
 - 1 -

The Storage Resource Manager
Web Services

 Operational Interface Specification

Version 2.2

8 June 2006

Collaboration Web: http://sdm.lbl.gov/srm-wg
Document Location: http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.ws.op.pdf

Editors:
Alex Sim Lawrence Berkeley National Laboratory

Contributors:

Timur Perelmutov
Don Petravick

Fermi National Accelerator Laboratory (FNAL), USA

Junmin Gu
Arie Shoshani

Lawrence Berkeley National Laboratory (LBNL), USA

Olof Barring
Jean-Philippe Baud
Shaun De Witt

LHC Computing Project (LCG, CERN), Switzerland

Jens Jensen
Owen Synge

Rutherford Appleton Laboratory (RAL), England

Michael Haddox-Schatz
Bryan Hess
Andy Kowalski
Chip Watson

Thomas Jefferson National Accelerator Facility (TJNAF), USA

 - 2 -

Copyright Notice

© Copyright Lawrence Berkeley National Laboratory (LBNL), Fermi National
Accelerator Laboratory (FNAL), Jefferson National Accelerator Facility (JLAB),
Rutherford Appleton Laboratory (RAL) and European Organization for Nuclear
Research (CERN) 2000, 2001, 2002, 2003, 2004, 2005, 2006. All Rights Reserved.

Permission to copy and display this “The Storage Resource Manager Interface
Specification” (“this paper"), in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of this paper, or portions
thereof that
you make:
1. A link or URL to this paper at this location.
2. This Copyright Notice as shown in this paper.

THIS PAPER IS PROVIDED "AS IS," AND Lawrence Berkeley National Laboratory,
Fermi National Accelerator Laboratory, Jefferson National Accelerator Facility,
Rutherford Appleton Laboratory and European Organization for Nuclear Research
(COLLECTIVELY, THE “COLLABORATION”) MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT OR TITLE; THAT THE CONTENTS OF THIS PAPER ARE SUITABLE FOR
ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

THE COLLABORATION WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS PAPER.

The names and trademarks of the Collaboration may NOT be used in any manner,
including advertising or publicity pertaining to this paper or its contents, without
specific, written prior permission. Title to copyright in this paper will at all times
remain with the Collaboration.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS PAPER WERE PREPARED AS AN ACCOUNT OF WORK FUNDED BY
U.S. Department of Energy AT UNIVERSITY OF CALIFORNIA'S LAWRENCE BERKELEY
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CALIFORNIA,
NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,
OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, THE UNITED STATES GOVERNMENT OR ANY
AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR CONTRIBUTORS. THE
VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY

 - 3 -

STATE OR REFLECT THOSE OF THE UNITED STATES GOVERNMENT OR ANY AGENCY
THEREOF, OR THE ENTITY BY WHICH AN AUTHOR MAY BE EMPLOYED.

This paper preparation has been partially supported by the Office of Energy
Research, Office of Computational and Technology Research, Division of
Mathematical, Information, and Computational Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

 - 4 -

Table of Contents

Introduction .. 6
1. Common Types ... 9

1.1. Simple Types... 9
1.2. Complex Types ... 12

2. Space Management Functions – Message Types and Operations 18
2.1. srmReserveSpace ... 18
2.2. srmStatusOfReserveSpaceRequest .. 20
2.3. srmReleaseSpace .. 22
2.4. srmUpdateSpace .. 23
2.5. srmGetSpaceMetaData.. 26
2.6. srmChangeSpaceForFiles.. 27
2.7. srmStatusOfChangeSpaceForFilesRequest... 29
2.8. srmExtendFileLifeTimeInSpace... 32
2.9. srmPurgeFromSpace ... 33
2.10. srmGetSpaceToken.. 35

3. Permission Functions – Message Types and Operations...................... 37
3.1. srmSetPermission... 37
3.2. srmCheckPermission ... 38

4. Directory Functions – Message Types and Operations........................ 40
4.1. srmMkdir.. 40
4.2. srmRmdir.. 41
4.3. srmRm... 41
4.4. srmLs... 43
4.5. srmStatusOfLsRequest.. 45
4.6. srmMv ... 46

5. Data Transfer Functions – Message Types and Operations 48
5.1. srmPrepareToGet .. 48
5.2. srmStatusOfGetRequest.. 51
5.3. srmBringOnline.. 53
5.4. srmStatusOfBringOnlineRequest... 56
5.5. srmPrepareToPut .. 59
5.6. srmStatusOfPutRequest .. 62
5.7. srmCopy.. 64
5.8. srmStatusOfCopyRequest ... 67
5.9. srmReleaseFiles .. 70
5.10. srmPutDone .. 72
5.11. srmAbortRequest ... 73
5.12. srmAbortFiles... 74
5.13. srmSuspendRequest... 76
5.14. srmResumeRequest.. 76
5.15. srmGetRequestSummary .. 77
5.16. srmExtendFileLifeTime .. 78
5.17. srmGetRequestTokens .. 80

6. Discovery Functions – Message Types and Operations 82

 - 5 -

6.1. srmGetTransferProtocols.. 82
6.2. srmPing ... 82

7. Appendix .. 84
7.1. Status Code Specification .. 84
7.2. SRM WSDL discovery method... 85

 - 6 -

Introduction

This document contains the interface specification of SRM 2.2. It incorporates the
functionality of SRM 2.0 and SRM 2.1, but is much expanded to include additional
functionality, especially in the area of dynamic storage space reservation and directory
functionality in client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting in May 2006,
as well as email correspondence and conference calls. The purpose of this activity is to
further define the functionality and standardize the interface of Storage Resource
Managers (SRMs) – a Grid middleware component.

The document is organized in four sections. The first, called “Defined Structures”
contain all the type definitions used to define the functions (or methods). The next 5
sections contain the specification of “Space Management Functions”, “Permission
Functions”, “Directory Functions”, “Data Transfer Functions” and “Discovery
Functions”. All the “Discovery Functions” are newly added functions.

It is advisable to read the document SRM.v2.2.changes.doc posted at
http://sdm.lbl.gov/srm-wg before reading this specification.

Each function from the functional interface specification is mapped into a separate WS
portType request-response operation. The request-response operation is message
exchange between the client and the endpoint, in which the request message is received
by the endpoint and the endpoint sends back the response message. In the WSDL1.1 the
message either an enumeration of its parts, or is of some complex type. If message is an
enumeration, then each part is required and we can not express their options. If message
is an instance of a complex type, then all the flexibility of the XML Schema can be
applied to the definition of this type. So, express the options of some of the SRM function
arguments in functional interface specification, we use the approach of defining a
separate type for each request and the response message. Unfortunately, some wsdl
toolkit (at least it is true in case of Apache Axis and gSoap), this leads to the generation
of the stubs with one input argument of request message type and one output argument
of response message type. These are not limitations of the WSDL, but of the particular
wsdl stab generation toolkits.

For notes and comments for each function, please refer to the functional specification
(see http://sdm.lbl.gov/srm-wg/doc/SRM.spec.v2.2.html).

 - 7 -

Understandings and Agreements

1. By “https” we mean http protocol with GSI authentication. It may be represented
as “httpg”. At this time, any implementation of http with GSI authentication could
be used. It is advisable that the implementation is compatible with Globus Toolkit
3.2 or later versions.

2. We use GSI proxy from the underlying https protocol to authenticate the caller.
3. Primitive types used below are consistent with XML build-in schema types: i.e.

o long is 64bit: (+/-) 9223372036854775807
o int is 32 bit: (+/-) 2147483647
o short is 16 bit: (+/-) 32767
o unsignedLong ranges (inclusive): 0 to18446744073709551615
o unsignedInt ranges (inclusive): 0 to 4294967295
o unsignedShort ranges (inclusive): 0 to 65535

4. The definition of the type “anyURI” is compliant with the XML standard. See
http://www.w3.org/TR/xmlschema-2/#anyURI. It is defined as: "The lexical
space of anyURI is finite-length character sequences which, when the algorithm
defined in Section 5.4 of [XML Linking Language] is applied to them, result in
strings which are legal URIs according to [RFC 2396], as amended by [RFC
2732]".

5. In “localSURLInfo”, we mean local to the SRM that is processing the request.
6. storageSystemInfo is added in the arguments of functions srmPrepareToGet()

srmPrepareToPut() and srmCopy(). This is to simplify the case when all files sent
to the request share the same storageSystemInfo. If storageSystemInfo is provided
at the request level and the file level, SRM will use the one provided at the file
level.

7. authorizationID : from the SASL RFC 2222
During the authentication protocol exchange, the mechanism performs
authentication, transmits an authorization identity (frequently known as a userid)
from the client to server…. The transmitted authorization identity may be
different than the identity in the client’s authentication credentials. This permits
agents such as proxy servers to authenticate using their own credentials, yet
request the access privileges of the identity for which they are proxying. With any
mechanism, transmitting an authorization identity of the empty string directs the
server to derive an authorization identity from the client’s authentication
credentials.

8. For SOAP inter-operability, we recommend Apache Axis for Java (see
http://ws.apache.org/axis/) or gSOAP for C/C++ from FSU (see
http://www.cs.fsu.edu/~engelen/soap.html).

9. Regarding file sharing by the SRM, it is a local implementation decision. An
SRM can choose to share files by proving multiple users access to the same
physical file, or by copying a file into another user’s space. Either way, if an
SRM chooses to share a file (that is, to avoid reading a file over again from the
source site) the SRM should check with the source site whether the user has a
read/write permission. Only if permission is granted, the file can be shared.

 - 8 -

10. The word “pinning” is limited to the “copies” or “states” of SURLs and the
Transfer URLs (TURLs).

11. For each function, status codes are defined with basic meanings for the function.
Only those status codes are valid for the function. Specific cases are not stated for
each status code. If other status codes need to be defined for a specific function,
send an email to the collaboration to discuss the usage.

 - 9 -

1. Common Types

We define the SRM WSDL namespace as following:

targetNamespace="http://srm.lbl.gov/StorageResourceManager"
xmlns:impl="http://srm.lbl.gov/StorageResourceManager"
wsdl:portType name="ISRM"
wsdl:binding name="srmSoapBinding" type="impl:ISRM"
wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"
wsdl:service name="SRMService"
wsdl:port name="srm" binding="impl:srmSoapBinding"

Notation:

• Underlined attributes are REQUIRED and non-nillable.
• Brackets [] are to show an arrayType.
• Min and Max are to show the number of occurrences of elements in a sequence.

This can be interpreted as nillable.

1.1. Simple Types

name type
TFileStorageType xsd:string enum {Volatile, Durable, Permanent}
TFileType xsd:string enum {File, Directory, Link}
TRetentionPolicy xsd:string enum {REPLICA , OUTPUT , CUSTODIAL}
TAccessLatency xsd:string enum {ONLINE, NEARLINE}
TPermissionMode xsd:string enum {NONE, X, W, WX, R, RX, RW, RWX}
TPermissionType xsd:string enum {ADD, REMOVE, CHANGE}
TRequestType xsd:string enum {PREPARE_TO_GET,

 PREPARE_TO_PUT,
 COPY,
 BRING_ONLINE,
 RESERVE_SPACE,
 UPDATE_SPACE,
 CHANGE_SPACE_FOR_FILES.
 LS }

TOverwriteMode xsd:string enum {Never, Always, WhenFilesAreDifferent}
TFileLocality xsd:string enum { ONLINE,

 NEARLINE,
 ONLINE_AND_NEARLINE,
 LOST,
 NONE,
 UNAVAILABLE }

 - 10 -

TRetentionPolicy

o Quality of Retention (Storage Class) is a kind of Quality of Service. It refers to the

probability that the storage system lose a file. Numeric probabilities are self-assigned.
• Replica quality has the highest probability of loss, but is appropriate for data

that can be replaced because other copies can be accessed in a timely fashion.
• Output quality is an intermediate level and refers to the data which can be

replaced by lengthy or effort-full processes.
• Custodial quality provides low probability of loss.

o The type will be used to describe retention policy assigned to the files in the storage
system, at the moments when the files are written into the desired destination in the
storage system. It will be used as a property of space allocated through the space
reservation function. Once the retention policy is assigned to a space, the files put in
the reserved space will automatically be assigned the retention policy of the space.
The assigned retention policy on the file can be found thought the
TMetaDataPathDetail structure returned by the srmLs function.

TAccessLatency

• Files may be Online, Nearline or Offline. These terms are used to describe how

latency to access a file is improvable. Latency is improved by storage systems
replicating a file such that its access latency is online.

o The ONLINE cache of a storage system is the part of the storage system
which provides file with online latencies.

o ONLINE has the lowest latency possible. No further latency improvements
are applied to online files.

o NEARLINE file can have their latency improved to online latency
automatically by staging the file to online cache.

o For completeness, we also describe OFFLINE here.
o OFFLINE files need a human to be involved to achieve online latency.
o For the SRM we only keep ONLINE and NEARLINE.

• The type will be used to describe a space property that access latency can be
requested at the time of space reservation. The content of the space, files may have
the same or “lesser” access latency as the space.

TFileLocality

o Files may be located online, nearline or both. This indicates if the file is online or not,

or if the file reached to nearline or not. It also indicates if there are online and nearline
copies of the file.

• The ONLINE indicates that there is a file on online cache of a storage system
which is the part of the storage system, and the file may be accessed with
online latencies.

• The NEARLINE indicates that the file is located on nearline storage system,
and the file may be accessed with nearline latencies.

 - 11 -

• The ONLINE_AND_NEARLINE indicates that the file is located on online
cache of a storage system as well as on nearline storage system.

• The LOST indicates when the file is lost because of the permanent hardware
failure.

• The NONE value shall be used if the file is empty (zero size).
• The UNAVAILABLE indicates that the file is unavailable due to the

temporary hardware failure.
o The type will be used to describe a file property that indicates the current location or

status in the storage system.

name type
TAccessPattern xsd:string enum { TransferMode, ProcessingMode }
TConnectionType xsd:string enum { WAN, LAN }
TStatusCode xsd:string enum { SRM_SUCCESS,

 SRM_FAILURE,
 SRM_AUTHENTICATION_FAILURE,
 SRM_AUTHORIZATION_FAILURE,
 SRM_INVALID_REQUEST,
 SRM_INVALID_PATH,
 SRM_FILE_LIFETIME_EXPIRED,
 SRM_SPACE_LIFETIME_EXPIRED,
 SRM_EXCEED_ALLOCATION,
 SRM_NO_USER_SPACE,
 SRM_NO_FREE_SPACE,
 SRM_DUPLICATION_ERROR,
 SRM_NON_EMPTY_DIRECTORY,
 SRM_TOO_MANY_RESULTS,
 SRM_INTERNAL_ERROR,
 SRM_FATAL_INTERNAL_ERROR,
 SRM_NOT_SUPPORTED,
 SRM_REQUEST_QUEUED,
 SRM_REQUEST_INPROGRESS,
 SRM_REQUEST_SUSPENDED,
 SRM_ABORTED,
 SRM_RELEASED,
 SRM_FILE_PINNED,
 SRM_FILE_IN_CACHE,
 SRM_SPACE_AVAILABLE,
 SRM_LOWER_SPACE_GRANTED,
 SRM_DONE,
 SRM_PARTIAL_SUCCESS,
 SRM_REQUEST_TIMED_OUT,
 SRM_LAST_COPY,
 SRM_FILE_BUSY,
 SRM_FILE_LOST,
 SRM_FILE_UNAVAILABLE,

 - 12 -

 SRM_CUSTOM_STATUS }

TAccessPattern

o TAccessPattern will be passed as an input parameter to the srmPrepareToGet and

srmBringOnline functions. It will make a hint from the client to SRM how the
Transfer URL (TURL) produced by SRM is going to be used. If the parameter value
is “ProcessingMode”, the system may expect that client application will perform
some processing of the partially read data, followed by more partial reads and a
frequent use of the protocol specific “seek” operation. This will allow optimizations
by allocating files on disks with small buffer sizes. If the value is “TransferMode” the
file will be read at the highest speed allowed by the connection between the server
and a client.

TConnectionType

o TConnectionType indicates if the client is connected though a local or wide area

network. SRM may optimize the access parameters to achieve maximum throughput
for the connection type. This will be passed as an input to the srmPrepareToGet,
srmPrepareToPut and srmBringOnline functions.

1.2. Complex Types

name type Min Max

TRetentionPolicyInfo TRetentionPolicy retentionPolicy
TAccessLatency accessLatency

1
0

1
1

TRequestToken xsd:string 1 1
ArrayOfTRequestToken TRequestToken [] 1 1
TSpaceToken xsd:string 1 1
ArrayOfTSpaceToken TSpaceToken [] 1 1
TUserID xsd:string 1 1
TGroupID xsd:string 1 1
TOwnerPermission TPermissionMode 1 1
TUserPermission TUserID userID

TPermissionMode mode
1
1

1
1

ArrayOfTUserPermission TUserPermission []
TGroupPermission TGroupID groupID

TPermissionMode mode
1
1

1
1

ArrayOfTGroupPermission TGroupPermission []
TOtherPermission TPermissionMode 1 1
TCheckSumType xsd:string 1 1
TCheckSumValue xsd:string 1 1
TSizeInBytes xsd:unsignedLong
ArrayOfTSizeInBytes TSizeInBytes []

 - 13 -

ArrayOfString xsd:string []

TRequestToken

• The TRequestToken assigned by SRM is unique and immutable (non-reusable). For

example, if the date:time is part of the requestToken it will be immutable.

TUserPermission

• TUserID may represent the associated client’s Distinguished Name (DN) instead of
unix style login name. VOMS role may be included.

TGroupPermission

o TGroupID may represent the associated client’s Distinguished Name (DN) instead of

unix style login name. VOMS role may be included.

TSizeInBytes
o xsd:unsignedLong — Unsigned integer of 64 bits

name type Min Max

TUTCTime xsd:dateTime 1 1
TLifeTimeInSeconds xsd:unsignedLong
TSURL xsd:anyURI 1 1
TTURL xsd:anyURI 1 1
TReturnStatus TStatusCode statusCode

xsd:string explanation
1
0

1
1

TSURLReturnStatus TSURL surl
TReturnStatus status

1
1

1
1

ArrayOfTSURLReturnStatus TSURLReturnStatus []
TMetaDataPathDetail xsd:string surl

TReturnStatus status
TSizeInBytes size
TOwnerPermission ownerPermission
ArrayOfTUserPermission arrayOfUserPermissions
ArrayOfTGroupPermission arrayOfGroupPermissions
TOtherPermission otherPermission
TUTCTime createdAtTime
TUTCTime lastModificationTime
TUserID owner
TFileStorageType fileStorageType
TRetentionPolicyInfo retentionPolicyInfo
TFileLocality fileLocality
ArrayOfTSpaceToken arrayOfSpaceTokens
TFileType type

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

 - 14 -

TLifeTimeInSeconds lifetimeAssigned
TLifeTimeInSeconds lifetimeLeft
TCheckSumType checkSumType
TCheckSumValue checkSumValue
ArrayOfTMetaDataPathDetail arrayOfSubPaths

0
0
0
0
0

1
1
1
1
1

ArrayOfTMetaDataPathDetail TMetaDataPathDetail []
TMetaDataSpace TSpaceToken spaceToken

TReturnStatus status
TRetentionPolicyInfo retentionPolicyInfo
TUserID owner
TSizeInBytes totalSize
TSizeInBytes guaranteedSize
TSizeInBytes unusedSize
TLifeTimeInSeconds lifetimeAssigned
TLifeTimeInSeconds lifetimeLeft

1
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

ArrayOfTMetaDataSpace TMetaDataSpace[] 1 1

TUTCTime

o Formerly TGMTTime in v2.1
o date and time in Coordinated Universal Time (UTC, formerly GMT) with no local

time extention.
o Format is same as in XML dateTime type, except no local time extension is allowed.

E.g. 1999-05-31T13:20:00 is ok (for 1999 May 31st, 13:20PM, UTC) but
1999-05-31T13:20:00-5:00 is not.

TLifeTimeInSeconds

o xsd:unsignedLong — Unsigned integer of 64 bits
o “0” (zero) will indicate the “infinite” lifetime.

TMetaDataPathDetail

o The TMetaDataPathDetail describes the properties of a file. It is used as an output

parameter in srmLs.
o retentionPolicyInfo indicates the assigned retention policy.
o fileLocality indicates where the file is located currently in the system.
o arrayOfSpaceTokens as an array of TSpaceToken indicates where the file is currently

located for the client. Only space tokens that the client has authorized to access to
read the file must be returned.

TMetaDataSpace

o TMetaDataSpace is used to describe properties of a space, and is used as an output

parameter in srmGetSpaceMetaData.

 - 15 -

o retentionPolicyInfo indicates the information about retention policy and access
latency that the space is assigned. retentionPolicyInfo is requested and assigned at the
time of space reservation through srmReserveSpace and
srmStatusOfReserveSpaceRequest.

o TMetaDataSpace refers to a single space with retention policy. It does not include
the extra space needed to hold the directory structures, if there is any.

name type Min Max

TDirOption xsd:boolean isSourceADirectory
xsd:boolean allLevelRecursive
xsd:int numOfLevels

1
0
0

1
1
1

TExtraInfo xsd:string key
xsd:string value

1
0

1
1

ArrayOfTExtraInfo TExtraInfo []
ArrayOfTSURL TSURL []
TSURLInfo TSURL SURL

ArrayOfTExtraInfo storageSystemInfo
1
0

1
1

ArrayOfTSURLInfo TSURLInfo []
TTransferParameters TAccessPattern accessPattern

TConnectionType connectionType,
ArrayOfString arrayOfClientNetworks
ArrayOfString arrayOfTransferProtocols

0
0
0
1

1
1
1
1

TGetFileRequest TSURL sourceSURL
TDirOption dirOption

1
0

1
1

ArrayOfTGetFileRequest TGetFileRequest []
TPutFileRequest TSURL targetSURL

TSizeInBytes expectedFileSize
0
0

1
1

ArrayOfTPutFileRequest TPutFileRequest []
TCopyFileRequest TSURLInfo sourceSURLInfo

TSURLInfo targetSURLInfo
TDirOption dirOption

1
1
0

1
1
1

ArrayOfTCopyFileRequest TCopyFileRequest []

TExtraInfo

o TExtraInfo is used where additional information is needed, such as for additional

information for transfer protocols of TURLs in srmPing, srmGetTransferProtocols,
srmStatusOfGetRequest, and srmStatusOfPutRequest. For example, when it is used
for additional information for transfer protocols, the keys may specify access speed,
available number of parallelism, and other transfer protocol properties.

o It is also used where additional information to the underlying storage system is
needed, such as for additional information, but not limited to, for storage device,
storage login ID, storage login authorization. Formerly, it was TStorageSystemInfo.

TTransferParameters

 - 16 -

o TTransferParameters is used where arrayOfTransferProtocols was used previously in

SRM v2.1.
o TGetFileRequest includes TAccessPattern which may conflict with the characteristics

of the online disk of the target space associated with target space token if provided. In
this case, TAccessPattern must be ignored

o File transfer protocols are specified in a preferred order on all SRM transfer
functions.

o arrayOfClientNetworks is a hint of the client IPs that SRM/dCache can use for
optimization of its internal storage systems based on the client’s accessible IP
addresses.

TPutFileRequest

o If the optional targetSURL is provided, then the reference SURL is generated by the

SRM. Specific SRM implementation may require targetSURL as an input parameter.

name type Min Max

TGetRequestFileStatus TSURL sourceSURL
TReturnStatus status
TSizeInBytes fileSize
TLifeTimeInSeconds estimatedWaitTime
TLifeTimeInSeconds remainingPinTime
TTURL transferURL
ArrayOfTExtraInfo transferProtocolInfo

1
1
0
0
0
0
0

1
1
1
1
1
1
1

ArrayOfTGetRequestFileStatus TGetRequestFileStatus []
TBringOnlineRequestFileStatus TSURL sourceSURL

TReturnStatus status
TSizeInBytes fileSize
TLifeTimeInSeconds estimatedWaitTime
TLifeTimeInSeconds remainingPinTime

1
1
0
0
0

1
1
1
1
1

ArrayOfTBringOnlineRequestFileStatus TBringOnlineRequestFileStatus []
TPutRequestFileStatus TSURL SURL

TReturnStatus status
TSizeInBytes fileSize
TLifeTimeInSeconds estimatedWaitTime
TLifeTimeInSeconds remainingPinLifetime
TLifeTimeInSeconds remainingFileLifetime
TTURL transferURL
ArrayOfTExtraInfo transferProtocolInfo

1
1
0
0
0
0
0
0

1
1
1
1
1
1
1
1

ArrayOfTPutRequestFileStatus TPutRequestFileStatus []
TCopyRequestFileStatus TSURL sourceSURL

TSURL targetSURL
1
1

1
1

 - 17 -

TReturnStatus status
TSizeInBytes fileSize
TLifeTimeInSeconds estimatedWaitTime
TLifeTimeInSeconds remainingFileLifetime

1
0
0
0

1
1
1
1

ArrayOfTCopyRequestFileStatus TCopyRequestFileStatus []
TRequestStat TStatusCode statusCode

int numOfFiles
1
1

1
1

ArrayOfTRequestStat TRequestStat []
TRequestSummary TRequestToken requestToken

TReturnStatus status
TRequestType requestType
xsd:int totalNumFilesInRequest
ArrayOfTRequestStat arrayOfRequestStats
xsd:boolean isSuspended

1
1
0
0
0
0

1
1
1
1
1
1

ArrayOfTRequestSummary TRequestSummary []
TSURLPermissionReturn TSURL surl

TReturnStatus status
TPermissionType permission

1
1
0

1
1
1

ArrayOfTSURLPermissionReturn TSURLPermissionReturn []
TRequestTokenReturn TRequestToken requestToken

TUTCTime createdAtTime
1
0

1
1

ArrayOfTRequestTokenReturn TRequestTokenReturn []
TSupportedTransferProtocol xsd:string transferProtocol

ArrayOfTExtraInfo attributes
1
0

1
1

ArrayOfTSupportedTransferProtocol TSupportedTransferProtocol []

TRequestSummary

o Int totalNumFilesInRequest

Output parameter reporting the total number of files in the request
o Boolean isSuspended

Output parameter reporting if the request has been suspended or not

TSupportedTransferProtocol

o transferProtocol (required): Supported transfer protocol. For example, gsiftp, http.
o attributes: Informational hints for the paired transfer protocol, such how many

number of parallel streams can be used, desired buffer size, etc.

 - 18 -

2. Space Management Functions – Message Types and Operations

summary:
 srmReserveSpace
 srmStatusOfReserveSpaceRequest
 srmReleaseSpace
 srmUpdateSpace

srmGetSpaceMetaData
srmChangeSpaceForFiles
srmStatusOfChangeSpaceForFilesRequest
srmExtendFileLifeTimeInSpace
srmPurgeFromSpace
srmGetSpaceToken

2.1. srmReserveSpace

This function is used to reserve a space in advance for the upcoming requests to get some
guarantee on the file management. Asynchronous space reservation may be necessary for
some SRMs to serve many concurrent requests.

Input srmReserveSpaceRequest
Output srmReserveSpaceResponse

name type Min Max

srmReserveSpaceRequest TUserID authorizationID
xsd:string userSpaceTokenDescription
TRetentionPolicyInfo retentionPolicyInfo
TSizeInBytes desiredSizeOfTotalSpace
TSizeInBytes desiredSizeOfGuaranteedSpace
TLifeTimeInSeconds desiredLifetimeOfReservedSpace
ArrayOfTSizeInBytes arrayOfExpectedFileSizes
ArrayOfTExtraInfo storageSystemInfo
TTransferParameters transferParametersHint

0
0
1
0
1
0
0
0
0

1
1
1
1
1
1
1
1
1

srmReserveSpaceResponse TReturnStatus returnStatus
TRequestToken requestToken
TLifeTimeInSeconds estimatedProcessingTime
TRetentionPolicyInfo retentionPolicyInfo
TSizeInBytes sizeOfTotalReservedSpace
TSizeInBytes sizeOfGuaranteedReservedSpace
TLifeTimeInSeconds lifetimeOfReservedSpace
TSpaceToken, spaceToken

1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

2.1.1. Notes on the Behavior

 - 19 -

a) If the input parameter desiredLifetimeOfReservedSpace is not provided, the
lifetime of the reserved space is set to “infinite” by default.

b) If the input parameter retentionPolicyInfo cannot be satisfied by the SRM server,
SRM_INVALID_REQUEST must be returned.

c) Asynchronous space reservation may be necessary for some SRMs to serve many
concurrent requests. In such case, request token must be returned, and space token
must not be assigned and returned until space reservation is completed, to prevent
the usage of the space token in other interfaces before the space reservation is
completed. If the space reservation can be done immediately, request token must
not be returned.

d) When asynchronous space reservation is necessary, the returned status code
should be SRM_REQUEST_QUEUED.

e) Input parameter arrayOfExpectedFileSize is a hint that SRM server can use to
reserve consecutive storage sizes for the request. At the time of space reservation,
if space accounting is done only at the level of the total size, this hint would not
help. In such case, the expected file size at the time of srmPrepareToPut will
describe how much consecutive storage size is needed for the file. However, some
SRMs may get benefits from these hints to make a decision to allocate some
blocks in some specific devices.

f) Optional input parameter storageSystemInfo is needed in case the underlying
storage system requires additional security information.

g) SRM may return its default space size and lifetime if not requested by the client.
SRM may return SRM_INVALID_REQUEST if SRM does not support default
space sizes.

h) If input parameter desiredSizeOfTotalSpace is not specified, the SRM will return
its default space size.

i) Output parameter estimateProcessingTime is used to indicate the estimation time
to complete the space reservation request, when known.

j) Output parameter sizeOfTotalReservedSpace is in best effort bases. For
guaranteed space size, sizeOfGuaranteedReservedSpace should be checked.
These two numbers may match, depending on the storage systems.

k) Output parameter spaceToken is a reference handle of the reserved space.

2.1.2. Return Status Code

SRM_SUCCESS
 successful request completion. Space is reserved successfully as the

client requested.
SRM_ REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned, and space token must not be assigned and returned.

SRM_LOWER_SPACE_GRANGED
 successful request completion, but lower space size is allocated than

what the client requested
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 - 20 -

 client is not authorized to reserve space
SRM_INVALID_REQUEST

 the input parameter retentionPolicyInfo cannot be satisfied by the
SRM server.

 If space size or lifetime is not requested by the client, and SRM does
not support default values for space size or lifetime.

 input parameters do not conform the SRM server. For example, client
requested negative desiredLifetimeOfReservedSpace and SRM server
cannot honor the number.

SRM_NO_USER_SPACE
 SRM server does not have enough user space for the client for client to

request to reserve.
SRM_NO_FREE_SPACE

 SRM server does not have enough free space for client to request to
reserve.

SRM_EXCEED_ALLOCATION
 SRM server does not have enough space for the client to fulfill the

request because the client request needs more than the allocated space
quota for the client.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

2.2. srmStatusOfReserveSpaceRequest

This function is used to check the status of the previous request to srmReserveSpace,
when asynchronous space reservation was necessary with the SRM. Request token must
have been provided in response to the srmReserveSpace.

Input srmStatusOfReserveSpaceRequestRequest
Output srmStatusOfReserveSpaceRequestResponse

name type Min Max

srmStatusOfReserveSpaceRequest
Request

TUserID authorizationID
TRequestToken requestToken

0
1

1
1

srmStatusOfReserveSpaceRequest
Response

TReturnStatus returnStatus
TLifeTimeInSeconds estimatedProcessingTime
TRetentionPolicyInfo retentionPolicyInfo
TSizeInBytes sizeOfTotalReservedSpace

1
0
0
0

1
1
1
1

 - 21 -

TSizeInBytes sizeOfGuaranteedReservedSpace
TLifeTimeInSeconds lifetimeOfReservedSpace
TSpaceToken, spaceToken

0
0
0

1
1
1

2.2.1. Notes on the Behavior

a) If the space reservation is not completed yet, estimateProcessingTime is returned
when known. The returned status code in such case should be
SRM_REQUEST_QUEUED.

b) See notes for srmReserveSpace for descriptions for output parameters.

2.2.2. Return Status Code

SRM_REQUEST_QUEUED
 successful request submission and the request is still on the queue to

be served.
SRM_REQUEST_INPROGRESS

 the request is being processed.
SRM_LOWER_SPACE_GRANGED

 successful request completion, but lower space size is allocated than
what the client requested

SRM_SUCCESS
 successful request completion. Space is reserved successfully as the

client requested.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to reserve space
SRM_INVALID_REQUEST

 requestToken does not refer to an existing known request in the SRM
server.

SRM_EXCEED_ALLOCATION
 SRM server does not have enough space for the client to fulfill the

request because the client request needs more than the allocated space
for the client.

SRM_NO_USER_SPACE
 SRM server does not have enough user space for the client for the

client for client to request to reserve.
SRM_NO_FREE_SPACE

 SRM server does not have enough free space for the client for client to
request to reserve.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 any input parameter is not supported in the SRM server

 - 22 -

 a particular type of an input parameter is not supported in the SRM
server

2.3. srmReleaseSpace

srmReleaseSpace() releases an occupied space.

Input srmReleaseSpaceRequest
Output srmReleaseSpaceResponse

name type Min Max

srmReleaseSpaceRequest TUserID authorizationID
TSpaceToken spaceToken
ArrayOfTExtraInfo storageSystemInfo
xsd:boolean forceFileRelease

0
1
0
0

1
1
1
1

srmReleaseSpaceResponse TReturnStatus returnStatus 1 1

2.3.1. Notes on the Behavior

a) forceFileRelease is false by default. This means that the space will not be
released if it has files that are still pinned in the space. To release the space
regardless of the files it contains and their status forceFileRelease must be
specified to be true.

b) When space is releasable and forceFileRelease is true, all the files in the space are
released, even in durable or permanent space.

c) srmReleaseSpace may not complete right away because of the lifetime of files in
the space. When space is released, the files in that space are treated according to
their types: If file storage types are permanent, keep them until further operation
such as srmRm is issued by the client. If file storage types are durable, perform
necessary actions at the end of their lifetime. If file storage types are volatile,
release those files at the end of their lifetime.

2.3.2. Return Status Code

SRM_SUCCESS
 successful request completion. Space is successfully released.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to release the space that is associated with the

spaceToken
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED

 - 23 -

 forceFileRelease is not supported
 function is not supported

SRM_FAILURE
 space still contains pinned files.
 space associated with space is already released.
 any other request failure. Explanation needs to be filled for details.

2.4. srmUpdateSpace

srmUpdateSpace is to resize the space and/or extend the lifetime of a space.
Asynchronous operation may be necessary for some SRMs to serve many concurrent
requests.

Input srmUpdateSpaceRequest
Output srmUpdateSpaceResponse

name type Min Max

srmUpdateSpaceRequest TUserID authorizationID
TSpaceToken spaceToken
TSizeInBytes newSizeOfTotalSpaceDesired
TSizeInBytes newSizeOfGuaranteedSpaceDesired
TLifeTimeInSeconds newLifeTime
ArrayOfTExtraInfo storageSystemInfo

0
1
0
0
0
0

1
1
1
1
1
1

srmUpdateSpaceResponse TReturnStatus returnStatus
TRequestToken requestToken
TSizeInBytes sizeOfTotalSpace
TSizeInBytes sizeOfGuaranteedSpace
TLifeTimeInSeconds lifetimeGranted

1
0
0
0
0

1
1
1
1
1

2.4.1. Notes on the Behavior

a) If neither size nor lifetime is provided in the input parameters, then the request
will be failed.

b) newSize is the new actual size of the space.
c) newLifetime is the new lifetime requested regardless of the previous lifetime, and

has to be positive. It might even be shorter than the remaining lifetime at the time
of the call. It is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

2.4.2. Return Status Code

SRM_SUCCESS
 successful request completion. Space is successfully updated as the

client requested.
SRM_ REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned.

 - 24 -

SRM_LOWER_SPACE_GRANGED
 successful request completion, but lower space size is allocated than

what the client requested
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to update the space that is associated with the
spaceToken

SRM_SPACE_LIFETIME_EXPIRED
 lifetime of the space that is associated with the spaceToken is already

expired.
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

 input parameter size or time is not provided.
SRM_EXCEED_ALLOCATION

 SRM server does not have enough space for the client to fulfill the
request because the client request has more than the allocated space for
the client.

SRM_NO_USER_SPACE
 SRM server does not have enough space for the client to fulfill the

request
SRM_NO_FREE_SPACE

 SRM server does not have enough free space to fulfill the request
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 New requested size is less than currently used space.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported

2.5. srmStatusOfUpdateSpaceRequest

This function is used to check the status of the previous request to srmUpdateSpace,
when asynchronous space update was necessary with the SRM. Request token must have
been provided in response to the srmUpdateSpace.

2.5.1. Parameters

 In: TUserID authorizationID,

TRequestToken requestToken

 Out: TReturnStatus returnStatus,

TSizeInBytes sizeOfTotalSpace, // best effort

 - 25 -

TSizeInBytes sizeOfGuaranteedSpace,
 TLifeTimeInSeconds lifetimeGranted

2.5.2. Notes on the Behavior

a) Output parameters for sew sizes are the new actual sizes of the space.
b) Output parameter, lifetimeGranted is the new lifetime granted regardless of the

previous lifetime. It might even be shorter than the previous lifetime. It is relative
to the calling time.

2.5.3. Return Status Code

SRM_REQUEST_QUEUED
 successful request submission and the request is still on the queue to

be served.
SRM_REQUEST_INPROGRESS

 the request is being processed.
SRM_SUCCESS

 successful request completion. Space is successfully updated as the
client requested.

SRM_LOWER_SPACE_GRANGED
 successful request completion, but lower space size is allocated than

what the client requested
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to update the space that is associated with the
spaceToken

SRM_SPACE_LIFETIME_EXPIRED
 lifetime of the space that is associated with the spaceToken is already

expired.
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

 input parameter size or time is not provided.
SRM_EXCEED_ALLOCATION

 SRM server does not have enough space for the client to fulfill the
request because the client request has more than the allocated space for
the client.

SRM_NO_USER_SPACE
 SRM server does not have enough space for the client to fulfill the

request
SRM_NO_FREE_SPACE

 SRM server does not have enough free space to fulfill the request
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 New requested size is less than currently used space.

 - 26 -

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported

2.6. srmGetSpaceMetaData

This function is used to get information of a space. Space token must be provided, and
space tokens are returned upon a completion of a space reservation through
srmReserveSpace or srmStatusOfReserveSpaceRequest.

Input srmGetSpaceMetaDataRequest
Output srmGetSpaceMetaDataResponse

name type Min Max

srmGetSpaceMetaDataRequest TUserID authorizationID
ArrayOfTSpaceToken arrayOfSpaceTokens

0
1

1
1

srmGetSpaceMetaDataResponse TReturnStatus returnStatus
ArrayOfTMetaDataSpace arrayOfSpaceDetails

1
0

1
1

2.6.1. Return Status Code
For request level return Status,

SRM_SUCCESS
 successful request completion. Information of all requested spaces are

returned successfully.
SRM_PARTIAL_SUCCESS

 Request is completed. Information of some requested spaces are
returned successfully, and some are failed to be returned.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request space information

SRM_TOO_MANY_RESULTS
 Request produced too many results that SRM server cannot handle.

SRM_INVALID_REQUEST
 arrayOfSpaceToken is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

For space level return Status,

SRM_SUCCESS

 - 27 -

 successful request completion for the spaceToken. Space information
is successfully returned.

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request information on the space that is

associated with the spaceToken
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

SRM_SPACE_LIFETIME_EXPIRED
 The life time on the space that is associated with the spaceToken has

expired
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

2.7. srmChangeSpaceForFiles

This function is used to change the space property of files to another space property by
specifying target space tokens. All files specified by SURLs will have a new space
token. SURLs must not be changed. New space token may be acquired from
srmReserveSpace. Asynchronous operation may be necessary for some SRMs, and in
such case, request token is returned for later status inquiry. There is no default behavior
when target space token is not provided. In such case, the request will be rejected, and the
return status must be SRM_INVALID_REQUEST.

Input srmChangeSpaceForFilesRequest
Output srmChangeSpaceForFilesResponse

name type Min Max

srmChangeSpaceForFilesRequest TUserID authorizationID
ArrayOfTSURLInfo arrayOfSURLs
TSpaceToken targetSpaceToken

0
1
1

1
1
1

srmChangeSpaceForFilesResponse TReturnStatus returnStatus
TRequestToken requestToken
TLifeTimeInSeconds estimatedProcessingTime
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0
0
0

1
1
1
1

2.7.1. Notes on the Behavior

a) When space transition is completed successfully, SRM_SUCCESS must be
returned for each SURL.

b) For any forbidden transition by the SRM implementation,
SRM_INVALID_SPACE_TRANSITION must be returned.

c) Asynchronous operation may be necessary for some SRMs to serve many
concurrent requests. In such case, request token must be returned. If the request
can be completed immediately, request token must not be returned.

 - 28 -

d) When asynchronous operation is necessary, the returned status code should be
SRM_REQUEST_QUEUED, and arrayOfFileStatuses may not be filled and
returned.

e) All files specified in arrayOfSURLs will be moved to the space associated with
targetSpaceToken.

f) When target space token is used, space allocation for a new space token must be
done explicitly by the client before using this function.

g) If a directory path is provided, then the effect is recursive for all files in the
directory.

h) Space de-allocation may be necessary in some cases, and it must be done by the
client explicitly after this operation completes. The status can be checked by
srmStatusOfChangeSpaceForFilesRequest.

2.7.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All file requests are successfully completed. All SURLs have new

targetSpaceToken.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL requests have new
targetSpaceToken, and some SURL requests are failed to have new
targetSpaceToken. Details are on the files status.

SRM_ REQUEST_QUEUED
 request is submitted and accepted. requestToken must be returned.
 The status can be checked by

srmStatusOfChangeSpaceForFilesRequest.
SRM_ REQUEST_INPROGRESS

 The request is being processed. Some files are still queued, and some
files are completed in space transition.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the file types

SRM_INVALID_REQUEST
 SURL is empty.
 targetSpaceToken is empty.
 targetSpaceToken does not refer to an existing space in the SRM

server.
 targetSpaceToken refers to a forbidden transition by the SRM

implementation.
SRM_SPACE_LIFETIME_EXPIRED

 target space that is associated with targetSpaceToken has an expired
lifetime.

SRM_EXCEED_ALLOCATION
 target space that is associated with targetSpaceToken is not enough to

hold SURLs.

 - 29 -

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. The SURL has a new
targetSpaceToken.

SRM_ REQUEST_QUEUED
 file request is on the queue.

SRM_ REQUEST_INPROGRESS
 file request is being processed.

SRM_INVALID_PATH
 SURL does not refer to an existing file

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the space for the file that is

associated with the SURL
SRM_INVALID_REQUEST

 targetSpaceToken refers to a forbidden transition for the particular
SURL by the SRM implementation.

SRM_EXCEED_ALLOCATION
 target space that is associated with targetSpaceToken is not enough to

hold SURL.
SRM_FILE_LOST

 the requested file with the SURL is permanently lost.
SRM_FILE_BUSY

 client requests for files which there is an active srmPrepareToPut (no
srmPutDone is not yet called) for.

 The requested file with the SURL is being used by other clients.
SRM_FILE_UNAVAILABLE

 the requested file with the SURL is temporarily unavailable.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

2.8. srmStatusOfChangeSpaceForFilesRequest

This function is used to check the status of the previous request to
srmChangeSpaceForFiles, when asynchronous operation was necessary in the SRM.
Request token must have been provided in response to the srmChangeSpaceForFiles.

 - 30 -

Input srmStatusOfChangeSpaceForFilesRequestRequest
Output srmStatusOfChangeSpaceForFilesRequestResponse

name type Min Max

srmStatusOfChangeSpaceForFiles
RequestRequest

TUserID authorizationID
TRequestToken requestToken

0
1

1
1

srmStatusOfChangeSpaceForFiles
RequestResponse

TReturnStatus returnStatus
TLifeTimeInSeconds estimatedProcessingTime
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0
0

1
1
1

2.8.1. Notes on the Behavior

a) When space transition is completed successfully, SRM_SUCCESS must be
returned for each SURL.

b) If changing space is not completed, estimateProcessingTime is returned when
known.

c) If all files are still in the queue and none of the files are completed in changing
space, the returned status code should be SRM_REQUEST_QUEUED.

d) If some files are queued, and some files are completed in changing space,
SRM_REQUEST_INPROGRESS must be returned as the return status code.
Each file should have its own status code.

2.8.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All file requests are successfully completed. All SURLs have new

targetSpaceToken.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL requests have new
targetSpaceToken, and some SURL requests are failed to have new
targetSpaceToken. Details are on the files status.

SRM_ REQUEST_QUEUED
 Request submission was successful and the entire request is still on the

queue.
SRM_ REQUEST_INPROGRESS

 Some files are still queued, and some files are completed in space
transition.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the file types

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.

 - 31 -

 targetSpaceToken refers to a forbidden transition by the SRM
implementation.

SRM_SPACE_LIFETIME_EXPIRED
 target space that is associated with targetSpaceToken has an expired

lifetime.
SRM_EXCEED_ALLOCATION

 target space that is associated with targetSpaceToken is not enough to
hold SURLs.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. The SURL has a new
targetSpaceToken.

SRM_ REQUEST_QUEUED
 file request is on the queue.

SRM_ REQUEST_INPROGRESS
 file request is being processed.

SRM_INVALID_PATH
 SURL does not refer to an existing file request

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the space for the file that is

associated with the SURL
SRM_INVALID_REQUEST

 targetSpaceToken refers to a forbidden transition for the particular
SURL by the SRM implementation.

SRM_EXCEED_ALLOCATION
 target space that is associated with targetSpaceToken is not enough to

hold SURL.
SRM_FILE_LOST

 the requested file with the SURL is permanently lost.
SRM_FILE_BUSY

 client requests for files which there is an active srmPrepareToPut (no
srmPutDone is not yet called) for.

 The requested file with the SURL is being used by other clients.
SRM_FILE_UNAVAILABLE

 the requested file with the SURL is temporarily unavailable.
SRM_FAILURE

 - 32 -

 any other request failure. Explanation needs to be filled for details.

2.9. srmExtendFileLifeTimeInSpace

This function is used to extend lifetime of the files (SURLs) in a space.

Input srmExtendFileLifeTimeInSpaceRequest
Output srmExtendFileLifeTimeInSpaceResponse

name type Min Max

srmExtendFileLifeTimeInSpace
Request

TUserID authorizationID
TSpaceToken spaceToken
ArrayOfTSURL arrayOfSURLs
TLifeTimeInSeconds newLifeTime

0
1
0
0

1
1
1
1

srmExtendFileLifeTimeInSpace
Response

TReturnStatus returnStatus
TLifeTimeInSeconds newTimeExtended
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0
0

1
1
1

2.9.1. Notes on the Behavior

a) When spaceToken is provided, the lifetime of the file copy of the SURLs in the
space associated with the space token will be extended.

b) newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

c) The new file lifetime, newTimeExtended must not exceed the remaining lifetime
of the space.

d) The number of lifetime extensions maybe limited by SRM according to its
policies.

e) If original lifetime is longer than the requested one, then the requested one will be
assigned.

f) If newLifeTime is not specified, the SRM can use its default to assign the
newLifeTime.

2.9.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs have a new

extended lifetime.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURLs have a new extended
lifetime, and some SURLS have failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE

 - 33 -

 client is not authorized to extend lifetime of files in the space specified
by the space token.

SRM_INVALID_REQUEST
 spaceToken is empty.
 spaceToken does not refer to an existing known space in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. The SURL has a new

extended lifetime.
SRM_INVALID_PATH

 SURL does not refer to an existing file request
 SURL does not refer to an existing file request that is associated with

the space token
SRM_AUTHORIZATION_FAILURE

 client is not authorized to extend the lifetime for the file that is
associated with the SURL

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_FILE_LIFETIME_EXPIRED
 the requested file is expired already.

2.10. srmPurgeFromSpace

This function is used when removing files from the given space is needed. Difference
from srmReleaseFiles and srmAbortFiles is that srmPurgeFromSpace is not associated
with a request. This function must not remove the SURLs, but only the "copies" or
"states" of the SURLs. srmRm must be used to remove SURLs.

Input srmPurgeFromSpaceRequest
Output srmPurgeFromSpaceResponse

name type Min Max

 - 34 -

srmPurgeFromSpaceRequest TUserID authorizationID
ArrayOfTSURLInfo arrayOfSURLs
TSpaceToken spaceToken

0
1
1

1
1
1

srmPurgeFromSpaceResponse TReturnStatus returnStatus
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0

1
1

2.10.1. Notes on the Behavior

a) If the specified SURL is the only remaining copy of the file in the storage system,
SRM_LAST_COPY must be returned. To remove the last copy of the SURL,
srmRm may be used.

b) The method shall only succeed if there are no outstanding pins or requests for the
specified files. Otherwise, SRM_FILE_BUSY must be returned.

c) When input parameter spaceToken is provided, SRM will remove only the
“copies” (or “state”) of the SURLs associated with the space token.

d) It has the effect of a release on the “copy” (or “state”) of the file before being
removed.

2.10.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are purged from

the space specified by the spaceToken.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURLs are successfully purged from
the space specified by the spaceToken, and some SURLs are failed to
be purged from the space specified by the spaceToken. Details are on
the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to clean up the space that is associated with

spaceToken
SRM_INVALID_REQUEST

 arrayOfSURLs is empty.
 spaceToken is empty.
 spaceToken does not refer to an existing known space in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

For file level return Status,
SRM_SUCCESS

 - 35 -

 successful request completion for the SURL. SURL is purged from the
space specified by the spaceToken.

SRM_INVALID_PATH
 SURL does not refer to an existing file
 SURL does not refer to an existing file that is associated with the space

token
SRM_AUTHORIZATION_FAILURE

 Client is not authorized to purge SURL in the space that is associated
with spaceToken

SRM_FILE_LOST
 the request file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 The requested file is used by other clients.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_LAST_COPY
 the requested file is the last copy and will not be purged from the

space. srmRm must be used to remove the last copy.

2.11. srmGetSpaceToken

srmGetSpaceToken() returns space tokens for currently allocated spaces.

Input srmGetSpaceTokenRequest
Output srmGetSpaceTokenResponse

name type Min Max

srmGetSpaceTokenRequest xsd:string userSpaceTokenDescription
TUserID authorizationID

0
0

1
1

srmGetSpaceTokenResponse TReturnStatus returnStatus
ArrayOfTSpaceToken arrayOfSpaceTokens

1
0

1
1

2.11.1. Notes on the Behavior

a) If userSpaceTokenDescription is null, returns all space tokens this user owns.
b) If the user assigned the same name to multiple space reservations, he may get

back multiple space tokens.

2.11.2. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. Space tokens are returned

successfully.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client

 - 36 -

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request spaceTokens associated with the

userSpaceDescription
SRM_INVALID_REQUEST

 userSpaceDescription does not refer to an existing space description.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

 - 37 -

3. Permission Functions – Message Types and Operations

summary:

srmSetPermission
srmCheckPermission

3.1. srmSetPermission

srmSetPermission is to set permission on local SURL.

Input srmSetPermissionRequest
Output srmSetPermissionResponse

Name type Min Max

srmSetPermissionRequest TUserID authorizationID
TSURLInfo SURL
TPermissionType permissionType
TOwnerPermission ownerPermission
ArrayOfTUserPermission arrayOfUserPermissions
ArrayOfTGroupPermission arrayOfGroupPermissions
TOtherPermission otherPermission

0
1
0
0
0
0
0

1
1
1
1
1
1
1

srmSetPermissionResponse TReturnStatus returnStatus 1 1

3.1.1. Notes on the Behavior

a) Applies to both dir and file.
b) Support for srmSetPermission is optional.
c) User permissions are provided in order to support dynamic user-level permission

assignment similar to Access Control Lists (ACLs).
d) Permissions can be assigned to set of users and sets of groups, but only a single

owner.
e) In this version, SRMs do not provide any group operations (setup, modify,

remove, etc.)
f) Groups are assumed to be set up before srmSetPermission is used.
g) If TPermissionType is ADD or CHANGE, and TPermissionMode is null, then it is

assumed that TPermissionMode is READ only.
h) If TPermissionType is REMOVE, then the TPermissionMode is ignored

3.1.2. Return Status Code

SRM_SUCCESS
 successful request completion. SURL has a new permission.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to set permissions
 client is not authorized to set permissions on the SURL

 - 38 -

SRM_INVALID_PATH
 SURL does not refer to an existing known path

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

3.2. srmCheckPermission

srmCheckPermission is used to check the client permissions on the SURLs. It only
checks for the client for authorization on the SURLs.

Input srmCheckPermissionRequest
Output srmCheckPermissionResponse

Name type Min Max

srmCheckPermissionRequest ArrayOfTSURLInfo arrayOfSURLs
TUserID authorizationID
xsd:boolean checkLocalOnly

1
0
0

1
1
1

srmCheckPermissionResponse TReturnStatus returnStatus
ArrayOfTSURLPermissionReturn arrayOfPermissions

1
0

1
1

3.2.1. Notes on the Behavior

a) When checkLocalOnly is true, then SRM will only check files in its local cache.
Otherwise, if a file is not in its local cache, then SRM will go to the SURL to
check the user permission.

b) If checkLocalOnly is false, SRM can choose to always check the SURL for user
permission of each file. It is also ok if SRM choose to check its local cache first,
if a file exists and the user has permission, return that permission. Otherwise,
check the SURL and return permission.

3.2.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. Permissions on SURLs are

checked and returned.
SRM_PARTIAL_SUCCESS

 All requests are completed. Permissions of some SURLs are
successfully checked and returned, but some permission of some
SURLs are failed to be checked. Details are on the files status.

 - 39 -

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request permission information

SRM_INVALID_REQUEST
 arrayOfSURL is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 a particular type of an input parameter (checkLocalOnly = false) is not

supported in the SRM server

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. Permissions on SURL are
checked and returned.

SRM_INVALID_PATH
 SURL does not refer to an existing known path

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request permission information on the SURL

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

 - 40 -

4. Directory Functions – Message Types and Operations

summary:

srmMkdir
srmRmdir
srmRm
srmLs
srmStatusOfLsRequest
srmMv

4.1. srmMkdir

srmMkdir creates a directory in a local SRM space.

Input srmMkdirRequest
Output srmMkdirResponse

Name type Min Max

srmMkdirRequest TUserID authorizationID
TSURLInfo directoryPath

0
1

1
1

srmMkdirResponse TReturnStatus returnStatus 1 1

4.1.1. Notes on the Behavior

a) Consistent with unix, recursive creation of directories is not supported.
b) directoryPath can include paths, as long as all directory hierarchy exists.

4.1.2. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. directoryPath is created.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to create a directory
 client is not authorized to create a directory as diretoryPath

SRM_INVALID_PATH
 directoryPath does not refer to a valid path
 component of directoryPath does not refer to an existing path

SRM_DUPLICATION_ERROR
 directoryPath exists already

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

 - 41 -

4.2. srmRmdir

srmRmdir removes an empty directory in a local SRM space.

Input srmRmdirRequest
Output srmRmdirRespnose

Name type Min Max

srmRmdirRequest TUserID authorizationID
TSURLInfo directoryPath
xsd:boolean recursive

0
1
0

1
1
1

srmRmdirRespnose TReturnStatus returnStatus 1 1

4.2.1. Notes on the Behavior

a) It applies to directory only.
b) recursive is false by default.
c) To distinguish from srmRm(), this function is for directories only

4.2.2. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. directoryPath is removed.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to remove a directory
 client is not authorized to remove a directory as directoryPath

SRM_INVALID_PATH
 directoryPath does not refer to a valid path

SRM_NON_EMPTY_DIRECTORY
 directoryPath is not empty

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 input parameter recursive is not supported in the SRM server

4.3. srmRm

This function will remove SURLs (the name space entries) in the storage system.
Difference from srmPurgeFromSpace is that srmPurgeFromSpace removes only
previously requested “copies” (or “state”) of the SURL in a particular space, and

 - 42 -

srmPurgeFromSpace shall not remove SURLs or the name space entries. If any files are
not released yet, this function will release them before removing SURLs.

Input srmRmRequest
Output srmRmResponse

Name type Min Max

srmRmRequest TUserID authorizationID
ArrayOfTSURLInfo arrayOfSURLs

0
1

1
1

srmRmResponse TReturnStatus returnStatus
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0

1
1

4.3.1. Notes on the Behavior

a) Applies to files only.
b) To distinguish from srmRmdir(), this function applies to files only

4.3.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are removed.

SRM_PARTIAL_SUCCESS
 All requests are completed. Some SURLs are successfully removed,

and some SURLs are failed to be removed. Details are on the files
status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to remove any files

SRM_INVALID_REQUEST
 arrayOfSURLs is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL is removed.

SRM_INVALID_PATH
 SURL does not refer to an existing known file path

SRM_AUTHORIZATION_FAILURE
 client is not authorized to remove SURL

SRM_FILE_LOST
 the request file is permanently lost.

 - 43 -

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 SURL is being used by other clients

SRM_FILE_UNAVAILABLE
 the request file is temporarily unavailable.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

4.4. srmLs

srmLs() returns a list of files with a basic information. This operation may be
asynchronous, and in such case, requestToken must be returned.

Input srmLsRequest
Output srmLsResponse

Name type Min Max

srmLsRequest TUserID authorizationID
ArrayOfTSURL arrayOfSURLs
ArrayOfTExtraInfo storageSystemInfo
TFileStorageType fileStorageType
xsd:boolean fullDetailedList
xsd:boolean allLevelRecursive
xsd:int numOfLevels
xsd:int offset
xsd:int count

0
1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

srmLsResponse TReturnStatus returnStatus
TRequestToken requestToken
ArrayOfTMetaDataPathDetail details

1
0
0

1
1
1

4.4.1. Notes on the Behavior

a) Applies to both directory and file
b) fullDetailedList is false by default.

o For directories, only path is required to be returned.
o For files, path and size are required to be returned.

c) If fullDetailedList is true, the full details are returned.
o For directories, path and userPermission are required to be returned.
o For files, path, size, userPermission, lastModificationTime, file type, and

lifetimeLeft are required to be returned, similar to unix command ls –l.
d) If allLevelRecursive is true then file lists of all level below current will be

provided as well.
e) If allLevelRecursive is "true" it dominates, i.e. ignore numOfLevels. If

allLevelRecursive is "false" or missing, then do numOfLevels. If numOfLevels is

 - 44 -

"0" (zero) or missing, assume a single level. If both allLevelRecursive and
numOfLevels are missing, assume a single level.

f) If numOfLevels is 0, then information about directory itself is returned.
g) If numOfLevels is 1, then information about files in the directory is returned.
h) When listing for a particular type specified by “fileStorageType”, only the files

with that type will be in the output.
i) Empty directories will be returned.
j) We recommend width first in the listing.
k) We recommend that list of directories come before list of files in the return array

(details).
l) For non-existing file or directory, SRM_INVALID_PATH must be returned.

4.4.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are checked and

the information for all SURLs is returned successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL request is successfully
completed, and some SURL request is failed. Details are on the files
status.

SRM_REQUEST_QUEUED
 successful request submission and acceptance. Request token must be

returned.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request information
SRM_TOO_MANY_RESULTS

 srmLs request has generated too many results that SRM cannot handle.
In most cases, it needs to be narrowed down with offset and count by
the client.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_INVALID_REQUEST
 Negative values for numOfLevels, offset and count are provided.

SRM_NOT_SUPPORTED
 Requested fileStorageType is not supported in SRM
 Filtering fileStorageType is not supported in SRM
 Directory operation (directory SURL, allLevelRecursive and

numOfLevels) is not supported in SRM
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS

 - 45 -

 successful request completion for the SURL. The information for the
SURL is checked and returned successfully.

SRM_FILE_IN_CACHE
 lifetime on SURL has expired, but the file is still in the cache.

SRM_INVALID_PATH
 SURL does not refer to an existing known file path.

SRM_AUTHORIZATION_FAILURE
 client is not authorized to receive the information of the SURL or to

access the directory or sub-directories

4.5. srmStatusOfLsRequest

srmStatusOfLsRequest() returns a list of files with a basic information. This is an
asynchronous operation of srmLs.

Input srmStatusOfLsRequestRequest
Output srmStatusOfLsRequestResponse

Name type Min Max

srmStatusOfLsRequestRequest TUserID authorizationID
TRequestToken requestToken
xsd:int offset
xsd:int count

0
1
0
0

1
1
1
1

srmStatusOfLsRequestResponse TReturnStatus returnStatus
ArrayOfTMetaDataPathDetail details

1
0

1
1

4.5.1. Notes on the Behavior

a) Empty directories will be returned.
b) We recommend width first in the listing.
c) We recommend that list of directories come before list of files in the return array

(details).
d) For non-existing file or directory, SRM_INVALID_PATH must be returned.

4.5.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are checked and

the information for all SURLs is returned successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL request is successfully
completed, and some SURL request is failed. Details are on the files
status.

SRM_REQUEST_QUEUED
 successful request submission and all files request is still on the queue.

SRM_AUTHENTICATION_FAILURE

 - 46 -

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request information
SRM_TOO_MANY_RESULTS

 srmLs request has generated too many results that SRM cannot handle.
In most cases, it needs to be narrowed down with offset and count by
the client.

SRM_INVALID_REQUEST
 Negative values for offset and count are provided.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 Requested fileStorageType is not supported in SRM
 Filtering fileStorageType is not supported in SRM
 Directory operation (directory SURL, allLevelRecursive and

numOfLevels) is not supported in SRM
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. The information for the
SURL is checked and returned successfully.

SRM_FILE_IN_CACHE
 lifetime on SURL has expired, but the file is still in the cache.

SRM_INVALID_PATH
 SURL does not refer to an existing known file path

SRM_AUTHORIZATION_FAILURE
 client is not authorized to receive the information of the SURL or to

access the directory or sub-directories

4.6. srmMv

srmMv is to move a file from one local path to another local path.

Input srmMvRequest
Output srmMvResponse

Name type Min Max

srmMvRequest TUserID authorizationID
TSURLInfo fromSURL
TSURLInfo toSURL

0
1
1

1
1
1

srmMvResponse TReturnStatus returnStatus 1 1

4.6.1. Notes on the Behavior

 - 47 -

a) Applies to both directory and file.
b) Authorization checks need to be performed on both fromSURL and toSURL.

4.6.2. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. SURL is moved successfully

from one local path to another local path.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to move fromSURL.
 Client is not authorized to move a file into toSURL

SRM_INVALID_PATH
 fromSURL does not refer to an existing known path
 toSURL does not refer to a valid path

SRM_DUPLICATION_ERROR
 toSURL exists already.

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 The requested file is being used by other clients.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

 - 48 -

5. Data Transfer Functions – Message Types and Operations

summary:

srmPrepareToGet
srmStatusOfGetRequest
srmPrepareToPut
srmStatusOfPutRequest
srmCopy
srmStatusOfCopyRequest
srmBringOnline
srmStatusOfBringOnlineRequest

srmReleaseFiles
srmPutDone

srmAbortRequest
srmAbortFiles
srmSuspendRequest
srmResumeRequest

srmGetRequestSummary

srmExtendFileLifeTime
srmGetRequestTokens

5.1. srmPrepareToGet

This function is used to bring files online upon the client’s request and assign TURL so
that client can access the file. Lifetime (pinning expiration time) is assigned on the
TURL. When specified target space token which must be referred to an online space, the
files will be prepared using the space associated with the space token. It is an
asynchronous operation, and request token must be returned if request is valid and
accepted. The status must be checked through srmStatusOfGetRequest with the returned
request token.

Input srmPrepareToGetRequest
Output srmPrepareToGetResponse

Name type Min Max

srmPrepareToGetRequest TUserID authorizationID
ArrayOfTGetFileRequest arrayOfFileRequests
xsd:string userRequestDescription
ArrayOfTExtraInfo storageSystemInfo
TFileStorageType desiredFileStorageType
TLifeTimeInSeconds desiredTotalRequestTime

0
1
0
0
0
0

1
1
1
1
1
1

 - 49 -

TLifeTimeInSeconds desiredPinLifetime
TSpaceToken targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferParameters transferParametersHint

0
0
0
0

1
1
1
1

srmPrepareToGetResponse TReturnStatus returnStatus
TRequestToken requestToken
TLifeTimeInSeconds remainingTotalRequestTime

1
0
0

1
1
1

5.1.1. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) If input parameter TSpaceToken is provided, then the target space token must
refer to online space. All requested files will be prepared into the target space.

c) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is
prepared online.

d) If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected with
SRM_INVALID_REQUEST.

e) Access latency must be ONLINE always.
f) Input parameter TAccessPattern is provided at the request-level, and all files will

have the same access pattern.
g) TAccessPattern may conflict with the type of the target space associated with

target space token, when both provided. In this case, TAccessPattern in the input
parameter TTransferParameters must be ignored.

h) The userRequestDescription is a user designated name for the request. It can be
used in the srmGetRequestID function to get back the system assigned request
tokens.

i) Only pull mode is supported for file transfers that client must pull the files from
the TURL within the expiration time (remainingPinTime).

j) Input parameter desiredPinLifetime is for a client preferred lifetime (expiration
time) on the prepared TURL.

k) If request is accepted, SRM assigns the requestToken for asynchronous status
checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

l) totalRequestTime means: All the file transfer for this request must be complete
within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the status code with individual file status of
SRM_REQUEST_SUSPENDED.

m) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

n) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

o) SRM server may terminate the timed-out request after a certain period of time.

 - 50 -

p) If totalRequestTime is 0 (zero), SRM server must continues the request until
completed.

q) The invocation of srmReleaseFile() is expected for finished files later on.
r) The returned request token should be valid until all files in the request are

released or removed.

5.1.2. Return Status Code

SRM_SUCCESS
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 arrayOfFileRequest is empty
 If both input parameters TSpaceToken and TRetentionPolicyInfo are

provided, then their types must match exactly.
 Access latency is something other than ONLINE.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free. When

client does not specify the targetSpaceToken, SRM uses a default
space. The default space is not sufficient to accommodate the request.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_INTERNAL_ERROR

 - 51 -

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

5.2. srmStatusOfGetRequest

This function is used to check the status of the previously requested srmPrepareToGet.
Request token from srmPrepareToGet must be provided.

Input srmStatusOfGetRequestRequest
Output srmStatusOfGetRequestResponse

Name type Min Max

srmStatusOfGetRequestRequest TRequestToken requestToken
TUserID authorizationID
ArrayOfTSURL arrayOfSourceSURLs

1
0
0

1
1
1

srmStatusOfGetRequestResponse TReturnStatus returnStatus
ArrayOfTGetRequestFileStatus arrayOfFileStatuses
TLifeTimeInSeconds remainingTotalRequestTime

1
0
0

1
1
1

5.2.1. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) If arrayOfSourceSURLs is not provided, SRM must return status for all file
requests in the request that is associated with the request token.

c) When the file is ready and TURL is prepared, the return status code should be
SRM_FILE_PINNED.

d) When the file is ready for the client, the file is implicitly pinned in the cache and
lifetime will be enforced.

e) If any of the request files is temporarily unavailable,
SRM_FILE_UNAVAILABLE must be returned for the file.

f) If any of the request files is permanently lost, SRM_FILE_LOST must be
returned for the file.

g) The file request must fail with an error SRM_FILE_BUSY if srmPrepareToGet
requests for files which there is an active srmPrepareToPut (no srmPutDone is not
yet called) for.

h) SRM must fail (SRM_FAILURE) only if all files in the request failed.
i) totalRequestTime means: All the file transfer for this request must be complete

within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the status code with individual file status of
SRM_REQUEST_SUSPENDED.

j) If totalRequestTime is 0 (zero), SRM server must continues the request until
completed.

 - 52 -

k) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

l) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

m) SRM server may terminate the timed-out request after a certain period of time.

5.2.2. Return Status Code
For request level return status,

SRM_SUCCESS
 all file requests are successfully completed. All SURLs are

successfully pinned. For TURLs, file level status needs to be checked.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue
SRM_PARTIAL_SUCCESS

 All requests are completed. Some file request is successfully pinned,
and some file request is failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_ABORTED
 The request has been aborted.

 - 53 -

SRM_REQUEST_TIMED_OUT
 Total request time is over and the request is suspended.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_FILE_PINNED
 successful request completion for the SURL. SURL is successfully

pinned, and TURL is available for access.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.
SRM_REQUEST_SUSPENDED

 The requested file has been suspended because the request has timed
out.

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
SRM_FILE_UNAVAILABLE

 the requested file is temporarily unavailable.
SRM_INVALID_PATH

 SURL does not refer to an existing known file request that is associated
with the request token

SRM_AUTHORIZATION_FAILURE
 client is not authorized to retrieve the file that is associated with the

SURL
SRM_FILE_IN_CACHE

 pin lifetime has expired, but the file is still in the cache.
SRM_FILE_LIFETIME_EXPIRED

 SURL is expired
 TURL is expired

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.3. srmBringOnline

 - 54 -

This function is used to bring files online upon the client’s request so that client can make
certain data readily available for future access. In hierarchical storage systems, it is
expected to “stage” files to the top hierarchy and make sure that the files stay online for a
certain period of time. When client specifies target space token which must be referred to
an online space, the files will be brought online using the space associated with the space
token. It is an asynchronous operation, and request token must be returned if
asynchronous operation is necessary in SRM. The status may be checked through
srmStatusOfBringOnlineRequest with the returned request token.
This function is similar to srmPrepareToGet, but it does not return Transfer URL
(TURL).

Input srmBringOnlineRequest
Output srmBringOnlineResponse

Name type Min Max

srmBringOnlineRequest TUserID authorizationID
ArrayOfTGetFileRequest arrayOfFileRequests
xsd:string userRequestDescription
ArrayOfTExtraInfo storageSystemInfo
TFileStorageType desiredFileStorageType
TLifeTimeInSeconds desiredTotalRequestTime
TLifeTimeInSeconds desiredLifetime
TSpaceToken targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferParameters transferParametersHint
TLifeTimeInSeconds deferredStartTime

0
1
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1

srmBringOnlineResponse TReturnStatus returnStatus
TRequestToken requestToken
TLifeTimeInSeconds remainingTotalRequestTime
TLifeTimeInSeconds remainingDeferredStartTime

1
0
0
0

1
1
1
1

5.3.1. Notes on the Behavior

a) Input parameter deferredStartTime is to support CE-SE resource co-allocation and
tape mounting efficiency. It means that client does not intent to use the files
before that time. If SRM decides not to bring any files until deferredStartTime is
reached, SRM_REQUEST_QUEUED must be returned.

b) Output parameter remainingDeferredStartTime indicates how long the
deferredStartTime is left, if supported.

c) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is
brought online.

d) If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected, and
SRM_INVALID_REQUEST will be returned.

 - 55 -

e) TAccessPattern may conflict with the type of the target space associated with
target space token, when both provided. In this case, TAccessPattern in the input
parameter TTransferParameters must be ignored.

f) If the transfer protocol hints are not specified, default is assumed to be processing
mode and LAN access for the site.

g) Access latency must be ONLINE always.
h) It is up to the SRM implementation to decide TConnectionType if not provided.
i) The userRequestDescription is a user designated name for the request. It can be

used in the srmGetRequestID method to get back the system assigned request ID.
j) Input parameter desiredLifetime is for a client preferred lifetime (expiration time)

on the file “copies (or “states”) of the SURLs that will be “brought online” into
the target space that is associated with the targetSpaceToken.

k) This call may be an asynchronous (non-blocking) call, and SRM assigns the
requestToken when the request is valid and accepted. The returned status code
should be SRM_REQUEST_QUEUED. To get subsequent status and results,
separate calls should be made through srmStatusOfBringOnline.

l) The returned request token should be valid until all files in the request are
released, removed or aborted.

m) Input parameter totalRequestTime means: All the file transfer for this request
must be complete within this totalRequestTime. Otherwise,
SRM_REQUEST_TIMED_OUT must be returned as the status code with
individual file status of SRM_REQUEST_SUSPENDED.

n) If totalRequestTime is 0 (zero), SRM server must continues the request until
completed.

o) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

p) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

q) SRM server may terminate the timed-out request after a certain period of time.
r) When srmAbortRequest is requested for srmBringOnline request, the request gets

aborted, but those files that are brought online will remain in the space where they
are brought in, and are not removed. Clients need to remove those files through
srmPurgeFromSpace or srmRm.

5.3.2. Return Status Code

SRM_SUCCESS
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST

 - 56 -

 arrayOfFileRequest is empty
 Access latency refers to something other than ONLINE.
 If both input parameters TSpaceToken and TRetentionPolicyInfo are

provided, then their types must match exactly.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 deferredStartTime is not supported in the SRM server.
 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.4. srmStatusOfBringOnlineRequest

This function is used to check the status of the previous request to srmBringOnline, when
asynchronous operation is necessary in the SRM. Request token must have been provided
in response to the srmBringOnline.

Input srmStatusOfBringOnlineRequestRequest
Output srmStatusOfBringOnlineRequestResponse

Name type Min Max

srmStatusOfBringOnline
RequestRequest

TRequestToken requestToken
TUserID authorizationID
ArrayOfTSURL arrayOfSourceSURLs

1
0
0

1
1
1

srmStatusOfBringOnline TReturnStatus returnStatus 1 1

 - 57 -

RequestResponse ArrayOfTBringOnlineRequestFileStatus arrayOfFileStatuses
TLifeTimeInSeconds remainingTotalRequestTime
TLifeTimeInSeconds remainingDeferredStartTime

0
0
0

1
1
1

5.4.1. Notes on the Behavior

a) If arrayOfSourceSURLs is not provided, returns status for all files in this request.
b) When the file is ready online, the return status code should be

SRM_FILE_IN_CACHE.
c) Output parameter remainingDeferredStartTime indicates how long the

deferredStartTime is left, if supported.
d) When the file is ready for the client, the file is implicitly pinned in the cache and

lifetime will be enforced.
e) If any of the request files is temporarily unavailable,

SRM_FILE_UNAVAILABLE must be returned for the file.
f) If any of the request files is permanently lost, SRM_FILE_LOST must be

returned for the file.
g) The file request must fail with an error SRM_FILE_BUSY if srmBringOnline

requests for files which there is an active srmPrepareToPut (no srmPutDone is not
yet called) for.

h) SRM must fail (SRM_FAILURE) only if all files in the request failed.
i) Input parameter totalRequestTime means: All the file transfer for this request

must be complete within this totalRequestTime. Otherwise,
SRM_REQUEST_TIMED_OUT must be returned as the status code with
individual file status of SRM_REQUEST_SUSPENDED.

j) If totalRequestTime is 0 (zero), SRM server just continues the request until
completed.

k) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

l) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

m) SRM server may terminate the timed-out request after a certain period of time.
n) If SRM decides not to bring any files until input parameter deferredStartTime is

reached, SRM_REQUEST_QUEUED must be returned.

5.4.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are successfully

brought online.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are not completed yet.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some files are successfully brought online,
and some files are failed. Details are on the files status.

 - 58 -

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 deferredStartTime is not supported in the SRM server.
 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold all requested SURLs for free.
SRM_ABORTED

 The request has been aborted.
SRM_REQUEST_TIMED_OUT

 Total request time is over and the request is suspended.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. SURL is successfully
brought online.

SRM_REQUEST_QUEUED
 file request is still on the queue.

SRM_REQUEST_INPROGRESS
 file request is being served.

SRM_FILE_IN_CACHE
 pin lifetime has expired, but the file is still in the cache.

 - 59 -

SRM_AUTHORIZATION_FAILURE
 client is not authorized to retrieve the file that is associated with the

SURL
SRM_REQUEST_SUSPENDED

 The requested file has been suspended because the request has timed
out.

SRM_ABORTED
 The requested file has been aborted.

SRM_RELEASED
 The requested file has been released.

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
SRM_FILE_UNAVAILABLE

 the requested file is temporarily unavailable.
SRM_INVALID_PATH

 SURL does not refer to an existing known file request that is associated
with the request token

SRM_FILE_LIFETIME_EXPIRED
 SURL is expired

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.5. srmPrepareToPut

This function is used to write files into the storage. Upon the client’s request, SRM
prepares a TURL so that client can write data into the TURL. Lifetime (pinning
expiration time) is assigned on the TURL. When a specified target space token is
provided, the files will be located finally in the targeted space associated with the target
space token. It is an asynchronous operation, and request token must be returned if the
request is valid and accepted to the SRM. The status may be checked through
srmStatusOfPutRequest with the returned request token.

Input srmPrepareToPutRequest
Output srmPrepareToPutResponse

Name type Min Max

srmPrepareToPutRequest TUserID authorizationID
ArrayOfTPutFileRequest arrayOfFileRequests
xsd:string userRequestDescription
TOverwriteMode overwriteOption
ArrayOfTExtraInfo storageSystemInfo
TLifeTimeInSeconds desiredTotalRequestTime

0
1
0
0
0
0

1
1
1
1
1
1

 - 60 -

TLifeTimeInSeconds desiredPinLifetime
TLifeTimeInSeconds desiredFileLifetime
TFileStorageType desiredFileStorageType
TSpaceToken targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferParameters transferParametersHint

0
0
0
0
0
0

1
1
1
1
1
1

srmPrepareToPutResponse TReturnStatus returnStatus
TRequestToken requestToken
TLifeTimeInSeconds remainingTotalRequestTime

1
0
0

1
1
1

5.5.1. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) TURL returned by the srmPrepareToPut may not be used for read access with any
protocol. An explicit srmPrepareToGet or srmBringOnline is required.

c) TAccessPattern may conflict with the type of the target space associated with
target space token, when both provided. In this case, TAccessPattern in the input
parameter TTransferParameters must be ignored.

d) Input parameter TSpaceToken is provided at the request-level, and all files in the
request will end up in the space that is associated with the target space token if the
space is enough for all files.

e) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is written
into the target storage system.

f) If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected and
SRM_INVALID_REQUEST must be returned.

g) Only push mode is supported for file transfers that client must “push” the file to
the prepared TURL.

h) Input parameter targetSURL in the TPutFileRequest has to be local to SRM. If
targetSURL is not specified, SRM will make a reference for the file request
automatically and put it in the specified user space if provided. This reference
SURL will be returned along with the “Transfer URL”.

i) srmPutDone() is expected after each file is “put” into the prepared TURL.
j) Input parameter desiredPinLifetime is the lifetime (expiration time) on the TURL

when the Transfer URL is prepared. It does not refer to the lifetime of the SURL.
k) Input parameter desiredFileLifetime is the lifetime of the SURL when the file is

put into the storage system. It does not refer to the lifetime (expiration time) of the
TURL.

l) The lifetime of the SURL starts as soon as SRM receives the srmPutDone(). If
srmPutDone() is not provided, then the files in that space are subject to removal
when the lifetime on the TURL expires or the lifetime on the space expires. The
lifetime on the TURL can be found in the status of the file request as output
parameter remainingPinTime in TPutRequestFileStatus.

 - 61 -

m) If request is accepted, SRM assigns the requestToken for asynchronous status
checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

n) Input parameter totalRequestTime means: All the file transfer for this request
must be complete within this totalRequestTime. Otherwise,
SRM_REQUEST_TIMED_OUT must be returned as the status code with
individual file status of SRM_REQUEST_SUSPENDED.

o) If totalRequestTime is 0 (zero), SRM server must continues the request until
completed.

p) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

q) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

r) SRM server may terminate the timed-out request after a certain period of time.

5.5.2. Return Status Code

SRM_SUCCESS
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 If both input parameters TSpaceToken and TRetentionPolicyInfo are

provided, then their types must match exactly.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot

 - 62 -

support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 None of the file transfer protocols are supported in the SRM server.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

5.6. srmStatusOfPutRequest

This function is used to check the status of the previously requested srmPrepareToPut.
Request token from srmPrepareToPut must be provided.

Input srmStatusOfPutRequestRequest
Output srmStatusOfPutRequestResponse

Name type Min Max

srmStatusOfPutRequestRequest TRequestToken requestToken
TUserID authorizationID
ArrayOfTSURL arrayOfTargetSURLs

1
0
0

1
1
1

srmStatusOfPutRequestResponse TReturnStatus returnStatus
ArrayOfTPutRequestFileStatus arrayOfFileStatuses
TLifeTimeInSeconds remainingTotalRequestTime

1
0
0

1
1
1

5.6.1. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) If arrayOfTargetSURLs is not provided, returns status for all the file requests in
this request.

c) When the space is ready for client to “put” data and TURL is prepared, the return
status code should be SRM_SPACE_AVAILABLE.

d) When the file space is ready for the client, the TURL is available in the cache and
pin lifetime on the TURL will be enforced.

e) If a targetSURL is provided with some directory structure, the directory structure
must exist, and SRM will not create the directory structure for the targetSURL. In
such case, SRM_INVALID_PATH must be returned. srmMkdir may be used to
create the directory structure.

f) If the space for the requested files is full, and TURL cannot be returned, then
SRM_EXCEED_ALLOCATION, SRM_NO_USER_SPACE, or
SRM_NO_FREE_SPACE must be returned for the files.

g) SRM must fail (SRM_FAILURE) only if all files in the request failed.
h) Input parameter totalRequestTime means: All the file transfer for this request

must be complete within this totalRequestTime. Otherwise,

 - 63 -

SRM_REQUEST_TIMED_OUT must be returned as the status code with
individual file status of SRM_REQUEST_SUSPENDED.

i) If totalRequestTime is 0 (zero), SRM server must continues the request
until completed.

j) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

k) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

l) SRM server may terminate the timed-out request after a certain period of time.

5.6.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. For all SURLs, spaces are

allocated, and TURLs are prepared.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue
SRM_PARTIAL_SUCCESS

 All requests are completed. For some file requests, the spaces are
allocated and TURLs are prepared, but for some file requests, it is
failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 targetSpaceToken that client provided does not refer to an existing

space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free.

SRM_REQUEST_TIMED_OUT
 Total request time is over and the request is suspended.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED

 - 64 -

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 None of the file transfer protocols are supported in the SRM server.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SPACE_AVAILABLE

 successful request completion for the “put” request. The space is
allocated, and TURL is prepared.

SRM_REQUEST_QUEUED
 file request is still on the queue.

SRM_REQUEST_INPROGRESS
 file request is being served.

SRM_DONE
 Client’s file transfer into TURL is completed, and srmPutDone on the

targetSURL is completed. The file is now in the cache and lifetime on
the targetSURL is started.

SRM_FILE_IN_CACHE
 lifetime on SURL has expired, but the file is still in the cache.

SRM_INVALID_PATH
 targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR
 targetSURL refers to an existing SURL without no overwriting option.

SRM_AUTHORIZATION_FAILURE
 client is not authorized to retrieve the file that is associated with the

SURL
SRM_REQUEST_SUSPENDED

 The requested file has been suspended because the request has timed
out.

SRM_ABORTED
 The requested file has been aborted.

SRM_RELEASED
 The requested file has been released.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.7. srmCopy

This function is used to copy files from source storage sites into the target storage sites.
The source storage site or the target storage site needs to be the SRM itself that the client

 - 65 -

makes the srmCopy request. If both source and target are local to the SRM, it performed a
local copy. There are two cases for remote copies: 1. Target SRM is where client makes a
srmCopy request (PULL case), 2. Source SRM is where client makes a srmCopy request
(PUSH case).

1. PULL case: Upon the client’s srmCopy request, the target SRM makes a space at
the target storage, and makes a request srmPrepareToGet to the source SRM.
When TURL is ready at the source SRM, the target SR M transfers the file from
the source TURL into the prepared target storage. After the file transfer
completes, srmReleaseFiles is issued to the source SRM.

2. PUSH case: Upon the client’s srmCopy request, the source SRM prepares a file to
be transferred out to the target SRM, and makes a request srmPrepareToPut to the
target SRM. When TURL is ready at the target SRM, the source SRM transfers
the file from the prepared source into the prepared target TURL. After the file
transfer completes, srmPutDone is issued to the target SRM.

When specified target space token is provided, the files will be located finally in the
targeted space associated with the space token. It is an asynchronous operation, and
request token must be returned. The status may be checked through
srmStatusOfCopyRequest with the returned request token.

Input srmCopyRequest
Output srmCopyResponse

Name type Min Max

srmCopyRequest TUserID authorizationID
ArrayOfTCopyFileRequest arrayOfFileRequests
xsd:string userRequestDescription
TOverwriteMode overwriteOption
TLifeTimeInSeconds desiredTotalRequestTime
TLifeTimeInSeconds desiredTargetSURLLifetime
TFileStorageType targetFileStorageType
TSpaceToken targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo

0
1
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

srmCopyResponse TReturnStatus returnStatus
TRequestToken requestToken
TLifeTimeInSeconds remainingTotalRequestTime

1
0
0

1
1
1

5.7.1. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of “fileType” is
Volatile.

b) When aborted, target SURLs need to be provided.
c) Input parameter TSpaceToken is provided at the request-level, and all files in the

request will end up in the space that is associated with the target space token.
d) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to

specify the desired retention policy information on the file when the file is written
into the target storage system.

 - 66 -

e) If both input parameters TSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly. Otherwise, the request may be rejected, and
SRM_INVALID_REQUEST must be returned.

f) If request is accepted, SRM assigns the requestToken for asynchronous status
checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

g) Pull mode: copy from remote location to the SRM. (e.g. from remote to MSS.)
h) Push mode: copy from the SRM to remote location.
i) Always release files through srmReleaseFiles from the source after copy is done,

if source is an SRM and PULL mode was performed.
j) Always issue srmPutDone to the target after copy is done, if target is an SRM and

PUSH mode was performed.
k) Note there is no protocol negotiation with the client for this request.
l) Input parameter desiredTotalRequestTime means: if all the file transfer for this

request must be complete in this desiredTotalRequestTime. Otherwise, the request
is returned as failed at the end of the desiredTotalRequestTime, and
SRM_REQUEST_TIMED_OUT must be returned as the status code with
individual file status of SRM_REQUEST_SUSPENDED. All completed files
must not be removed, but status of the files must be returned to the client.

m) If totalRequestTime is 0 (zero), SRM server must continues the request until
completed.

n) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

o) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

p) SRM server may terminate the timed-out request after a certain period of time.
q) When both sourceSURL and targetSURL are local, local copy must be performed.
r) Empty directories are copied as well.
s) If a targetSURL is provided with some directory structure, the directory structure

must exist, and SRM will not create the directory structure for the targetSURL. In
such case, SRM_INVALID_PATH must be returned. srmMkdir may be used to
create the directory structure.

t) If the sourceSURL and targetSURL are provided as directories (copying
directories) when SRM implementation supports, then all sub directories will be
copied over from the source to the target, and complete sub-directory structure
will be created only if TDirOption indicates them.

5.7.2. Return Status Code

SRM_SUCCESS
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned.

SRM_AUTHENTICATION_FAILURE

 - 67 -

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to submit the request
 Client is not authorized to copy files into the space that client provided

with targetSpaceToken or targetFileRetentionPolicyInfo
SRM_INVALID_REQUEST

 If both input parameters TSpaceToken and TRetentionPolicyInfo are
provided, then their types must match exactly.

 targetSpaceToken does not refer to an existing known space in the
SRM server.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold all requested SURLs for free.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested desiredFileStorageType that is not supported by the
SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server
 function is not supported in the SRM server

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.8. srmStatusOfCopyRequest

This function is used to check the status of the previously requested srmCopy. Request
token from srmCopy must be provided.

Input srmStatusOfCopyRequestRequest
Output srmStatusOfCopyRequestResponse

 - 68 -

Name type Min Max

srmStatusOfCopyRequestRequest TRequestToken requestToken
TUserID authorizationID
ArrayOfTSURL arrayOfSourceSURLs
ArrayOfTSURL arrayOfTargetSURLs

1
0
0
0

1
1
1
1

srmStatusOfCopyRequestResponse TReturnStatus returnStatus
ArrayOfTCopyRequestFileStatus arrayOfFileStatuses
TLifeTimeInSeconds remainingTotalRequestTime

1
0
0

1
1
1

5.8.1. Notes on the Behavior

a) If arrayOfSourceSURLs and/or arrayOfTargetSURLs are not provided, return
status for all file requests in the request.

b) If the target space for the requested files is full, then
SRM_EXCEED_ALLOCATION, SRM_NO_USER_SPACE, or
SRM_NO_FREE_SPACE must be returned.

c) SRM must fail (SRM_FAILURE) only if all files in the request failed.
d) totalRequestTime means: All the file transfer for this request must be complete

within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the status code with individual file status of
SRM_REQUEST_SUSPENDED.

e) If totalRequestTime is 0 (zero), SRM server must continues the request until
completed.

f) Client may use srmResumeRequest() to resume the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

g) Client must use srmAbortRequest() to terminate the request in the status of
SRM_REQUEST_TIMED_OUT because of the totalRequestTime.

h) SRM server may terminate the timed-out request after a certain period of time.

5.8.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All source SURLs are copied

into the target destination successfully.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 Some files are completed, and some files are still on the queue. Details
are on the files status.

SRM_PARTIAL_SUCCESS
 All requests are completed. Some file request is successfully copied

into the target destination, and some file request is failed. Details are
on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

 - 69 -

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_TOO_MANY_RESULTS

 Request produced too many results that SRM server cannot handle,
and arrayOfSourceURLs and arrayOfTargetURLs cannot fit the
results to return.

SRM_REQUEST_TIMED_OUT
 Total request time is over and the request is suspended.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 Insufficient space left in the space that is associated with spaceToken.
SRM_NO_FREE_SPACE

 When client does not specify the spaceToken, SRM uses a default
space. The default space is insufficient to accommodate the request.

SRM_ABORTED
 The request has been aborted.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Overwrite option is not supported in the SRM server.
 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server
 function is not supported in the SRM server

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_DONE

 - 70 -

 successful request completion for the file. The source SURL is copied
into the target destination targetSURL successfully, and lifetime on the
targetSURL is started.

SRM_REQUEST_QUEUED
 file request is still on the queue.

SRM_REQUEST_INPROGRESS
 file request is being served.

SRM_FILE_LOST
 the request file (sourceSURL) is permanently lost.

SRM_FILE_BUSY
 client requests for files at the source (sourceSURL) which there is an

active srmPrepareToPut (no srmPutDone is not yet called) for.
SRM_FILE_UNAVAILABLE

 the request file (sourceSURL) is temporarily unavailable.
SRM_FILE_IN_CACHE

 lifetime on targetSURL has expired, but the file is still in the cache.
SRM_INVALID_PATH

 sourceSUR does not exist
 targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR
 targetSURL refers to an existing SURL without no overwriting option.

SRM_AUTHORIZATION_FAILURE
 Client is not authorized to copy files from sourceSURL
 Client is not authorized to copy files into targetSURL
 Client is not authorized to copy files into the space that client provided

with targetSpaceToken or targetFileRetentionPolicyInfo
SRM_REQUEST_SUSPENDED

 The requested file has been suspended because the request has timed
out.

SRM_ABORTED
 The requested file has been aborted.

SRM_RELEASED
 The requested file has been released.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.9. srmReleaseFiles

This function is used to release pins on the previously requested “copies” (or “state”) of
the SURL. This function normally follows srmPrepareToGet or srmBringOnline
functions.

Input srmReleaseFilesRequest
Output srmReleaseFilesResponse

 - 71 -

Name type Min Max

srmReleaseFilesRequest TRequestToken requestToken
TUserID authorizationID
ArrayOfTSURL arrayOfSURLs
xsd:boolean doRemove

0
0
1
0

1
1
1
1

srmReleaseFilesResponse TReturnStatus returnStatus
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0

1
1

5.9.1. Notes on the Behavior

a) doRemove by default is false. If remove is true, the pin on the file is released, the
“copy” or “state” is removed and SRM may release the resource.

b) Directory is okay for SURL. In such case, it will release all files recursively in the
directory.

c) If requestToken is not provided, then the SRM will release all the files specified
by the SURLs owned by this user, regardless of the requestToken.

d) If requestToken is not provided, then authorizationID is needed. It may be
inferred or provide in the call.

5.9.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are released

successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURLs are successfully released,
and some SURLs are failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to release files

SRM_INVALID_REQUEST
 arrayOfSURLs is empty.
 requestToken does not refer to an existing known request of

srmPrepareToGet or srmBringOnline in the SRM server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM
 input parameter doRemove is not supported in the SRM. srmRm must

be used.

For file level return status,
SRM_SUCCESS

 - 72 -

 successful request completion for the SURL. SURL is released
successfully.

SRM_INVALID_PATH
 SURL does not refer to an existing file

SRM_AUTHORIZATION_FAILURE
 client is not authorized to release SURL

SRM_LAST_COPY
 SURL is the last copy when remove flag is on

SRM_FILE_LIFETIME_EXPIRED
 SURL is expired already.

SRM_REQUEST_SUSPENDED
 The requested file has been suspended because the request has timed

out.
SRM_ABORTED

 The requested file has been aborted.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

5.10. srmPutDone

srmPutDone() is used to notify the SRM that the client completed a file transfer to the
TransferURL in the allocated space. This call should normally follow srmPrepareToPut.

Input srmPutDoneRequest
Output srmPutDoneResponse

Name type Min Max

srmPutDoneRequest TRequestToken requestToken
TUserID authorizationID
ArrayOfTSURL arrayOfSURLs

1
0
1

1
1
1

srmPutDoneResponse TReturnStatus returnStatus
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0

1
1

5.10.1. Notes on the Behavior

a) Called by client after srmPrepareToPut() prepares the TURL and the client
completes the file transfer into the prepared TURL.

5.10.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. TURLs contain data, and file

lifetimes on the SURLs start.
SRM_PARTIAL_SUCCESS

 - 73 -

 All requests are completed. Some file requests are successfully
completed, and some file requests are failed. Details are on the files
status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to call the request specified by the

requestToken
SRM_INVALID_REQUEST

 arrayOfSURLs is empty.
 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_REQUEST_TIMED_OUT

 Total request time is over and the request is suspended.
SRM_ABORTED

 The request has been aborted.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM

For file level return status,
SRM_DONE

 successful request completion of the “put done” for the targetSURL
SRM_INVALID_PATH

 SURL does not refer to an existing file request
SRM_AUTHORIZATION_FAILURE

 client is not authorized to call the request srmPutDone() on the SURL
SRM_FILE_LIFETIME_EXPIRED

 targetSURL has an expired TURL.
SRM_SPACE_LIFETIME_EXPIRED

 targetSURL has an expired space allocation.
SRM_REQUEST_SUSPENDED

 The requested file has been suspended because the request has timed
out.

SRM_ABORTED
 The requested SURL file has been aborted.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.11. srmAbortRequest

 - 74 -

srmAbortRequest() allows clients to prematurely terminate asynchronous requests of any
types. It may involve data transfer requests initiated by a call to srmPrepareToGet(),
srmBringOnline(), srmPrepareToPut() or srmCopy(). The effect of srmAbortRequest()
depends on the type of request. For data transfer request, the SRM will attempt a
complete cleanup of running transfers and files in intermediate state.

Input srmAbortRequestRequest
Output srmAbortRequestResponse

Name type Min Max

srmAbortRequestRequest TRequestToken requestToken
TUserID authorizationID

1
0

1
1

srmAbortRequestResponse TReturnStatus returnStatus 1 1

5.11.1. Notes on the Behavior

a) Terminate all files in the request regardless of the file state. Remove files from the
queue, and release cached files if a limited lifetime is associated with the file.
Expired files are released.

b) Those files that are brought online with unlimited lifetime will remain in the
space where they are brought in. and are not removed. Clients need to remove
explicitly through srmRm or srmPurgeFromSpace.

c) Abort must be allowed to all requests with requestToken.

5.11.2. Return Status Code

SRM_SUCCESS
 successful request completion. Request is aborted successfully.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to abort files in the request specified by the

requestToken
SRM_INVALID_REQUEST

 requestToken does not refer to an existing known request in the SRM
server.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

5.12. srmAbortFiles

srmAbortFiles() allows clients to abort selective file requests from the asynchronous
requests of any type. It may include data transfer requests initiated by a call to

 - 75 -

srmPrepareToGet(), srmBringOnline(), srmPrepareToPut(), or srmCopy(). The effect of a
srmAbortFiles() depends on the type of the request.

Input srmAbortFilesRequest
Output srmAbortFilesResponse

Name type Min Max

srmAbortFilesRequest TRequestToken requestToken
ArrayOfTSURL arrayOfSURLs
TUserID authorizationID

1
1
0

1
1
1

srmAbortFilesResponse TReturnStatus returnStatus
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0

1
1

5.12.1. Notes on the Behavior

a) Abort all files in this call regardless of the state.

5.12.2. Return Status Code
For request level return status,

SRM_SUCCESS
 successful request completion. All SURLs are aborted successfully.

SRM_PARTIAL_SUCCESS
 All requests are completed. Some SURLs ares successfully aborted,

and some SURLs are failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to abort files in the request specified by the
requestToken

SRM_INVALID_REQUEST
 arrayOfSURLs is empty.
 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. SURL is aborted
successfully.

SRM_INVALID_PATH

 - 76 -

 SURL does not refer to an existing file request that is associated with
the request token

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.13. srmSuspendRequest

srmSuspendedRequest is to suspend a previously submitted active request.

Input srmSuspendRequestRequest
Output srmSuspendRequestResponse

Name type Min Max

srmSuspendRequestRequest TRequestToken requestToken
TUserID authorizationID

1
0

1
1

srmSuspendRequestResponse TReturnStatus returnStatus 1 1

5.13.1. Notes on the Behavior

a) Suspend all files in this request until srmResumeRequest is issued.

5.13.2. Return Status Code

SRM_SUCCESS
 successful request completion. Request is suspended successfully.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to suspend the request specified by the

requestToken
SRM_INVALID_REQUEST

 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

5.14. srmResumeRequest

srmResumeRequest is to resume previously suspended requests or timed-out request.

Input srmResumeRequestRequest

 - 77 -

Output srmResumeRequestResponse

Name type Min Max

srmResumeRequestRequest TRequestToken requestToken
TUserID authorizationID

1
0

1
1

srmResumeRequestResponse TReturnStatus returnStatus 1 1

5.14.1. Notes on the Behavior

a) Resume the previously suspended request.
b) Resume the previously timed-out request which is in the state of

SRM_REQUEST_TIMED_OUT.

5.14.2. Return Status Code

SRM_SUCCESS
 successful request completion. Request is resumed successfully.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to resume the request specified by the

requestToken
SRM_INVALID_REQUEST

 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

5.15. srmGetRequestSummary

srmGetRequestSummary is to retrieve a summary of the previously submitted request.

Input srmGetRequestSummaryRequest
Output srmGetRequestSummaryResponse

Name type Min Max

srmGetRequestSummary
Request

ArrayOfTRequestToken arrayOfRequestTokens
TUserID authorizationID

1
0

1
1

srmGetRequestSummary
Response

TReturnStatus returnStatus
ArrayOfTRequestSummary arrayOfRequestSummaries

1
0

1
1

5.15.1. Return Status Code

 - 78 -

For request interface level return status,
SRM_SUCCESS

 All requests are successfully completed. All requests summaries are
checked and returned successfully. Details are on the request status.

SRM_PARTIAL_SUCCESS
 All requests are completed. Summaries of some requests are

successfully checked and returned, but some requests summaries are
failed. Details are on the request status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to get summary of the request specified by the

requestToken
SRM_INVALID_REQUEST

 arrayOfRequestTokens is empty.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 function is not supported in the SRM
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

For request level return status,

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
SRM_SUCCESS

 The request has been completed successfully.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue
SRM_REQUEST_TIMED_OUT

 Total request time is over and the request is suspended.
SRM_REQUEST_SUSPENDED

 The request has been suspended.
SRM_ABORTED

 The request has been aborted.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some request is successfully completed,
and some request is failed.

SRM_FAILURE
 The request is failed. Explanation needs to be filled for details.

5.16. srmExtendFileLifeTime

 - 79 -

srmExtendFileLifetime() allows clients to extend lifetime of existing SURLs of volatile
and durable file storage types or pinning lifetime of TURLs. Those TURLs are of the
results of srmPrepareToGet and srmPrepareToPut.

Input srmExtendFileLifeTimeRequest
Output srmExtendFileLifeTimeResponse

Name type Min Max

srmExtendFileLifeTimeRequest TUserID authorizationID
TRequestToken requestToken
ArrayOfTSURL arrayOfSURLs
TLifeTimeInSeconds newFileLifetime
TLifeTimeInSeconds newPinLifetime

0
0
0
0
0

1
1
1
1
1

srmExtendFileLifeTimeResponse TReturnStatus returnStatus
TLifeTimeInSeconds newExtendedFileLifetime
TLifeTimeInSeconds newExtendedPinLifetime
ArrayOfTSURLReturnStatus arrayOfFileStatuses

1
0
0
0

1
1
1
1

5.16.1. Notes on the Behavior

a) newPinLifetime and newFileLifetime are relative to the calling time. Lifetime will
be set from the calling time for the specified period.

b) If only requestToken is provided, and none of SURLs are not provided, lifetime of
all SURLs belong to the request that is associated with requestToken will have a
new lifetime.

c) When extending pinning lifetime of TURLs with newPinLifetime, requestToken
must be provided.

d) When extending lifetime of SURLs with newFileLifetime, requestToken is
optional.

e) The number of lifetime extensions maybe limited by SRM according to its
policies.

f) If original lifetime is longer than the requested one, then the requested one will be
assigned.

g) If newPinLifetime or newFileLifetime is not specified, the SRM can use its default
to assign the newPinLifetime or newFileLifetime.

h) Lifetime cannot be extended on the released files, aborted files, expired files, and
suspended files.

i) Extending file lifetime on SURL is similar to srmExtendFileLifetimeInSpace

5.16.2. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs or TURLs

associated with SURLs in the specified request have an extended
lifetime. Details are on the files status.

 - 80 -

SRM_PARTIAL_SUCCESS
 All requests are completed. Lifetimes on some SURLs or TURLs are

successfully extended, and lifetimes on some SURLs or TURLs are
failed to be extended. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to extend file lifetime

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 requestToken is not provided, and extending pinning lifetime of

TURLs associated with SURLs require requestToken.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL or TURL

associated with the SURL in the request has an extended lifetime.
SRM_INVALID_PATH

 SURL does not refer to an existing file
 SURL does not refer to an existing file request that is associated with

the request token
SRM_FILE_LIFETIME_EXPIRED

 Lifetime on SURL is expired already.
SRM_REQUEST_SUSPENDED

 The requested file has been suspended because the request has timed
out or because the request is suspended.

SRM_ABORTED
 The requested file has been aborted.

SRM_RELEASED
 The requested file has been released.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

5.17. srmGetRequestTokens

 - 81 -

srmGetRequestTokens retrieves request tokens for the client’s requests, given client
provided request description. This is to accommodate lost request tokens. This can also
be used for getting all request tokens.

Input srmGetRequestTokensRequest
Output srmGetRequestTokensResponse

Name type Min Max

srmGetRequestTokensRequest xsd:string userRequestDescription
TUserID authorizationID

0
0

1
1

srmGetRequestTokensResponse TReturnStatus returnStatus
ArrayOfTRequestTokenReturn arrayOfRequestTokens

1
0

1
1

5.17.1. Notes on the Behavior

a) If userRequestDescription is null, returns all requests this user has.
b) If the user assigned the same name to multiple requests, he may get back multiple

request IDs each with the time the request was made.

5.17.2. Return Status Code

SRM_SUCCESS
 successful request completion. Request tokens are returned

successfully.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is notauthorized to get request tokens specified by the
userRequestDescription

SRM_INVALID_REQUEST
 userRequestDescription does not refer to any existing known requests

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

 - 82 -

6. Discovery Functions – Message Types and Operations

summary:

srmGetTransferProtocols
srmPing

6.1. srmGetTransferProtocols

This function is to discover what transfer protocols are supported by the SRM.

Input srmGetTransferProtocolsRequest
Output srmGetTransferProtocolsResponse

Name type Min Max

srmGetTransferProtocolsRequest TUserID authorizationID 0 1
srmGetTransferProtocolsResponse TReturnStatus returnStatus

ArrayOfTSupportedTransferProtocol protocolInfo
1
0

1
1

6.1.1. Notes on the Behavior

a) srmGetTransferProtocols() returns the supported file transfer protocols in the
SRM with any additional information about the transfer protocol.

6.1.2. Return Status Code

SRM_SUCCESS
 successful request completion. List of supported transfer protocols are

returned successfully.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request storage information
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 function is not supported in the SRM
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

6.2. srmPing

This function is used to check the state of the SRM. It works as an “are you alive” type of
call.

 - 83 -

Input srmPingRequest
Output srmPingResponse

Name type Min Max

srmPingRequest TUserID authorizationID 0 1
srmPingResponse xsd:string versionInfo

ArrayOfTExtraInfo otherInfo
1
0

1
1

6.2.1. Notes on the Behavior

a) srmPing() returns a string containing SRM v2.2 version number as a minimal “up
and running” information. For this particular SRM v2.2 version, it must be
“v2.2”. Other versions may have “v1.1”, “v3.0”, and so on.

b) Any additional information about the SRM can be provided in the output
parameter otherInfo.

 - 84 -

7. Appendix

7.1. Status Code Specification

Note:

• Status codes represent errors, warnings and status.
• For each function, status codes are defined with basic meanings for the function.

Only those status codes are valid for the function. Specific cases are not stated for
each status code.

• If other status codes need to be defined for a specific function, send an email to
the collaboration to discuss the usage

 - 85 -

7.2. SRM WSDL discovery method

May 1, 2003

A) SURL format:
srm://host[:port]/[soap_end_point_path?SFN=]site_file_name

where […] means optional, and letters in bold are fixed.

We note if the SURL contains the soap_end_point_path, then it is not possible to change
the soap endpoint without changing all the previously published SURLs.

Example SURLs:

Without soap_end_point_path:
srm://dm.lbl.gov:4001/ABC/file_x

with soap_end_point_path:
srm://dm.lbl.gov:4001/srm_servlet?SFN=ABC/file_x

B) Given that soap-end-point-path clause is provided, then the soap endpoint is:
https://host[:port]/soap_end_point_path

C) If port is missing, the default port assumed is 8443, which is the port for https with
GSI.

The discussion below assumes no endpoint in the SURL, and shows how the soap
endpoints and wsdl can be found given an SURL

Issues:

1. We wish to have a way of finding the SRM WSDL for multiple versions from the
SURL.

2. We wish to support clients that know what SRM version they want to use. For

example, a client that uses version 1.1, should be able to got the WSDL and/or the
SOAP endpoint for it directly.

3. We wish to have a default where an SRM version number is not mentioned. The

version returned in this case is whatever the SRM currently supports, or if
multiple versions are supported, the SRM chooses what to return.

 - 86 -

4. We wish to allow a file accessed by a previous SRM version to be accessed by a
future SRM version without having to change the SURL. Furthermore, if the file
can be accessed by either version simultaneously (that depend on the SRM
implementation) that should be possible too.

5. We wish to have a way for a client to find out which version the SRM supports

and the endpoint without having to read the WSDL. This is necessary in a
changing world, where new version can be introduced.

6. We wish to have a client that can use multiple SRM versions to find out which

SRM version is supported by the SRM. This is probably the most realistic
scenario, since we cannot expect all SRMs to support the same version at any one
time.

7. We wish to have a client find out which SRM versions are supported for

accessing a particular file, in case that files can be accessed by multiple SRM
versions simultaneously. This is related to point 3 above.

This is a long wish list, but the proposed solution is simple. We assume that the WSDL
will contain the version number. First, we propose that every SRM WSDL starts with:
SRM version number--> (e.g. <!--SRM version 2.1.3-->)

Now, the solution is as follows:

Give an SURL: srm://host[:port]/path/file (e.g. srm://dm.lbl.gov:4001/ABC/file_x)
The following can be derived:

Case 1)
For clients that know what SRM versions they want to use:
https://host:port/srm/srm.version.wsdl
https://host:port/srm/srm.version.endpoint

For example, given the SURL above, and the client uses version 1.1, you derive:
https://dm.lbl.gov:4001/srm/srm.1.1.wsdl
https://dm.lbl.gov:4001/srm/srm.1.1.endpoint

Note: the endpoint returned can be any URI, e.g.:
https://gizmo.lbl.gov:10001/srm/v1.0
or: https://dm.lbl.gov:12345/servlet/srm.1.1)

Case 2)

For clients that don’t know the version, and want to use the default:
https://host:port/srm/srm.wsdl
https://host:port/srm/srm.endpoint

For the example above:
https://dm.lbl.gov:4001/srm/srm.wsdl

 - 87 -

https://dm.lbl.gov:4001/srm/srm.endpoint

Case 3)

For clients that want to find out the SRM version and endpoint without getting the
entire WSDL:
https://host:port/srm/srm.info

The srm.info file will contain:
<!--SRM version number-- --srmEndpoint-->
For example:
<!--SRM version 2.1.3-- -- https://gizmo.lbl.gov:10001/srm-->

Case 4)

For servers that support multiple srm version accessing the SAME file:
The same format as above repeating for each srm version.
For example:
<!--SRM version 1.1-- -- https://sdm.lbl.gov:5005/srm-->
<!--SRM version 2.1.3-- -- https://gizmo.lbl.gov:10001/srm-->

To summarize, the following is what should be supported for WSDL and endpoint
discovery:

Given an SURL:
srm://host[:port]/site_file_name

The following can be derived:

a) https://host[:port]/srm/srm[.version].wsdl
b) https://host[:port]/srm/srm[.version].endpoint
c) https://host[:port]/srm/srm.info
Where the content have the format repeated as many time as there are supported versions:
<!--SRM version number-- --srmEndpoint-->
