finally, we use the notation A;’ = A,T,C U A;C to represent the remaining target dimensions not involved in the

roll-up or drill-down operation. Thus, A} = Ay UAG". Similarly, A}, = Ay UAY', where Aj = Ag, uAg/. This notation is used in
the following definitions and theorems.

6.1. Roll-up

We consider the accuracy of estimates when multiple primary databases are aggregated over a dimension of a given clas-
sification hierarchy. For instance, let State be a dimension level in the dimension Geographical_area defined by three levels:
State — Division — Region. Note that, according to US Census Bureau,’ United States territory is subdivided into 9 divisions (i.e.,
New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East South Atlantic, West South Atlantic,
Mountain, and Pacific), and 4 regions (Northeast, Midwest, South, West).

Consider the primary databases shown in Table 10, first column, where for each pair of primary databases, the proxy data-
base and the target database are shown. Each pair of primary databases are defined at a certain level of the dimension Geo-
graphical_area. Note that the estimate of the target database is more accurate when the primary database with the largest
number of cells in common with target database and proxy database is selected. For example, the accuracy of the estimate by
using Income(State,Age) is better than the accuracy of estimate by using Income(State). Similar results are obtained by the
remaining pairs of primary databases, and they again confirm the results discussed in the previous sections and proved
by theorems shown in Section 4.

We note also that the estimate by applying Income(Region, Age) is more accurate than the estimates obtained by
Income(Division,Age) and Income(State,Age), i.e., Income(Reglon Age,Sex) is more accurate than Income(Dwzszon Age,
Sex), and Tncome(State,Age,Sex). Similarly, the estimate by Income(Region) is more accurate than the estimates by
Income(Division), and Income(State). Overall, the aggregation of small cells into larger cells avoid the distortion in the dis-
tribution of the measure by small cells. Therefore, the accuracy of estimates is higher. This is proved by the next the-
orem, where we show that the ARE of estimate by applying a given primary database defined over a set of dimensions is
higher than the ARE of estimate by applying the same primary database aggregated over a given dimension by roll-up
operation. In order to prove this theorem, we use the notations introduced in the following definition.

Definition 6.1. Let M, (A,Q,AE,A@C,,ATF,A;L> Mp, <AP AS, Al A,ZF,A;;H> be primary summary databases, and let
Mg, (AS,AS,ATU,ATF,AQL),MQH <AC,AE,ATC,,ATU, Aa”> be proxy databases, where Af" — Af" AY ALY and
AIEL:A&L,AF;H:AEH. We define M to be the estimation result of the target database over the primary database

b, (AC,AE.,ATC,7A,TF.,AI‘;L> using Mo, (A&AS?AEC,,ATF,AEL). Similarly, we define M to be the estimation result of target
database over the primary database Mp, (A,C,,AE,AEC, ,ATF,A;;H> using Mg, (AC ,AS,ATC, ,A£F7Af2’”> . The precise expressions for

M and M using the PP method are provided below. According to this method, the source databases are aggregated first over
non-common dimensions as follows:

3 http://www.census.gov/geo/www/us_regdiv.pdf.
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then, the linear indirect estimation is applied:
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Theorem  6.1. Let My, (Ag,AE,A,ZC,,A;F,AQL),MpH <A,§,AE,A,T,U7A,T,F7A,‘;H> be  primary  databases, and let
Mg, (A87AE,A£C’7A£F7A3L>,MQH (Ag,A:Cz?Ag,,AZiAg”) be proxy databases, where Ag" — A", At — A and AY =AY,
A = AY'. The estimator of target database I/VI\pH (A;C’,A;F,AZF,ABH> gives a more accurate result than the estimator
Mp, (Af ,A,T,F,AEF,AEL)

Proof. We show ARE ~ <ARE%L in Appendix C.1. O

Now consider estixﬁting the target database Income(Region, Age, Sex) from the primary database Income(State, Age) and
the proxy database Population(State, Age,Sex). The estimate can be computed in two ways. One way is to apply first the
PP method to estimate Tncome(State,Age,Sex) and then perform roll-up on the State dimension to achieve
Income(Region, Age, Sex). The other way is to apply first roll-up operation on the State dimension in the primary database

Table 11
ARE of Income(Region, Age, Sex) computed by roll-up operation.
Primary databases ARE(Roll-up first then PP) ARE (PP first then Roll-up)
Income(State, Age) 0.17991 0.17690
Income(State, Sex) 0.49082 0.52792
Income(State) 0.49911 0.53672
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and the proxy database (i.e., from Income(State, Age), Population(State, Age,Sex) we obtain Income(Region, Age), Population
(Region, Age, Sex)) and then compute the estimate by the PP method. Obviously the second solution saves a number of com-
putations but the question is which one achieves better accuracy for the estimate Tncome(Region,Age,Sex).

In Table 11, the accuracy results shown in the first row show that the first way is better than the second one. Repeating
this procedure on Income(State, Sex) and Income(Sex) to estimate Tncome(Region,Age,Sex), the results by applying first the
roll-up and then the PP method, i.e., the second way, are more accurate with respect to the estimate by the first way. It turns
out that in similar cases, we cannot choose a priori which one of the two solutions (applying first roll-up then the PP method
or viceversa) can achieve the better results. We conjecture that this probably depends on the distributions of measure values
and on the dependency of the measure on dimensions, for which we have no proof.

6.2. Drill-down

The disaggregation over the category hierarchy, that is referred to as drill-down, occurs when different categories of the
same hierarchy appear in the dimensions of the source summary databases. For instance, consider the source databases
Income(Region,Age) and Population(State,Age, Sex). The target database is Income(State, Age, Sex). We need to drill-down
the income from the Region to the State level by using the Population database as a proxy. It is generated as follows:
Population(State, Age, Sex)

Tncome(StataAge,Sex) :lncome(Region,Age)Z Population(Region, Age, Sex)
Sex ’ )

Note that the term in the denominator Population(Region, Age, Sex) in the above expression is obtained by a roll-up oper-
ation on Population(State, Age, Sex).

Now, suppose we have multiple primary databases as follows: Income(Division, Sex), Income(Region, Sex) and one proxy
database Population(State,Age, Sex). The target database is Income(State,Age, Sex). The problem is which primary database
do we choose to obtain more accurate results. The accuracy results of estimate are shown in Table 12, second column.
We note that ARE by applying more aggregated primary database is higher, and therefore the estimates are less accurate.
Specifically, ARE of the estimate obtained by applying Income(Region, Sex) is higher than ARE of the estimate obtained by
Income(Division, Sex), i.e., 3.15404 vs. 2.92769. Similar results are obtained by applying primary databases Income
(Division) and Income(Region) (see Table 12, fourth column). Obviously, given the proxy database Population(State,Age,
Sex), the accuracy of Tncome(Stare,Age,Sex) computed by applying Income(State, Sex) is higher than the estimates obtained
by applying drill-down operation on primary databases Income(Division, Sex), and Income(Region, Sex) (see Table 12, first
row). This is proved by the next theorem, where we show that the accuracy of the estimate by applying a given primary
database defined over a set of dimensions is higher than the accuracy of estimate by applying the same primary database
disaggregated over a given dimension and defined by drill-down. We emphasize that the drill-down operation can only
be performed when the dimensions in the two source databases that are involved in the drill-down operation must belong
to the same category hierarchy. Furthermore, the lower category must belong to the proxy database. That is, A&L — Af,'” .In
order to prove this theorem, we use the notations introduced in the following definition.

Definition 6.2. Let Mp, ( AS,AS AL AL ,A§L>, and Mp, (AS,AS, AL AT AtH) be primary summary databases, and let
Mg, (Ag,Ag,Ag/ 7Ag/ ,A3" ) be proxy database, where A" — A" and Ap" = Ay". We define M to be the estimation result of the
target database over the primary database Mp, (AﬁAE,A,Tf, ,A,Tf’ ,ASL). Similarly, we define M to be the estimation results of
the target database over the primary database Mp, <A,C;,AE7A,T,C, ,A,T,C, 7A,[,‘H > The precise expressions for M and M using the PP
method are provided below. First, the source databases are aggregated over non-common dimensions as follows:
M, (A5 A AT) = 2 M (45,54 A
a5
¢ 0  7¢ 70
M (A5 AT AT A ) = 5 M, (5457 A7)
A

Mo, (A5, A5 A ) = 52 Mo, (AG.5.45 AT A )
AC

Table 12

ARE of Tncome(State,Age«,Sex) by applying primary databases and proxy database Population(State, Age, Sex).
Primary DB ARE Primary DB ARE
Income(State, Sex) 1.08540 Income(State) 1.57797
Income(Division, Sex) 2.92769 Income(Division) 3.00845
Income(Region, Sex) 3.15404 Income(Region) 3.20183

Please cite this article in press as: E. Pourabbas, A. Shoshani, Improving estimation accuracy of aggregate queries on data cubes, Data
Knowl. Eng. (2009), doi:10.1016/j.datak.2009.08.010



http://dx.doi.org/10.1016/j.datak.2009.08.010

16 E. Pourabbas, A. Shoshani/Data & Knowledge Engineering xxx (2009) XxX—Xxx

then, the linear indirect estimation is applied:
y 1€ 41 419 el y 1 41 4C A19 atl
Mp, <A,, A AL ,AQ> =Y Mp, (A,, A Ag. Ay ,AQ>
AC

c <
M, <AC Ay LAY ,A@f)

c g
= Z Mp’_ <AIC;AIT; ,Ag 7AIt;L> c TC’ TF tL
A ZAEF‘ AELMQL <AQ’AQ Aq A >

€ 419 419 ptl
C A1¢ ATC atl Ma, (AQ7AQ A 7AQ)
:Z MPL AP'/AP ﬁAP ’AI5 c 1¢

AG Mg, (AQ7AQ )

= c g < = ! < <
MPL<A,Z AL AT ,A@f) =5 My, (A,C Ap LAY Ay ,A3L>
AC

C ATY 419 il

€ AT¢ A1C AtH MQL<AQ,AQ 7AQ 7AQ>

:Z MPH AP7AP ,Ap 7AP o a
. M AC ATC ATC ALH
Ag ZATU Qy »Q o

Q
C AT A€ il
Mo, (AQ7AQ Ao vAQ>

M, (Ag,Ag/ 7A3H>

-5 | (s A )

Note that the term in the denominator is obtained using roll-up* as follows:

c’ c ' F
Mo, (Aq.Aq -Aq +AG') = Ayt (MQL <AC,A£ Ag .,Aff))

Theorem 6.2. Let My, <A,€,AE7A,T,C/,A,T,C/,A§L>, and Mp, (A,g,AE,A,T,C/,A,T,C,,Af;H> be primary databases, and let
M. [ A€ AC ATC’ ATF ALY b h tL tH tL_ At Th : £

a | Ag,Ag, A »Aq HAg e proxy database, where A; — A;" and Aj =Ap. The estimator of target database
Mp, (A,Tf 7A,T,C,,Ag/ 7AEL> gives more accurate result than the estimator Mp, (A,Tf 7A;C,,A£C,,A3L>.

Proof. We show ARE& <ARE~ in Appendix C.2. O

P Mp,

7. Conclusions

A common technique of constructing a target database from summary databases in the case that such a result cannot be
obtained from a single summary database, is to select a summary primary database that has the desired target measure and
use a proxy database with a different measure to estimate the result. In this paper, we considered the following problem.
Given multiple primary and multiple proxy summary databases (i.e., summarized from a large base data cube), we investi-
gate the problem of selecting the databases that provide the most precise estimate for a target database. We prove that the
primary and proxy databases with the largest number of cells in common with each other and with the target database pro-
vide more accurate results. Our methodology is based on the principles of information entropy. Based on these results, we
proposed an algorithmic approach for determining the steps to select or compute the source databases from multiple sum-
mary databases. To describe the proposed algorithm and verify the theoretical results, several example databases were used,
and experimental results derived. Finally, the accuracy results in cases where dimensions of source databases are defined
over a hierarchical structure and roll-up and drill-down operations are needed to achieve the desired target results are
investigated.

Appendix A. The linear indirect estimation

The main idea of this method stems from its use in geographical regions. According to this method, data from surveys of
variables of interest at the national or regional level is used to obtain estimates at more geographically disaggregated levels

4 The roll-up operator is denoted by Ra,—a, (M(A1)), where A; and A, represent two category levels of a category hierarchy. It applies the aggregation function
COUNT or SUM to the measure M(A;), and gives as result M(A;) [15].
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such as counties or other small areas. An indirect estimation calculates values of the variable of interest using available aux-
iliary (called predictor or proxy) data at the local level that are correlated with the variable of interest [6]. Formally, let i de-
note a small area. A target measure Y(d) is provided over a set of dimensions d. Y(d) was generated from Y(d) = >",Y(i, d).
Y(i,d) is no longer available. However, auxiliary information in the form of X(i, d) is available. A linear indirect estimation
of Y for small area i is defined by:

- Vii.d) = S v XD
d d

where X(d) = 37,X(i,d). X(i,d) /X(d) represents the proportion of the population of small area i relative to the total population
over set of dimensions d, and Z,Y(l ) must be equal to }_,Y(d) [6].

Appendix B. Average relative error

A method that is commonly-used for measuring accuracy is the average relative error (ARE) [6]. Formally, the average
relative error (ARE) is:

1 m |\7, 7V,’|
ARE = — e
m ; Vi

where V; and v; are, respectively, the estimated and precise (or base data) values, and m is the number of small areas for
which estimated values were calculated.

Appendix C. Proofs for Section 6

In this section we prove Theorems 6.1 and 6.2. The first theorem shows that the estimator M obtained by applying the
roll-up operation over a given dimension in a set of dimensions is more accurate than the estimator M defined over the same
set of dimensions. The second theorem shows that the estimator M defined over a set of dimensions is more accurate that
the estimator M obtained by applying the drill-down operation over a given dimension in the same set of dimensions.

C.1. Proof of Theorem 6.1

We show ARE~ < ARE- .

Mp, M,
1 & MPH _MPH 1 IV[P,, _MP,__
— Z < — . E— (7)
m = MPH n P MPL]_
The equation above can be written by using Egs. (3) and (4) as follows:
o ' : o < .
| > M, (Af,,A,T, AT ,A;”r>MQHd <AC,AT LAY ,AB”«)
— 1
m = 45 Ma,, (Afl, Ag ) Mp, (A;f , Agf 7 ATC AL )
M AC ATC/ ATF At \ M AC ATC/ ATF Atk
-lnz PLb ps{p »4p »,41p Q,_f Q4 g ; (8)
< — — — —
N M ( AC ATC’) M ATC’ ATC’ ATC’ At
Q QLf Q> lQ Py P 4P »43Q »1RQ
where 1< a < |Ap,|,1 <b<|Ap|,1 <d<|Ag,l,1<f< \AQL|with a,b,d.f <mand a,b,d,f<n,and 1<y< #,1<1< T

with #" < 7 Let denote |ApH| =, \Ap | = %,|A0,| = Z,1Aq,| =
According to the summarizability condition discussed in [9],5 the following partitions are defined:

5 This condition states that it is possible to obtain from the summary database defined at category level A; of a given hierarchy, another summary database
defined at the higher level A, of the same hierarchy by using the roll-up function.
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According to Egs. (10)-(12) the left hand side of Eq. (8) is defined as follows:
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The expression above is used to rewrite Eq. (8) as follows, which provides the proof of theorem:
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C.2. Proof of Theorem 6.2
We show ARE- = < ARE~ .
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The expression above can be written by using Eqs. (5) and (6) as follows:
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Using the partition indicated in Eq. (9), and the following:
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