
The Storage Resource Manager Interface Specification
Version 2.0

Contributors:

JLAB: Ian Bird, Bryan Hess, Andy Kowalski
Fermi: Don Petravick, Rich Wellner

LBNL: Junmin Gu, Ekow Otoo, Alex Romosan, Alex Sim, Arie Shoshani
WP2-EDG: Wolfgang Hoscheck, Peter Kunszt, Heinz Stockinger,

Kurt Stockinger, Brian Tierney
WP5-EDG: Jean-Philippe Baud

THIS IS A WORK IN PROGRESS DRAFT
It reflects decisions discussed in

http://sdm.lbl.gov/srm/documents/joint.docs/ SRM.v2.0.joint.func.design.doc

Introduction

This document is the interface specification for grid-aware Storage Resource Managers
(SRMs). It is based on the design document published in GGF4 entitled “SRM Joint
Functional Design, Summary of Recommendations” (can be downloaded from [1]). This
document represents the second version, SRM v2.0, of the joint SRM specification. The
first version, SRM v1.0, is the basis for the current SRM implementation efforts at Jlab,
and Fermi. The document describing SRM v1.0 can be downloaded from [2]. LBNL’s
implementation of SRMs is based on an earlier version of the API, described in [3, 4]. A
general document on concepts of SRMs and how they fit the grid environment was
published recently, and can be downloaded from [5]. For people unfamiliar with SRM
concepts and/or unfamiliar with the design issues we recommend reading the above
documents. It is essential to read the companion design document in [1] to understand
terms and reasons for the methods defined in this document.

The interface methods defined in SRM v2.0 are closely related to the methods used in
SRM v1.0, but are more consistent with the view of the participants of the joint design,
that included people from the European Data Grid Project (EDG) and the DOE labs: Jlab,
Fermilab, and LBNL. The most notable differences are: 1) in addition to srmGet and
srmPut, an srmCopy method was added to coordinate the storage allocation and pinning
for third party transfers; 2) the files stored in SRMs can have three types associated with
them: “volatile”, “durable”, and “permanent” (see discussion in [1] for meanings and
reasons]; and 3) pinning of a file is no longer and explicit method, but rather is implied
by the requesting methods srmGet and srmPut, and srmCopy. The correspondence
between the methods of SRM v1.0 and SRM v2.0 is shown in table 1.

Table 1: correspondence between methods in SRM v1.0 and v2.0

Description of methods

The methods described below use several terms as parameters, notably: LFN, SURL,
TURL, and stFN. These concepts are discussed in [1], but because of their fundamental
use here, we included them in an appendix in this document.

In order to have the methods described in a protocol independent fashion, we use a
pseudo notation. This will permit these methods to be described in various languages
such as XML-WSDL, CORBA IDL, C-API, etc. We are attempting to agree on a single
language and protocol that anybody who is developing an SRM API to his or her
implementation and systems will adhere to. But, each SRM implementation should be
free to support any other languages or protocols as they see fit.

We decided to use a notation as close as possible to the notation used in SRM v1.0. But a
few additions were necessary to make the specification precise in this version. The
notation we use is as follows:

Method (v.2) Method (v.1)
srmGet Get, Pin

srmRelease UnPin

srmPut Put
srmPutDone setFileStatus
srmCopy
srmTeminateRequest
srmAbortFile
srmChangeFileStatus MkPermanent, setFileStatus
srmSuspendRequest
srmResumeRequest
srmGetRequestStatus GetRequestStatus,

getEstGetTime,
getEstPutTime

SrmGetFilesStatus
srmGetRequestSummary getEstGetTime,

getEstPutTime
srmGetFileMetaData getFileMetaData
 srmGetProtocols getProtocols
srmAdvisoryDelete AdvisoryDelete
srmRenewLifetime

1. Each method has input and output parameters. We use a table to represent that in
columns labeled “in” and “out” as is done in SRM v1.0. This is shown in Table 2.
2. A tuple notation is < par_1, par_2, …, par_n>, such as <LFN, size, SURL>.
However, in order to include comments, in most cases we use a table notation too. This
is done for several tuples shown in table 3 through table 8.

3. A set of parameter is denoted as {parameter}, such as {fileSpecification} which
represent the file specification of a set of files.

4. An ordered set of parameters is denoted as (parameter), such as the ordered set of
protocols provided by the user (protocol).

5. An optional parameter is denoted as [parameter], such as [(protocol)]. For tuples of
parameters in tables, we have an additional column labeled “null ok?”

Table 2 contains all the methods supported. We used the terms “requestStatus” and
“fileStatus” to represent information returned about each. Some functions return both,
and some return either one or the other. For example, srmGetRequestSummary returns
only “requestStatus” which includes query estimation as well.

Table 2: methods and their “input” and “output” arguments

Method (v.2) Arguments (in) Return (out)
srmGet userID, [storageUserID], [timeout]

{fileSpecification}, [filesType],
[RequestIDDescription], [(protocol)]

requestStatus,
{fileStatus}

srmRelease userID, requestID, SURL

fileStatus

srmPut

userID, [storageUserID],
{fileSpecification}, [filesType],
RequestIDDescription, [(protocol)]

requestStatus,
{fileStatus}

srmPutDone

userID, requestID, SURL fileStatus

srmCopy

userID, [storageUserID],
{fileSpecification}, [filesType],
RequestIDDescription, [(protocol)]

requestStatus,
{fileStatus}

srmTeminateRequest

userID, requestID requestStatus

srmAbortFile

userID, requestID, SURL fileStatus

srmChangeFileStatus

userID, requestID, {SURL},
filesType

{fileStatus}

srmSuspendRequest

userID, requestID requestStatus

srmResumeRequest

userID, requestID requestStatus

srmGetRequestStatus

userID, requestID requestStatus,
{fileStatus}

srmGetFilesStatus userID, requestID, {SURL} {fileStatus}
srmGetRequestSummary

userID, requestID requestStatus,

srmGetFilesMetaData

userID, {SURL} {fileMetaData}

srmRequestEstimateTime
(remove)

userID, requestID requestStatus

srmGetProtocols

userID (protocol)

srmAdvisoryDelete

userID, requestID, SURL fileStatus

SrmGetRequestID

userID, requestIDDescription {<requestID, date>}

SrmRenewLifetime

userID, requestID, SURL fileStatus

fileSpecification
Key Value Null OK?

(srmGet)
Null OK?
(srmPut)

Null OK?
(srmCopy)

comments

SURL The site specific file
identifier

No Does not
apply

No

LFN Globally unique
logical file name

Yes Does not
apply

Yes If not privided,
SFN can be used

Size File size in bytes No No No In advanced
version – Yes.
If not provided, a
default is
assumed by SRM

stFN Storage file name Does not
apply

Yes Yes If provided, can
be used
By srmPut or
srmCopy

Table 3: parameters for fileSpecification

RequestStatus

Key Value Null OK?
requestID string, the unique requestID No
requestType The method that formed the original request: srmGet,

srmPut, srmCopy.
No

filesTypeRequested The type of files requested with the original request:
volatile, durable, permanent. Optional in request.

Yes

filesTypeAssigned The type of files assigned by SRM to all files after the
original request was made: volatile, durable,
permanent.

No

requestIDDescription As provided with the request. Optional in request. Yes
protocolsRequested List of protocols provided with the original request.

Optional in request.
Yes

state Status of the request as a whole: pending, active, done,

failed.
No

errorMessage An error message in case of a “failed state”. Error
message are defined in the table errorMessage and
consist of an integer code and an explanation string.

Yes

submitTime Date and time when the request was submitted. No
startTime Date and time when the SRM first started work on a

file for this request.
Yes

finishTime Date and time when the last action for this request was
completed.

Yes

estTimeToStart Estimated delta time (in seconds) until the request will
become active.

Yes

estTimeToEnd Best effort time estimate for the request. If request
started it provides time to bring all remaining files to
SRM’s cache. If not started, it provides total time
estimation for the request.

Yes

retryDeltaTime The client must re-check status or perform another call
to SRM in this many seconds or the SRM may assume
that the client has died and cancel the request.

No

Table 4: parameters for requestStatus

fileStatus

Key Value Null OK? (optional)
SURL The site specific file identifier. No
LFN Globally unique logical file name. No
size File size in bytes. No
stFN Storage file name. Yes
state pending, ready, beingTransferred, released,

failed.
No

errorMessage An error message in case of a “failed state”.
Error message are defined in the table
errorMessage and consist of an integer code and
an explanation string.

Yes

TURL Transfer URL. Yes, until state is Ready
owner The creator of the file. Yes
group The creating group for the file. Yes
permissionMode Unix-style permissions of the file (e.g. 0644) Yes
checksumType May be null. Example: CRC32 Yes
checksumValue May be null. Yes
isCached Is file in cache? No
isPinned Is file pinned for this client. Boolean or null. No
fileType volatile, durable, permanent. No
remainingLifetime Time remaining till lifetime expires Yes
originalFileName Original filename. May not be meaningful to

the HRM
Yes

QueueOrder Expected order of service in the request Yes

Table 5: parameters for fileStatus

fileMetaData

Key Value Null OK? (optional)
SURL The site specific file identifier. No
LFN Globally unique logical file name. No
size File size in bytes. No
owner The creator of the file. Yes
group The creating group for the file. Yes
permissionMode Unix-style permissions of the file (e.g. 0644) Yes
checksumType May be null. Example: CRC32 Yes
checksumValue May be null. Yes
isCached Is file in cache? No
isPinned Is file pinned for this client. Boolean or null. No
fileType volatile, durable, permanent. No
originalFileName Original filename. May not be meaningful to

the HRM
Yes

Table 6: parameters for fileMetaData

StorageUserID
Key Value Comments
securityType Takes the values: “globus”, “kerboros”, “ssl”,

“clear”, etc.

ID String, can be Globus user proxy, Kerboros token,
SSL-encrypted user login+password, etc

Table 7: parameters for userID

Other parameters used in methods
Key Value Comments
filesType Takes the values: “volatile”, “durable”,

“permanent”

requestID String. This is assigned by SRM. Need to be
used to refer to request in srmStatus,
srmRelease, etc.

protocol String.
requestIDDescription String. May be provided by client to find out

requestIDs assign by SRM by using the method
srmGetRequestID

Table 8: other parameters and their explanation

LFN- is a logical file name that is globally unique for a given dataset. Thus, the dataset
name is usually the first part of the LFN. It is the choice of the dataset designer how to
assign these names. If the files are organized in directories then the directory names are
part of the LFN. The dataset name and directory names are separated by “/”. An
example of an LFN is: “CERN-dataset-7/run17/part1/file-123”.

SFN- is a file name assigned by a site to a file. Normally, the site file name will consist
of a “machine:port/directory/LFN”, but the site can choose to use another string instead
of the LFN. An example of an SFN is: “sleepy.lbl.gov:4000/tmp/foo-3000”. In this
example we used the simple file name “foo-3000” to simplify the example.

SURL – is a “site URL” which consists of “protocol://SFN”. The protocol for
communicating with an SRM is simply “srm”. An example of an SURL for a file
managed by SRM is: “srm://sleepy.lbl.gov:4000/tmp/foo-3000”.

TFN – is the “transfer” file name of the actual physical location of a file that needs to be
transferred. It has a format similar to an SFN.

TURL – is the “transfer URL” that an SRM returns to a client for the client to “get” or
“put” a file in that location. It consists of “protocol://TFN”, where the protocol must be
a specific transfer protocol selected by SRM from the list of protocols provided by the
client (see recommendation 9). An example is:
“gridftp://sleepy.lbl.gov:4000/tmp/foo-3000”.

StFN – is the “storage” file name that a client may request SRM to use when it stores the
file. This is useful for telling SRMs where to archive a file. Normally, SRMs that
archive files, such as an HRM, may choose to honor that request. But, the SRM may
choose to give it another name, and return that to the client.

References

1. Arie Shoshani, et al., “SRM Joint Functional Design, Summary of Recommendations”,
presented in Global Grid Forum 4, Toronto, Canada, Feb. 2002.
Can be downloaded from:
 http://sdm.lbl.gov/srm/documents/joint.docs/ SRM.v2.0.joint.func.design.doc

2. Ian Bird, et al., “Common Storage Resource Manager Operations”. Can be
downloaded from: http://sdm.lbl.gov/srm/documents/joint.docs/ SRM.v2.0.doc

3. Arie Shoshani, Alex Sim, Junmin Gu, “Description of SRM interface and C++
bindings of SRM IDLs”. Can be downloaded from:
 http://sdm.lbl.gov/srm/documents/srm-idl- interface-description-092401.pdf

4. Arie Shoshani, Alex Sim, Junmin Gu, “SRM Design Considerations”. Can be
downloaded from: http://sdm.lbl.gov/srm/documents/srm-design-considerations-
092601.pdf

5. Storage Resource Managers: Middleware Components for Grid Storage, Arie
Shoshani, Alex Sim, Junmin Gu, Nineteenth IEEE Symposium on Mass Storage Systems,
2002 (MSS '02). Can be downloaded from:
http://gizmo.lbl.gov/~arie/papers/srm.mss02.pdf

Appendix

File names and URLs used in methods

LFN- is a logical file name that is globally unique for a given dataset. Thus, the dataset
name is usually the first part of the LFN. It is the choice of the dataset designer how to
assign these names. If the files are organized in directories then the directory names are
part of the LFN. The dataset name and directory names are separated by “/”. An
example of an LFN is: “CERN-dataset-7/run17/part1/file-123”.

SFN- is a file name assigned by a site to a file. Normally, the site file name will consist
of a “machine:port/directory/LFN”, but the site can choose to use another string instead
of the LFN. An example of an SFN is: “sleepy.lbl.gov:4000/tmp/foo-3000”. In this
example we used the simple file name “foo-3000” to simplify the example.

SURL – is a “site URL” which consists of “protocol://SFN”. The protocol for
communicating with an SRM is simply “srm”. An example of an SURL for a file
managed by SRM is: “srm://sleepy.lbl.gov:4000/tmp/foo-3000”.

TFN – is the “transfer” file name of the actual physical location of a file that needs to be
transferred. It has a format similar to an SFN.

TURL – is the “transfer URL” that an SRM returns to a client for the client to “get” or
“put” a file in that location. It consists of “protocol://TFN”, where the protocol must be
a specific transfer protocol selected by SRM from the list of protocols provided by the
client (see recommendation 9). If the physical storage location matches the one provided
by the SURL, then only the protocol is replaced in the TURL. For the above SURL
example, and assuming the protocol is “gridftp”, the TURL will be:
“gridftp://sleepy.lbl.gov:4000/tmp/foo-3000”. However, the physical file location can be
anywhere at that site, giving the freedom for the site manager to change the physical
locations of files without having to change the SURL or update the replica catalog. If for
the above example the physical location of the file is on another machine (e.g.
“dm.lbl.gov”, another path (e.g. “/home /level1”), and even another file-name (e.g. “abc-
3000”) then the TURL will be: “gridftp://dm.lbl.gov:4000/home /level1/abc-3000”.

StFN – is the “storage” file name that a client may request SRM to use when it stores the
file. This is useful for telling SRMs where to archive a file. Normally, SRMs that

archive files, such as an HRM, may choose to honor that request. But, the SRM may
choose to give it another name, and return that to the client.

