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Abstract	
  
 

Modern scientific data-intensive applications brought about the need for novel data transfer 
technologies and automated tools capable of effectively utilizing available raw network bandwidth 
and intelligently assisting scientists in replicating large volumes of data to desired destinations in a 
timely manner. In this final report of the project, we describe the design of StorNet, an integrated 
end-to-end resource provisioning and management system for high performance data transfers that 
can operate with heterogeneous network protocols and storage systems in a federated computing 
environment. StorNet allocates and co-schedules storage and network resources involved in data 
transfers. It is based on existing Berkeley Storage Manager, TeraPaths, and OSCARS capabilities. 
StorNet provides data intensive applications with the capability of predictable, yet efficient delivery 
of data at rates of multiple gigabits per second, bridging end-to-end advanced storage and network 
technologies in a transparent way. 
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1  INTRODUCTION 
Data-intensive application communities, including high energy and nuclear physics, 
astrophysics, climate modeling, nanoscale materials science, and genomics, just to name a few, 
are expected to generate exabytes of data over the next 5 years. Such data must be transferred, 
analyzed, and visualized by geographically distributed teams of scientists. This expectation of 
explosive growth in stored data and globally distributed data processing needs, underpinned by 
the maturing Grid and cloud computing technologies, has generated critical requirements for new 
predictable and well-behaved data transfer technologies and automated tools. To expedite 
scientific discoveries, these data transfer tools need to intelligently assist scientists in replicating 
large volumes of data whenever and wherever necessary. Existing data transfer techniques face 
unprecedented challenges in handling not only the sheer volume of data, but also the 
heterogeneous environment where data are imported from and exported to. An obstacle to 
managing these challenges is the inability to provide end-to-end bandwidth guarantees from the 
source storage systems to the destination storage systems.  Furthermore, technology 
advancements give rise to performance improvements while also increasing the complexity of 
resource management and provisioning.  Recently, two major research and education networks, 
ESnet, run by the US Department Of Energy (DOE), and Internet2, have been enhanced with 
advanced dynamic circuit switching technologies and network resource reservation systems to 
ensure on-demand bandwidth guarantees and Quality of Service (QoS). Data storage 
technologies have demonstrated significant improvements as well, through the use of advanced 
parallel file systems that enhance I/O bandwidth, and solid state disks (SSD) that can provide 
read/write access as much as ten times faster than hard drives.  The StorNet project addresses the 
end-to-end resource provisioning and management issues encountered in automated data 
transfers by seamlessly integrating advanced network resource reservation capabilities with 
enhanced storage resource management technology. 

2 MOTIVATION AND BACKGROUND 
Common requirements among today’s experimental science applications that are of critical 

importance to the mission of large experimental facilities, such as the Large Synoptic Survey 
Telescope (LSST) [1], the Large Hadron Collider (LHC) [2], the Spallation Neutron Source 
(SNS) [3], the Advanced Photon Source (APS) [4], and the Relativistic Heavy Ion Collider 
(RHIC) [5], are: (i) intensive data transfers; (ii) remote visualizations of datasets and on-going 
computations; (iii) computational monitoring and steering; and (iv) remote experimentation and 
control. These applications utilize a wide variety of platforms, hardware, network, storage media, 
and software components to deliver the critical data storage functionality: file servers (NFS and 
AFS), various FTP file servers, mass storage systems, relational databases, and web servers for 
serving files and on-line streaming video. Storage and processing of raw data takes place at 
geographically distributed computing facilities; sharing data across the globe is realized through 
transfers over high-speed networks. Because the default network behavior is to treat all data 
flows equally, data flows of higher priority and/or urgency may be adversely impacted by 
competing data flows of lower priority. In distributed data-intensive environments, this can be a 
major problem that significantly degrades the effective “goodput” of the overall system. The 
policies and priorities of user communities cannot be effectively expressed or implemented in the 
network, except by very labor-intensive and error-prone human intervention. 
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There is an evident need for coordination between storage and network systems to better 
service the data transfers of the user community. From the network perspective, the capability to 
prioritize, protect, and regulate the various data flows becomes of high importance, because such 
a capability can be used for deterministically schedule network resources to support user 
community priorities and, furthermore, co-schedule associated resources such as storage 
systems. From the storage systems perspective, the source and destination storage systems need 
to have adequate bandwidth and storage allocation to take advantage of the network capabilities 
and increase the reliability and predictability of a transfer. Furthermore, data transfers typically 
take a long duration and transient failures are likely to occur, so failure detection and recovery 
mechanisms are also necessary.  

The primary goal of StorNet is to achieve the coordination of storage and network resources 
by taking advantage of existing systems, some already used in production, making them 
interoperable, and augmenting their functionality.  In addition to storage resource provisioning 
coordination between source and target storage systems, there needs to be bandwidth 
provisioning coordination between the storage systems and the underlying network resources. 

StorNet is a joint project between Brookhaven National Laboratory and Lawrence Berkeley 
National Laboratory, funded for two years from August 2009 to July 2011. The systems used by 
StorNet are LBNL’s storage resource manager known as the Berkeley Storage Manager 
(BeStMan) [6], BNL’s TeraPaths end-to-end virtual network path reservation system [7], and 
ESnet’s On-demand Secure Circuits and Advance Reservation System (OSCARS) [8] network 
provisioning tool supported by both ESnet and Internet2.  

3 TECHNOLOGIES IN STORNET 

3.1 Berkeley Storage Manager (BeStMan) 
When dealing with storing large amounts of data, scientists need to interact with a variety of 

storage systems, each with different interfaces and security mechanisms, and to pre-allocate 
storage to ensure that data generation and analysis tasks can take place successfully. To 
accommodate this need, the concept of Storage Resource Managers (SRMs) was developed at 
Lawrence Berkeley National Laboratory (LBNL) [9,10]. 

SRMs are middleware components whose function is to provide a common storage access 
interface, dynamic space allocation, and file management for shared distributed storage systems. 
The SRM interface was standardized, and the specification led to the development of multiple 
SRMs that interoperate with each other by various institutions around the world [11,12,13]. 
SRMs are designed to provide support for storage space reservations, flexible storage policies, 
lifetime control of files to manage space cleanup, and performance estimation. The most recent 
version of an SRM developed at LBNL, is called the Berkeley Storage Manager, or BeStMan.  
BeStMan is designed in a modular fashion, so that it can be adapted easily to different storage 
systems (such as disk-based systems, mass storage systems, and parallel and distributed file 
systems, such as Lustre, GPFS, PVFS2 and HDFS) as well as use different transfer protocols 
(including GridFTP, FTP, BBFTP, HTTP, HTTPS).  BeStMan is implemented in Java in order to 
be highly portable. It supports the SRM functions, and in addition, directory management and 
brokering service for accessing files in the distributed system. It manages queues of multiple 
requests to get or put files into spaces it manages, where each request can be for multiple files or 
entire directories.  When managing multiple files, BeStMan can take advantage of the available 
network bandwidth by scheduling multiple concurrent file transfers.   
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3.2 TeraPaths 
The TeraPaths project [7] at Brookhaven National Laboratory (BNL) has been developing a 

host-to-host network resource reservation tool. TeraPaths utilizes a combination of DiffServ-
based LAN QoS with WAN MPLS tunnels and dynamic circuits to establish host-to-host virtual 
paths with QoS guarantees. These virtual paths prioritize, protect, and regulate network flows in 
accordance with site agreements and user requests, and prevent the disruptive effects that 
conventional network flows can bring to one another.  

Providing a host-to-host virtual network path with QoS guarantees (e.g. guaranteed 
bandwidth) to a specific data flow requires the timely configuration of all network devices along 
the route from a given source to a given destination. Typically, such a route passes through 
multiple administrative domains and there is no single control center able to perform the 
configuration of all devices involved. TeraPaths achieves this goal by directly configuring end-
site LAN domains and interfacing with OSCARS for WAN domains. 

The TeraPaths system [14] has a fully distributed, layered architecture (see Figure 1) and 
interacts with the network from the perspective of end-site users/applications. The local network 
of each participating end-site is under the control of an End-Site Domain Controller module 
(ESDC).  The site’s network devices are configured by one or more Network Device Controller 
modules (NDCs). NDCs play the role of a “virtual network engineer” in the sense that they 
securely expose a very specific set of device configuration commands to the ESDC module. The 
core of each TeraPaths site service is a Distributed Services Module (DSM). The DSM has the 
role of coordinating all network domains along the route between two end hosts (each host 
belonging to a different end-site) to timely configure the necessary network segments that 
establish a desired host-to-host path. The DSM interfaces with the ESDCs of its own and other 
remote sites to configure the path within the end-site LANs (direct control), and furthermore 
interfaces with WAN controlling software (OSCARS Inter-Domain Controllers - IDCs) to bring 
up the necessary path segments through WAN domains (indirect control).  

 

 
Figure 1: The TeraPaths site architecture. 
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3.3 On-demand Secure Circuits and Advance Reservation System (OSCARS) 
OSCARS [8] is a guaranteed bandwidth provisioning system for DOE’s ESnet standard IP 

network and advanced Science Data Network (SDN). It was designed specifically to meet the 
requirements of data-intensive scientific applications through dynamically provisioned virtual 
paths with guaranteed QoS, and has effectively demonstrated that an end site can reserve 
bandwidth within ESnet to accommodate deadline-based scheduling. OSCARS initially provided 
guaranteed bandwidth circuits within ESnet in the form of MPLS tunnels (layer 3). Through the 
collaboration between ESnet and Internet2, the system evolved into a more general Inter-Domain 
Controller (IDC) which provides not only MPLS tunnels within ESnet, but also guaranteed 
bandwidth layer 2 circuits within and between ESnet’s Science Data Network (SDN) and 
Internet2’s Dynamic Circuit Network (DCN) [15]. 

4 HIGH-LEVEL ARCHITECTURE OF STORNET 
StorNet is a versatile, end-to-end, performance-guaranteed data transfer system based on an 

existing storage resource management system (BeStMan), and a tool for providing virtual paths 
with bandwidth guarantees (TeraPaths). By integrating and optimizing storage and network 
bandwidth provisioning and storage space reservation together in an end-to-end manner, StorNet 
provides data transfer applications with guaranteed and predictable QoS. At the core of the 
project is a flexible protocol that enables BeStMan to interoperate with TeraPaths instances, 
which in turn interoperate with OSCARS Inter-Domain Controllers (IDCs), and negotiate the 
reservations of virtual network paths with guaranteed QoS parameters spanning multiple network 
domains. Subsequently, BeStMan uses the established virtual paths to perform data transfers 
with increased reliability and predictability in terms of bandwidth utilization and transfer 
duration. The protocol also aims to provide users and applications with capabilities to detect and 
recover from failures, not only within the network, e.g. due to failed connections, but also within 
the storage sites, e.g., due to malfunctioning hardware/software. 

In the StorNet framework, we follow a layered approach to compose the functionality of 
multiple systems and achieve the overall goal of efficient, high-performance data transfers, as 
shown in figure 2. The framework comprises four layers: 1) the data plane consists of disk and/or 
tape storage systems, site LANs and WAN backbone; 2) the control plane includes storage 
resource schedulers, LAN QoS provisioning and circuit utilization systems, and WAN backbone 
bandwidth and circuit provisioning systems based on MPLS/GMPLS traffic engineering; 3) the 
management plane monitors resource functionality and performance, diagnoses faults and 
coordinates fault recovery attempts; and 4) the service plane which reserves resources and 
exposes the functionality of individual systems, while also providing authentication and 
authorization. The service plane interacts with the control plane to dedicate data plane resources 
to meet data transfer and storage requirements based on application requests. In Figure 2, the 
horizontal direction represents end-to-end functionality. Each plane’s components serve an end-
to-end goal. The data plane is the vehicle of a data transfer between end site storage systems via 
the interconnecting network. The management plane provides an “enterprise” view of 
performance metrics, which can be used for diagnosing problems. The control plane enacts the 
service plane’s directions into system configurations that physically provision the required 
resources. The service plane negotiates the reservation of resources across domains so that an 
application request can be accommodated. The vertical direction represents system integration. 
BeStMan schedules and coordinates access to storage systems, storage bandwidth and data 
transfers at the behest of an application request. TeraPaths schedules end-site LAN bandwidth 
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and configures LAN devices to dedicate this bandwidth to specific network traffic. OSCARS 
schedules and provisions bandwidth in the WAN domains that interconnect the end-sites. 

 
Figure 2: Efficient, high performance data transfers require interaction and cooperation among 
components within a set of conceptual functionality planes. 

System interactions take place at the service plane layer. Triggered by a client’s request, end-
site BeStMans first coordinate between themselves to reserve storage space, and decide the 
parameter space, in terms of maximum bandwidth and maximum time to completion, that 
satisfies the request. This parameter space is then passed to TeraPaths as a request for network 
bandwidth reservation. TeraPaths instances coordinate between themselves to match the 
BeStMan request to LAN resource availability. Subsequently, TeraPaths generates 
corresponding requests for WAN bandwidth reservations and submits them to OSCARS. When 
multiple WAN domains are involved, OSCARS IDCs coordinate in a daisy-chain manner to 
establish the path interconnecting the end-sites; however, this is done transparently, i.e., 
TeraPaths only interacts with one IDC (see Figure 3). 

 
Figure 3: StorNet workflow 
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5 FUNCTIONALITY DESIGN 
The focus of this section is on the design and enhancements of the components in the service 

plane, especially the communication and coordination of bandwidth between BeStMan, 
TeraPaths, and OSCARS. 
5.1 Resource Co-Scheduling 

In extreme scale science environments, the resources located at each site, such as computing 
power and storage space, have to be allocated jointly with network resources to achieve a cost-
effective and reliable data transfer and sustain the desired overall performance of distributed 
tasks. For instance, a site with rich storage resources may not be a good candidate for data 
backup if its network connectivity with other sites is poor. In such an environment where users 
share and compete for resources, it is critical to achieve efficient resource utilization with 
suitable co-scheduling schemes. StorNet addresses a general Resource Co-Scheduling (RCS) 
problem: given a set of limited resources of different types and a variety of requests from data-
intensive applications, determine how to optimally allocate and schedule the resources required 
by each application. For example, consider an application performing a time-constrained end-to-
end data transfer. To reliably transfer data from source storage to destination storage over the 
network at expected rates and meet its deadline, this application may simultaneously require a 
bandwidth-guaranteed network circuit and a number of dedicated CPUs and disk storages. We 
therefore need to jointly allocate and co-schedule all required types of resources. 

 
Figure 4: Bandwidth Availability Graphs 
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In the context of the StorNet project, we have developed for this purpose an analytical model 
of resource co-scheduling, based on the concept of an end-to-end Bandwidth Availability Graph 
(BAG). We assume that the utilization of each resource type can be scheduled by advance 
reservations with specific start and end time and constant bandwidth allocation for their duration. 
The bandwidth allocation of such a set of reservations can be aggregated and subsequently 
subtracted from the maximum bandwidth availability for the overall time period to yield the 
BAG for the resource of interest (see Figure 4a). The maximum availability can vary with time, 
but typically can be considered constant, at least within known time intervals. As such, a BAG is 
a step function. For a storage system, for example, the maximum availability could be the total 
achievable transfer rate, and for a network domain the maximum achievable bandwidth. 
Individual BAGs can be intersected to express the minimum availability of the initial BAGs at 
any given time, which provides the overall availability of resources across any number of 
systems (see Figure 4b). The intersection of all BAGs of source and destination storage systems 
and interconnecting network domains yields the end-to-end BAG. 

Subsequently, a new request for reserving that resource can be represented by a rectangle (see 
Figure 4c). If the rectangle fits into the overall BAG, then the request can be satisfied. A request 
may be flexible in terms of start time, duration, and/or bandwidth so that the rectangle can be 
modified to fit into the graph (see Figure 4d). In the latter case, the area of the rectangle 
represents the total volume of data to be transferred, and any modification to the start time, 
duration, and/or bandwidth must result in a rectangle with the same area as the initial one. The 
objective of fitting the request rectangle is to obtain a solution (i.e., a set of reservation 
parameters acceptable across all systems) that optimally satisfies the request. As optimal, we 
define a solution that satisfies the request according to the requestor’s preferences. We have 
primarily considered the cases of shortest transfer duration and earliest finish time. 

 
Figure 5: Finding a solution 

Fitting the request rectangle can be approached as a variation of the problem of finding the 
largest rectangle under a histogram with n adjacent rectangles, which can be solved in O(n) time 
[16]. More specifically, a BAG is represented by a sequence of n windows [si,ei], where s is the 
start time and e the end time, each with constant bandwidth bi. Firstly, we observe that an 
optimal solution can always start from some si. If an optimal solution starts elsewhere within a 
window, we can move the whole solution (rectangle) to the left until it starts from an si point; the 
solution will have identical duration but earlier finish time (see Figure 5a). Secondly, we can 
obtain exactly n rectangles {start[i],end[i]} with bandwidth bi, where start and end denote the 
start and end time of the largest rectangle containing window i (see Figure 5b). We can then fit a 
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request with a given same data volume in these n “largest” rectangles and choose the one with 
the shortest duration or the earliest finish time, depending on the request’s preferences. 

Based on the above observations, we can obtain the optimal solution in O(n) time using one of 
the known algorithms for the problem of finding the largest rectangle under a histogram [17]. In 
other words, given a BAG, it will take O(n) time to obtain start[i] and end[i] of the largest 
rectangle corresponding to every window in the BAG. An example of such an algorithm that 
uses a stack is shown in figure 6. The idea is that the stack holds a series of windows that have 
increasing heights; windows are enumerated from left to right. 

StorNet approaches schedule negotiation in a top-down direction across systems, i.e., 
narrowing down the solution space is first performed at the BeStMan level, then at the TeraPaths 
level, and finally at the OSCARS level. This is done for two major reasons: firstly, because the 
availability of resources within each system must take into account the aspects of system-wide 
policies and user privileges; and secondly, because the amount of effort for figuring out a 
solution is reduced. Although BAG intersection is commutative, using a separate scheduling 
component is not feasible, as it would require systems belonging to different administrative 
domains to reveal non-public information in a bottom-up manner. For example, it is not expected 
that OSCARS will reveal to TeraPaths all schedule information pertaining to a network path of 
interest. In contrast, in the top-down direction one system passes to another only non-sensitive 
information required to obtain solutions satisfying the original request. An additional incentive 
for minimizing the candidate solution set is that the current implementation of OSCARS does not 
support negotiation with BAGs and candidate solutions have to be tried one-by-one in a time-
expensive trial-and-error manner.  Reducing the number of options based on previous constraints 
reduces the search space and therefore the interaction with OSCARS. 

 

 
Figure 6: Pseudo-code for stack-based largest rectangle algorithm 
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5.2 BeStMan Functionality Enhancements 
The data transfer protocols currently used by BeStMan, such as GridFTP, assume best-effort 

IP networks, and improve performance with a large number of TCP streams for long, round-trip 
connections. Fairness and efficiency are adversely affected by such a brute force data transfer 
method. The primary goal of StorNet is to provide data transfers with QoS guarantees and to 
move away from the best-effort data transfer paradigm that does not provide delivery time 
assurance. To support network and storage co-scheduling, the existing data transfer module in 
BeStMan is being extended to reserve end-to-end network bandwidth and intelligently optimize 
storage space and network bandwidth allocation, thus increasing transfer reliability. This 
extension reduces the “impedance mismatch” between end user data transfer applications, 
storage, and the network. In order to keep track of bandwidth reservations and commitments, 
BeStMan is also being enhanced with a backend database service. This will provide persistent 
store for tracking user requests, storage space allocations, and bandwidth allocations.  

The enhanced BeStMan is designed to achieve the best solution for user requests. Users can 
specify whether they prefer earlier time solutions or shortest transfer, and they provide BeStMan 
with a desired time of completion. The BeStMan at the target site (pulling the data) also needs to 
have the logic to communicate with the BeStMan at the source site to find out what is its 
bandwidth availability. The BeStMan at the source site returns the availability “graph” for the 
requested period of interest (i.e. till maximum time), in the form of a sequence of windows. The 
BeStMan at the target site then finds a common schedule, and provides that to TeraPaths. The 
API for BeStMan-TeraPaths interaction is described in section 5.4. 

5.3 TeraPaths Functionality Enhancements 
To accommodate the functionality required for StorNet, TeraPaths is being enhanced along 

two main directions: interaction with BeStMan and core extensions to support negotiation 
between end-sites and with OSCARS.  Communication and coordination with BeStMan is 
supported by a BeStMan-to-TeraPaths (StorNet) API module that interprets and validates 
BeStMan requests and passes them along to the main system through the TeraPaths API. The 
former API is essentially a wrapper of the latter. The choice of using an API wrapper allows us 
to standardize and simplify the interaction between BeStMan and TeraPaths, so that future 
revision of one API will not necessarily affect the other API or BeStMan’s clients. Core 
extensions to TeraPaths are primarily necessary for supporting negotiation between end-site 
instances through BAGs, calculation of solutions spaces by fitting requests into intersected 
BAGs, and negotiation with OSCARS by applying a trial-and-error approach on the set of 
candidate solutions obtained from the fitting process. 
5.4 BeStMan-TeraPaths Web-Services Interface Design 

We designed a BeStMan-TeraPaths web-service interface to describe the functions necessary 
for a BeStMan server to request network bandwidth from TeraPaths service. The goal of the API 
is to enable BeStMan to negotiate bandwidth with TeraPaths.  The important functionalities 
reflected in the interface are bandwidth reservation, commitment, modification, and cancelation. 
The interface also includes status check and time-out extension. Necessary information, such as 
data volume, source and target resource availability, resource time frames, and other attributes, is 
provided to TeraPaths when requesting network bandwidth. In Figure 3, we showed the sequence 
of communications between the components.  In Step (1), which involves getting the request 
from the application, a list of files or a directory are provided as well as source and destination 
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information.  In addition, a window of desired start time and maximum completion time is 
provided.  In step (2), the source and target BeStMan servers communicate with each other to 
reserve storage space and to determine the maximum bandwidth they can both use during the 
requested window.  Once this is determined, BeStMan communicates with TeraPaths in step (3), 
and provides a sequence (start time, end time) of non-overlapping windows, and maximum 
bandwidth for each. Based on this information, TeraPaths schedules its local area resources, and 
then negotiates with OSCARS for wide area resources.  The communications in steps (4) and (5) 
are internal to TeraPaths, and only the resulting reserved window is communicated to BeStMan. 
A typical scenario is that BeStMan first tries to make a temporary network bandwidth 
reservation. If such a reservation is possible, TeraPaths returns a request token, along with an 
expiration time and available windows for the available resources. Once BeStMan determines 
that it can work with the result from TeraPaths, it commits the reservation to lock in the network 
resources. Otherwise, BeStMan modifies its input and submits a new request.  In case of a 
failure, BeStMan can request Terapaths to find a window that goes beyond the max completion 
time (by not specifying a max completion time), and this can be returned as an alternative to the 
user, who may accept or reject it. This possibility was not exercised in the prototype 
implementation, but left as future work. However, the interface is designed to accommodate that 
by allowing max completion time to be unspecified (i.e. open ended). 
5.5 BeStMan-TeraPaths Web-Services Interface Specification 
5.5.1 General 

§ Dates/times 
• Dates/times are stored as long integers. 
 

§ CompletionTime 
• Measured in seconds. 
• A value that is equal to or less than zero implies no restriction on completion time. 

 
§ Bandwidth 

• Network bandwidth is measured in kbps (kilobits per second). 
 

5.5.2 Type Definitions 
Underlined attributes are REQUIRED. The required attributes must be parsed correctly and must 
give proper error messages when not supported. 

 
§ ESchedulePreference 

• Enumeration with values: 
◦ ANY 
◦ EARLIEST_COMPLETION_TIME 
◦ SHORTEST_TRANSFER_DURATION 

• A user can indicate preference on how the requests shall be handled. 
 
§ TRequestReference 

• Fields: 
◦ String requestId 
◦ String userId 
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• This structure is used to refer to a request to TeraPaths. It is the input of the request 
handling functions like commitRequest(), cancelReqeust() etc. 

• userId is a user-supplied id for authorization by TeraPaths. 
 

§ TReserveRequest 
• Fields: 

◦ String userId 
◦ TBandwidthRequestParameters desiredValues 
◦ long timeout 
◦ ESchedulePreference schedulePreference 

• This structure is used to construct the reservation request to TeraPaths. It is the input 
of the function reserveRequest(). 

• userId is a user-supplied id for authorization by TeraPaths. The transfer related 
parameters are contained in the structure TBandwidthRequestParameters. 

• The input value "timeout" is for a client to specify the time (subject to configuration 
limits) that TeraPaths will wait for a temporary reservation to be committed. 

 
§ TResponse 

• Fields: 
◦ TReturnStatus status 
◦ String requestId 
◦ long requestExpirationTime 
◦ TBandwidthRequestParameters[] arrayOfReservationData 

• This structure is used by TeraPaths to respond to a reservation request. It is the 
output of the function cancelRequest(), commitRequest(), modifyRequest(), 
reserveRequest() and extendTimeoutRequest(). 

• TeraPaths server must return a status to all the function calls. 
• Upon success for a reserveRequest(), TeraPaths must return: 

◦ The values that are reserved for this client in arrayOfReservationData, 
◦ A request id "requestId" if involved, so the client can later cancel this 
reservation (through BeStMan) if desired. 

• If the request cannot be processed right away, TeraPaths must return 
◦ A request id "rid" so the client can use it to check status (through BeStMan). 

 
§ TReturnStatus 

• Fields: 
◦ EStatusCode code 
◦ String explanation 

• A return status is used for the status of a reservation request. 
• Return status consists of a code, which is described by TStatusCode, and the 
explanation. 

 
§ EStatusCode 

• Enumeration with values: 
◦ ACTIVATED 
◦ CANCELLED 
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◦ EXPIRED 
◦ FAILURE 
◦ NO_AUTHORIZATION, 
◦ NO_SOLUTION 
◦ NO_SUCH_REQUEST, 
◦ NOT_SUPPORTED, 
◦ QUEUED, 
◦ RESERVED 
◦ TEMPORARY 
◦ TIMED_OUT 

• If a reservation is made within the client's desired parameters, the status code is 
TEMPORARY. A request id is expected in this case. Client is expected to call 
commitRequest() within a given time to confirm with the reservation. Once 
committed successfully, the status is set to RESERVED. If commitRequest was not 
called timely, the status of the request will be TIMED_OUT. 

• Once the status is RESERVED, client is advised to check status again, until, the 
status becomes ACTIVATED. This indicates the bandwidth reservation is 
materialized with the underlying system. Client can now use the bandwidth. 

• If a reservation can not be processed right away, the status code shall set to be 
QUEUED and a request id is provided. Clients are expected to pull status 
periodically until a final status is reached. 

• NO_SUCH_REQUEST is returned from getReservationStatus() for a request id that 
is not currently active (QUEUED or RESERVED). 
 

§ TBAGInfo 
• Fields: 

◦ long segmentBandwidth 
◦ long segmentEndTime 
◦ long segmentStartTime 
 

§ TFlowInfo 
• Fields: 

◦ String key 
◦ String value 
 

§ TBandwidthRequestParameters 
• Fields: 

◦ TBagInfo[] bagInfo 
◦ long volumn 
◦ TFlowInfo[] flowInfo 

• A client provides desired begin time (optional), volume in MB (required), max 
bandwidth (required), max completion time (optional) to TeraPaths along with source 
and destination hosts to get a reservation for file transfer. 

• Bandwidth is measured in kbps (kilobits per second). 
• maxCompletionTime is measured in seconds. 
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§ TBandwidthResponseParameters 
• Fields: 

◦ long availableBandwidth 
◦ long beginTime 
◦ long endTime 
◦ TFlowInfo[] flowInfo 
◦ String reservationId 
◦ String reservationStatus 
 

§ TModifyRequest 
• Fields: 

◦ String requestId 
◦ String uid 
◦ TReservationModifcationSet[] modificationSet 
 

§ TReservationModificationSet 
• Fields: 

◦ String reservationId 
◦ TReservationModificationParameters[] modificationParameters 
 

§ TReservationModificationParameters 
• Fields: 

◦ String modificationOperation 
◦ TModificationInfo modificationInfo 
 

§ TModificationInfo 
• Fields: 

◦ String key 
◦ String value 
 

5.5.3 Function Definition 
§ reserveRequest 

• in: 
◦ TReserveRequest reserveRequest 

• out: 
◦ TResponse reserveResponse 

 
• The output of this function contains: status code (mandatory), request id (if 
reservation were made) and reserved values (if reservation were made.) 

• The status code NOT_SUPPORTED is not applicable here. 
• The request id is expected if the status codes returned are one of QUEUED and 
TEPORARY. 
 

§ commitRequest 
• in: 

◦ TRequestReference request 
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• out: 
◦ TResponse response 

 
• Client needs to call this function to confirm the reservation of the solution provided 
by the outcome of reserveRequest() to TeraPaths. 
 

§ modifyRequest 
• in: 

◦ TModifyRequest modifyRequest 
• out: 

◦ TResponse response 
 

• The client uses this function to make changes to the reserved request. 
 
§ extendTimeOutRequest 

• in: 
◦ TRequestReference request 

• out: 
◦ TResponse response 

 
• If unable to call commitRequest() within the time specified from the outcome of 
resreveRequest(), client can use this function to extend the timeout. 

 
§ statusRequest 

• in: 
◦ TRequestReference request 

• out: 
◦ TResponse status response 

 
• The status of a reservation, as with the output of the reserveRequest() function, 
contains: status code (mandatory), request id and reserved values (if a reservation 
was made). 

• All status codes defined in TStatusCode can be returned. If a reservation with the 
specified rid has expired, FAILURE will be returned along with an explanation. 

 
§ cancelRequest 

• in: 
◦ TRequestReference request 

• out: 
◦ TResponse status response 

 
• Client calls this function to cancel a reservation with the specified rid (through 
BeSMan). 

• If there is a valid reservation with this rid, TeraPaths is expected to honor the 
cancelation. 

• If the request with this rid is still queued, TeraPaths shall stop processing the request. 
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• In other cases, for example, when the request does not exist at all, or the reservation 
with this rid has already expired, TeraPaths takes no action. 

6 SUPERCOMPUTING 2010 DEMONSTRATION 
The StorNet functionality was demonstrated at SuperComputing 2010 using an early prototype 
implementation of the architecture. The demonstration included actual 10 GB file transfers 
between BNL and University of Michigan using the current TeraPaths testbed. The testbed setup 
is shown in figure 7, and the demonstration results in figure 8. Heavy interference traffic allowed 
best effort transfers to only reach roughly 8 MB/s (8c), while transfers with StorNet could be 
tuned to desired levels of bandwidth (8a,b,d) unaffected by network congestion. Because of the 
low performance of best effort transfers, a smaller file of 1 GB size was used to save demo time. 

 
Figure 7: StorNet SC’10 demo setup: severe congestion imposed on the router-side interface of 
host tera05 (red arrow). 
 

 
Figure 8: StorNet SC’10 demo: network interface traffic at sending host: (a), (b), (d) transfer of a 
10 GB file with 70MB/s (partially displayed), 95 MB/s, 45 MB/s reservations respectively; (c) 
transfer of a 1 GB file w/o reservation. 
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7 SUMMARY  
Effective and robust data transfer is essential to current day scientific applications, and is a 

major concern for future scientific work as the volumes of data collected and shared grow 
exponentially.  In order to address this problem, two aspects need to be supported: 1) ways to 
reserve and guarantee bandwidth in network and storage, and 2) ways to coordinate and 
synchronize bandwidth reservations in all components from source to destination. Thus, storage 
systems need to be instrumented to support such bandwidth reservations, and coordinate with 
local area and wide area network bandwidth provisioning.  For this purpose, there need to exist 
components that can control the bandwidth reservations, provision the bandwidth, and ensure 
that the allocated bandwidth is used effectively. In this work, we take advantage of existing 
storage and local network middleware technologies (called BeStMan and TeraPaths, 
respectively) to pursue this goal. Bandwidth provisioning in the WAN is realized by having 
TeraPaths negotiate with ESnet’s OSCARS provisioning system. This coordinated approach is 
achieved by enhancing the existing middleware systems with APIs for negotiating end-to-end 
bandwidth reservations and obtaining monitoring information. The design of such APIs has been 
described. 
 

8 FUTURE WORK 
With data volume now growing exponentially, the StorNet is working to improve various aspects 
of the system by standardizing APIs and generalizing implementations from the prototypes, 
which should better meet the needs of applications and scientific communities. It is unclear how 
the community’s needs will be met should our work end with this funding period. 
Should financial support continue, a list of goals is proposed for the next a couple years: 

1. Develop a general-purpose framework for end-to-end co-scheduling enabling any 
components with the APIs; 

2. Provide the wide-area co-scheduler with an availability graph, to be flexible as to the 
capability of the WAN scheduler. 

The main outcome of this future work is a middleware infrastructure with well-defined 
interfaces, where various coordinated components can be plugged into the framework.  Once the 
reservation is made, the client can provide the reservation information to the data transfer 
coordinator optimizing the performance to take full advantage of the reserved end-to-end 
bandwidth. 
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B.2 Open Source License 
• BeStMan (LBNL reference number CR-2404) is under an open source license, BSD with Grant-back 
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