
Common Storage Resource Manager Operations

Ian Bird, Bryan Hess, Andy Kowalski
{Ian.Bird, bhess, kowalski}@jlab.org

Thomas Jefferson National Accelerator Facility

Don Petravick, Rich Wellner
{Petravick, wellner}@fnal.gov
Fermi National Accelerator Lab

Alex Sim, Arie Shoshani

{asim, shoshani }@lbl.gov
Lawrence Berkeley National Laboratory

October 22, 2001

 Version 1.0

Scope and Sources
This document is a synthesis of discussions about a common set of Storage Resource
Manager (SRM) operations. The SRM interface presents a combined view of a mass
storage system's secondary and tertiary storage to wide-area and grid clients. We have
adopted the nomenclature of Arie Shoshani (HRM, TRM, DRM) to describe the abstract
structure of different types of storage systems, and SRM to refer generically to any of
these types. His papers1 (co-authored by Alex Sim and Junmin Gu) on SRM design and
file replication formed an essential source. An initial set of SRM operations was
circulated via email by Don Petravick and is another basis for this document. Discussions
between Chip Watson, Ian Bird, Andy Kowalski, Ying Chen, and Bryan Hess also
shaped the final form.

In creating this document we have drawn on the common ground established in previous
writings, meetings, and conversations. We outline our assumptions and principles in this
section and then go on to describe our goals and finally propose a set of operations for
review by the collaboration.

In "Data Management in Data Grids"2 Andrew Hanushevsky makes clear the need that
data movement between grid agents and a local site's storage system must be done in
such a way that internal priorities are not sacrificed. This principle informs our design.
The operations detailed below can be implemented such that a storage system can
maintain control of its own resources, but the client is always given accurate information
as to the disposition of its requests.

There is some consensus that the tape resources and disk resources must be presented as a
single element, never presented externally as having distinct tape and disk components.
This abstraction is useful because it delegates control over file migration to the local site,
and also encapsulates the details of the storage system. The protocol that we present
below enforces this consolidation of the disk and tape components.

Another important point is that this interface deals with files as the smallest indivisible

unit of data movement. There is no provision to decompose files into objects or address
the file contents in any way. Files in the SRM that we describe are immutable and always
moved in an all-or-nothing basis.

We do not address the interaction with replica catalogs in great detail, although we have
discussed allowing a replica catalog or other grid-agent register with the SRM so that it
could be notified of file additions, deletions, and metadata changes. This notification
could have some advisory-level feedback mechanism that would influence file deletion
policy of the SRM. We stress that automatic updating of the replica catalogs for file
replication and deletion in the grid sites is necessary for clients to make informed choices
of where to get files from.

Finally, we are of the opinion that all interaction with the SRM must be client initiated.
This addresses the practical problem of firewalls to some extent and also implies a model
for resource reservation. The client must setup any advance resource allocation and these
allocations have fixed times to live because the server cannot contact the client. The
specific implication of client-initiated interaction is that, files to be gotten from SRM can
only be pulled by the clients, and files to be written into SRM can only be pushed into
SRM.

Protocols
There are three classes of network protocols to consider for this application: Data
Movement protocols, request protocols, and security-related protocols. Data Movement
protocols like GridFTP, BBFTP and the like are used for efficient bulk data transfer over
wide area networks. The decision about which protocol to use can be made by the server.
The client can provide a list protocols to the SRM for each request. This list tells the
SRM the protocols that the client knows how to speak. This list is provided because an
SRM may not be able to serve all protocols from all caches and it might therefore be
required to cache differently based on the ways the client will be able to retrieve a file.

The request protocol needs to be expressive, simple, and not bound to any particular
implementation. For this reason some groups (including Jefferson Lab) favor SOAP plus
HTTPS.

There are two security implications for these protocols. First, we assume that there is
some secure channel, perhaps TLS/SSL, which can protect the transmission of
authentication requests. Secondly, there is a need to convey as a part of the request to the
SRM the identity, authorization and capabilities of the requestor. Authority information
should be kept on the SRM, else the SRM is beholden to some external representation of
what permissions a user have. This violates the idea that the SRM be the master of its
domain. This authority information is propagated from the secure transport layer to the
SRM.

Some guiding principles
We have chosen to permit a request to consist of multiple files, rather than a single file
per request. This choice was made for several reasons. It is a compact way to express a
large number of file requests. More importantly, providing SRM with the entire request
permits SRM to return the files cached in an order most useful to enhance the efficiency
of the system. For example, an SRM that can access tape storage can order the files
accessed in order to maximize the number of files read from the same tape, thus
minimizing tape mounts. Similarly, SRM can order file access according to their
popularity so as to serve as many clients as possible simultaneously.

We assume that the local site storage system can use any service policies it chooses. This
includes the quotas of how many active files to have in the cache per user at the same
time, as well as expiration-time policies. An expiration-time policy is necessary for
SRM, since we assume that clients can be unreliable, and may not release files they are
using. When a request is made, every file provided to the client fo r reading is
automatically pinned in the disk cache. The client is expected to “release” or “unpin” the
file when it is done with it. In case that the client does not issue a “release”, the SRM
uses the expiration-time to release the files.

When files are written into the disk cache, we also pin the file and associate an
expiration-time with it. A file that is pinned as part of a put operation may be removed
when the pin time expires, but if it has been marked as permanent it will first be migrated
to tertiary storage.

It is useful to permit files to be attached “permanently” to a disk cache. This is useful if it
is known that a file will be accessed repeatedly. However, permitting such an action by
any user can clog the disk cache. For example, a user can make files permanent up to
his/her quota limit, and leave the files there indefinitely.

We believe it is useful to provide status of files even if they were not requested for
planning purposes. For example, a status request for 50 files can be made to an SRM,
and the SRM returns the fact that 20 of these files are currently in its disk cache. The
client may choose to request these 20 files, and the rest from other sites. Note that if the
entire 50 file request was made to SRM, it is likely that the same 20 files that are in the
cache will be provided to the client first subject to his/her quota and the other 30 files will
be queued for fetching them from tape later.

File Naming and URLs
We assume that usually a grid agent first contacts a replica catalog to determine where
the needed files are stored. It does this using a GFN (Grid File Name), also referred to as

the “logical file name” in the EU Datagrid documents. The replica catalog returns a list
of SURLs (site URL, a site specific URL) to the client. These are used to find and
contact different storage mechanisms (e.g. SRM, FTP, HTTP).

A grid agent can request services from the SRM using SURL filenames. Each SURL is
presented to the SRM and it is mapped onto a protocol-specific TURL (transfer URL)
that is used for the data transfer. Thus, the site is free to choose a “physical” location on
any storage system it manages, as well as the transfer protocol that matches one of the
protocols supplied by the client, and return that as the TURL.

We do not envision the SRM needing any knowledge of the transformation from GFN to
SURLs or knowledge of the GFNs at all. If the replica catalog performs the translation
between these, then it is left to the SRM to communicate only in terms of site-specific
SURLs.

When writing files, there is within the SRM a third transformation from the SURL to a
physical path name. This path is also site-specific and would not generally be exposed to
grid- level clients. One exception to this is the writing of files where specifying of the
local destination is important to the user, such as the path name that the mass storage
system uses.

There are thus potentially four distinct filenames, two of which are embedded in URLs:
1.The Grid File Name (GFN)
2.The site-specific URL (SURL)
3.The site-specific path transfer URL (TURL)
4.The storage-system specific physical path (Not usually exposed)

The SRM concerns itself only with 2, 3 and 4.

Asynchronous Operations

Many SRM operations are long running because of resource contention. For example, a
request to get a file might require that the file be read from tape, and there may be a
queue for the tape drive. In this case, the return message contains a RequestFileStatus
from the SRM will indicate that the operation is pending and it will provide an estimated
time until the SRM client will see service begin.

It is the choice of the client to query the status within this estimated time period. For
example, it may choose to check status after t/2 seconds to get either an updated time
estimate or else the go-ahead to retrieve the file. In the case of an updated time, the client
simply repeats the waiting/polling process.

However, the SRM should also provide a RetryDeltaTime time that should not exceed the
length of a default policy expiration time. This has 2 advantages. One is that the client
does not have to figure out when to check status again. This is because the file may be
brought in earlier because of other clients, and it may be pinned also for the current

requesting client. By checking within the expiration time period, we can guarantee that
this client will find out that the file was cached before its time expires.

This asynchronous protocol allows us to avoid the need for callbacks to the client. It does
require that the SRM make a best effort to keep the files around for the time interval until
the client polls for status again.

When a client contacts the SRM and makes a request, it will immediately receive a
Request Status object in reply.

Request Status
 Most SRM calls return a Request Status object. This object is a set of key/value pairs
that describe the status of the request and every file in it. The file-related data is presented
by a series of File Status objects nested inside the Request Status. We discuss the File
Status below. The Request status itself consists of the values given in this table:

RequestStatus
Key Value
RequestId An integer, the unique request id.
Type The method that formed the request: Get, Put, MkPermanent, pin, unpin,

requestStatus, fileStatus, ListProtocols, EstimateGetTime, EstimatePutTime
State Status of the request as a whole: Pending, Active, Done, Failed.
SubmitTime Date and time when the request was submitted
StartTime Date and time when the SRM first started work on a file for this request.
FinishTime Date and time when the last action for this request was completed.
EstTimeToStart Estimted delta time (in seconds) until the request will become active.
FileStatuses RequestFileStatus Objects, repeated for every file in the request
ErrorMessage An error message to return to the user.
RetryDeltaTime The client must re-check status with the SRM in this many seconds or the

SRM may assume that the client has died and cancel the request.

File Status

There are two types of file status information. The FileMetaData object includes static
attributes like its size or owner that is not part of a request to do some work to it. The
second is RequestFileStatus, which contains request-related file information such as the
state of the file or the expected start time.

FileMetaData Properties

Key Value Null OK?
SURL The site specific file

identifier
No

Size File size in bytes No
Owner The creator of the

file.
Yes

Group The creating group
for the file

Yes

PermMode Unix permissions of
the for 0644

Yes

ChecksumType May be null.
Example: CRC32

Yes

ChecksumValue May be null. Yes
IsPinned Boolean or null Yes
IsPermanent Boolean or null Yes
IsCached Boolean or null. Is

file in its most ready
state?

Yes

RequestFileStatus Prope rties
Key Value Null OK?
SURL The site specific file

identifier
No

Size File size in bytes No
State Pending, Ready,

Running, Done,
Failed

No

FileId File ID within a
request

No

TURL Transfer URL Yes, until state is Ready
Owner The creator of the

file.
Yes

Group The creating group
for the file

Yes

PermMode Unix permissions of
the for 0644

Yes

ChecksumType May be null.
Example: CRC32

Yes

ChecksumValue May be null. Yes
IsPinned Boolean or null Yes
IsPermanent Boolean or null Yes
EstSecondsToStart Estimated time until

the client may act on
this file.

Yes

SourceFilename Original filename.
May not be
meaningful to the
SRM

Yes

DestFilename Perhaps only useful
to underlying mss for
puts

Yes

QueueOrder Expected order of
service in the request

Yes

IsCached Is the file in its most
ready state?

Yes

SRM Methods

An SRM may reject a request outright if it does not have sufficient resources. If it accepts
the request it must ensure that those resources remain available. For this reason, certain
operations implicitly include other operations. In the example of getting a file, the SRM
must make sure that the file is disk resident, which might involve staging it from tape.
Further, the disk-resident file must not be removed before the client has retrieved the file,
so a get must also imply a pin. Similarly with the put operation, once the request is
accepted it is the responsibility of the SRM to make sure that the file will be accepted
when the transfer begins, so the SRM reserves the filename, reserves the disk space, and
makes sure that the request will succeed once it is started.

The SRM is not directly involved in the data transfer. In the following diagram we show
an SRM client first contacting the SRM to initiate the operation and then the transfer
service to perform the data transfer.

HRM Interface

TRM
(JASMine)

DRM
(JASMine)

cert. based
authentication

TRM
(HPSS)

secondary
storage

tertiary
storage

GridFTP cert. based
authentication

cert. based
authentication

GridFTP
BBFTP

HRM Client Client

The basic SRM operations are given in the following table and then explained in more
detail. Each operation is a call that returns an immediate response. This response does not
complete the methods in most cases. This set of operations is meant to be a basic set upon
which different transfer mechanisms can be fit.

SRM Methods
Method Arguments Return Comments
Get SURLS, Protocols RequestStatus Implies reserving

disk space, getting
file to its most ready
state, and pinning it.

Put Src_file_names, dest_file_names,
sizes, wantPermanent, Protocols

RequestStatus Implies reserving
disk space and dest
file name, pinning
the file, perhaps
making it
permanent.

MkPermanent SURLS RequestStatus Check state in
RequestStatus to see
if it succeeded

Pin TURLS RequestStatus
UnPin TURLS, RequestId RequestStatus

SRM Methods
Method Arguments Return Comments
getRequestStatus Request_ID RequestStatus Returns updated

Request status
including file
statuses for every
file in the request

getFileMetaData SURLS FileMetaData Return file metadata.
Not associated with
a request.

getProtocols None Protocols Returns list of SRM-
supported protocols.

getEstGetTime SURLS, Protocols RequestStatus Like Get, but does
nothing except
return status.

getEstPutTime Src_file_namesm
dest_file_names, sizes,
wantPermanent, Protocols

RequestStatus Like a Put, but does
nothing except
return status.

setFileStatus RequestId, fileId, State RequestStatus Update a file from
Ready to Running,
or from anything to
Failed by the client.

AdvisoryDelete SURLS None Recommends that a
file be removed
before any others.

Get

The get operation takes a set of SURLs and a protocol list and returns a TURL (as part of
the file status) for every SURL once the file is ready for transfet. The state in the
RequestFileStatus indicates the progress of the file. Once the SRM is ready for the client
to begin the transfer, the file state will be set to Ready. At that point the client calls
UpdateRequest() to change the state to Running, and then initiates the transfer with the
provided TURL. The TURL may be null until the file state goes from Pending to Ready.
Once the client has completed the transfer it again updates the file’s request status from
Running to Done by calling the SRM.

Put

The put operation’s file status transitions have the same names. Pending implies that the
file is not yet ready to be received, perhaps because the SRM allows only a limited
number of simultaneous transfers at once. Eventually the file status will become Ready,
and the client will update the state again to Running and initiate the transfer. When the
transfer is complete the client will again update the status to Done. See the use cases
section for more detail on this interaction.

MkPermanent

Make an existing file permanent. This will fail if the file has been deleted or if the
operation is not supported by the SRM.

Pin

Mark a file as in use. This pin has an expiration time that is set by the SRM. A second pin
operation will renew the timeout, subject to local policy.

UnPin

An Unpin operation cancels a pin operation.

getRequestStatus

This updates the request status originally returned by a get, put, or other asynchronous
SRM operation. A request ID is supplied and a complete Request Status object is
returned. This object contains information about every file in the request, both its
metadata and its request-specific data such as file states and expected queue ordering. A
client should parse this structure and ignore those attributes that do not concern it.

getFileMetaData

Unlike RequestStatus, this call will only return information about files, not about
requests. This is static file information like size, owner, and checksum. Most fields are
optional and depend on SRM/MSS implementation.

getProtocols

This is a simple list of the transfer protocols supported by the SRM, ordered by
descending preference.

getEstGetTime

This returns the estimated time in seconds from now required to start getting the file. This
may depend on the SRM queue length and local policy decisions. If this is not known, it
may return null.

getEstPutTime

This returns the estimated the time required to start putting a file. This may depend on the
SRM queue length and local policy decisions. If unknown, the SRM can return null.

AdvisoryDelete

This operation is a recommendation the the SRM that the client is done with the file, does
not expect to use it again, and that the file can be scheduled for removal before others.
The SRM implementation may choose to ignore this method.

SRM Use Cases

This protocol diagram demonstrates the client interaction with an SRM when transferring
a file. There are at least two threads of execution within the client, a status thread and a
transfer thread. It is the responsibility of the status thread to initiate the request with the
SRM. As the response to this request it receives a RequestStatus containing a number of
FileRequestStatus objects. It will recheck the RequestStatus with the SRM according to
the interval mandated by the SRM so long as there is active work to be done with the
request. As soon as the SRM changes the state of a file from Pending to Ready the client
must first contact the SRM to update the state of that file from Ready to Running and
then wake the transfer thread to perform the data transfer. Once the transfer is complete
the client will again notify the SRM of the file’s transition from running to Done.

Client HRM Transfer ServerLocal MSS

Sleep

Time

get / put

requestStatus

getRequestStatus

requestStatus

updateRequestStatus

Data Transfer (pull / push)

updateRequestStatus

Insert Request

Returned Request

Query Request

Returned Request

This handshaking where the SRM changes the state to Ready and the client

acknowledges it by changing the state again to Running helps the SRM to provide a
clearer picture of the state despite the fact that the SRM does not necessarily have close
interaction with the data transfer.

Although the SRM cannot directly contact the client, it can detect a dead or unreachable
client. If a client does not make any contact with the SRM within the RetryDeltaTime,
the client can be assumed to have failed and all the unfinished files in the request must be
failed.

Future Work

In the interest of moving toward a working prototype, certain functionality has been
tabled for now.

SRM operation constraints based on user and group quotas are not part of this
description. This is not to imply that they may not exist in some systems, there is just no
means within this design to express them other than by request rejection.

Delete and Rename operations have been left out as has any operation that might imply a
tight interaction with the replica catalog.

The SRM as a Web Service

By representing the SRM as a web service using SOAP/HTTPS we can produce a
language- independent remote procedure call mechanism described using WSDL.
Jefferson Lab’s prototype implementation using this model works with both Java and Perl
clients.

References

1 “SRM Design Considerations”, Arie Shoshani, Alex Sim, Junmin Gu,
http://sdm.lbl.gov/srm/documents/srm-design-considerations-092601.pdf, and
“Description of SRM Interface and C++ bindings of SRM IDLs, Arie Shoshani, Alex Sim, Junmin Gu,
http://sdm.lbl.gov/srm/documents/srm-idl-interface-description-092401.pdf

2 “Data Management in Data Grids,” Andrew Hanushevsky,
http://www.slac.stanford.edu/~abh/PPDG/repl.html

