
 - 1 -

The Storage Resource Manager
Interface Specification

Version 2.2

15 December 2006

Collaboration Web: http://sdm.lbl.gov/srm-wg
Document Location: http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.pdf

Editors:
Alex Sim Lawrence Berkeley National Laboratory
Arie Shoshani Lawrence Berkeley National Laboratory

Contributors:

Timur Perelmutov
Don Petravick

Fermi National Accelerator Laboratory (FNAL), USA

Ezio Corso
Luca Magnoni

Istituto Nazionale di Fisica Nucleare (INFN), Italy
International Centre for Theoretical Physics (ICTO), Italy

Junmin Gu Lawrence Berkeley National Laboratory (LBNL), USA

Olof Barring
Jean-Philippe Baud
Flavia Donno
Maarten Litmaath

LHC Computing Project (LCG, CERN), Switzerland

Shaun De Witt
Jens Jensen

Rutherford Appleton Laboratory (RAL), England

Michael Haddox-Schatz
Bryan Hess
Andy Kowalski
Chip Watson

Thomas Jefferson National Accelerator Facility (TJNAF), USA

 - 2 -

Copyright Notice

© Copyright Lawrence Berkeley National Laboratory (LBNL), Fermi National
Accelerator Laboratory (FNAL), Jefferson National Accelerator Facility (JLAB),
Rutherford Appleton Laboratory (RAL) and European Organization for Nuclear
Research (CERN) 2000, 2001, 2002, 2003, 2004, 2005, 2006. All Rights Reserved.

Permission to copy and display this “The Storage Resource Manager Interface
Specification” (“this paper"), in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of this paper, or portions
thereof that
you make:
1. A link or URL to this paper at this location.
2. This Copyright Notice as shown in this paper.

THIS PAPER IS PROVIDED "AS IS," AND Lawrence Berkeley National Laboratory,
Fermi National Accelerator Laboratory, Jefferson National Accelerator Facility,
Rutherford Appleton Laboratory and European Organization for Nuclear Research
(COLLECTIVELY, THE “COLLABORATION”) MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT OR TITLE; THAT THE CONTENTS OF THIS PAPER ARE SUITABLE FOR
ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

THE COLLABORATION WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS PAPER.

The names and trademarks of the Collaboration may NOT be used in any manner,
including advertising or publicity pertaining to this paper or its contents, without
specific, written prior permission. Title to copyright in this paper will at all times
remain with the Collaboration.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS PAPER WERE PREPARED AS AN ACCOUNT OF WORK FUNDED BY
U.S. Department of Energy AT UNIVERSITY OF CALIFORNIA'S LAWRENCE BERKELEY
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CALIFORNIA,
NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,
OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, THE UNITED STATES GOVERNMENT OR ANY
AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR CONTRIBUTORS. THE
VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY

 - 3 -

STATE OR REFLECT THOSE OF THE UNITED STATES GOVERNMENT OR ANY AGENCY
THEREOF, OR THE ENTITY BY WHICH AN AUTHOR MAY BE EMPLOYED.

This paper preparation has been partially supported by the Office of Energy
Research, Office of Computational and Technology Research, Division of
Mathematical, Information, and Computational Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

 - 4 -

Table of Contents

Introduction .. 7
Meaning of terms .. 7
1. Common Type Definitions .. 9

1.1. File Storage Type ... 9
1.2. File Type ... 9
1.3. Retention Policy ... 9
1.4. Access Latency ... 9
1.5. Permission Mode .. 10
1.6. Permission Type ... 10
1.7. Request Type .. 10
1.8. Overwrite Mode ... 10
1.9. File Locality .. 10
1.10. Access Pattern .. 11
1.11. Connection Type .. 11
1.12. Status Codes ... 11
1.13. Retention Policy Info ... 12
1.14. Request Token .. 12
1.15. User Permission .. 13
1.16. Group Permission .. 13
1.17. Size in Bytes .. 13
1.18. UTC Time ... 13
1.19. Lifetime in Seconds .. 13
1.20. SURL ... 14
1.21. TURL .. 14
1.22. Return Status .. 14
1.23. Return Status for SURL .. 14
1.24. File MetaData ... 14
1.25. Space MetaData ... 15
1.26. Directory Option .. 16
1.27. Extra Info .. 16
1.28. Transfer Parameters .. 16
1.29. File Request for srmPrepareToGet .. 16
1.30. File Request for srmPrepareToPut .. 17
1.31. File Request for srmCopy ... 17
1.32. Return File Status for srmPrepareToGet .. 17
1.33. Return File Status for srmBringOnline ... 17
1.34. Return File Status for srmPrepareToPut .. 18
1.35. Return File Status for srmCopy ... 18
1.36. Request Summary .. 18
1.37. Return Status for SURL .. 19
1.38. Return File Permissions .. 19
1.39. Return Permissions on SURL ... 19
1.40. Return Request Tokens ... 19
1.41. Supported File Transfer Protocol... 19

 - 5 -

2. Space Management Functions ... 21
2.1. srmReserveSpace ... 21
2.2. srmStatusOfReserveSpaceRequest .. 23
2.3. srmReleaseSpace .. 25
2.4. srmUpdateSpace .. 26
2.5. srmStatusOfUpdateSpaceRequest .. 28
2.6. srmGetSpaceMetaData .. 29
2.7. srmChangeSpaceForFiles.. 31
2.8. srmStatusOfChangeSpaceForFilesRequest ... 33
2.9. srmExtendFileLifeTimeInSpace ... 36
2.10. srmPurgeFromSpace ... 37
2.11. srmGetSpaceTokens .. 39

3. Permission Functions ... 41
3.1. srmSetPermission ... 41
3.2. srmCheckPermission ... 42
3.3. srmGetPermission .. 43

4. Directory Functions ... 45
4.1. srmMkdir .. 45
4.2. srmRmdir.. 46
4.3. srmRm ... 46
4.4. srmLs ... 48
4.5. srmStatusOfLsRequest .. 50
4.6. srmMv ... 52

5. Data Transfer Functions .. 54
5.1. srmPrepareToGet .. 54
5.2. srmStatusOfGetRequest .. 58
5.3. srmBringOnline.. 61
5.4. srmStatusOfBringOnlineRequest ... 65
5.5. srmPrepareToPut .. 68
5.6. srmStatusOfPutRequest .. 73
5.7. srmCopy .. 76
5.8. srmStatusOfCopyRequest ... 81
5.9. srmReleaseFiles .. 84
5.10. srmPutDone .. 86
5.11. srmAbortRequest ... 88
5.12. srmAbortFiles ... 88
5.13. srmSuspendRequest ... 90
5.14. srmResumeRequest .. 90
5.15. srmGetRequestSummary .. 91
5.16. srmExtendFileLifeTime .. 93
5.17. srmGetRequestTokens .. 95

6. Discovery Functions ... 97
6.1. srmGetTransferProtocols .. 97
6.2. srmPing ... 97

7. Appendix .. 99
7.1. Status Code Specification .. 99

 - 6 -

7.2. SRM WSDL discovery method ... 100

 - 7 -

Introduction

This document contains the interface specification of SRM 2.2. It incorporates the
functionality of SRM 2.0 and SRM 2.1, but is much expanded to include additional
functionality, especially in the area of dynamic storage space reservation and directory
functionality in client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting in May 2006,
as well as email correspondence and conference calls. The purpose of this activity is to
further define the functionality and standardize the interface of Storage Resource
Managers (SRMs) – a Grid middleware component.

The document is organized in four sections. The first, called “Defined Structures”
contain all the type definitions used to define the functions (or methods). The next 5
sections contain the specification of “Space Management Functions”, “Permission
Functions”, “Directory Functions”, “Data Transfer Functions” and “Discovery
Functions”. All the “Discovery Functions” are newly added functions.

It is advisable to read the document SRM.v2.2.changes.doc posted at
http://sdm.lbl.gov/srm-wg before reading this specification.

Meaning of terms
By “https” we mean http protocol with GSI authentication. It may be represented as
“httpg”. At this time, any implementation of http with GSI authentication could be used.
It is advisable that the implementation is compatible with Globus Toolkit 3.2 or later
versions.

• Primitive types used below are consistent with XML build-in schema types: i.e.
o long is 64bit: (+/-) 9223372036854775807
o int is 32 bit: (+/-) 2147483647
o short is 16 bit: (+/-) 32767
o unsignedLong ranges (inclusive): 0 to18446744073709551615
o unsignedInt ranges (inclusive): 0 to 4294967295
o unsignedShort ranges (inclusive): 0 to 65535

• The definition of the type “anyURI” used below is compliant with the XML

standard. See http://www.w3.org/TR/xmlschema-2/#anyURI. It is defined as:
"The lexical space of anyURI is finite-length character sequences which, when
the algorithm defined in Section 5.4 of [XML Linking Language] is applied to
them, result in strings which are legal URIs according to [RFC 2396], as amended
by [RFC 2732]".

• In “localSURL”, we mean local to the SRM that is processing the request.

 - 8 -

• authorizationID : from the SASL RFC 2222
During the authentication protocol exchange, the mechanism performs
authentication, transmits an authorization identity (frequently known as a userid)
from the client to server…. The transmitted authorization identity may be
different than the identity in the client’s authentication credentials. This permits
agents such as proxy servers to authenticate using their own credentials, yet
request the access privileges of the identity for which they are proxying. With any
mechanism, transmitting an authorization identity of the empty string directs the
server to derive an authorization identity from the client’s authentication
credentials.

• Regarding file sharing by the SRM, it is a local implementation decision. An

SRM can choose to share files by proving multiple users access to the same
physical file, or by copying a file into another user’s space. Either way, if an
SRM chooses to share a file (that is, to avoid reading a file over again from the
source site) the SRM should check with the source site whether the user has a
read/write permission. Only if permission is granted, the file can be shared.

• The word “pinning” is limited to the “copies” or “states” of SURLs and the

Transfer URLs (TURLs).

• For each function, status codes are defined with basic meanings for the function.

Only those status codes are valid for the function. Specific cases are not stated for
each status code. If other status codes need to be defined for a specific function,
send an email to the collaboration to discuss the usage.

 - 9 -

1. Common Type Definitions

Namespace SRM

Notation: underlined attributes are REQUIRED.

1.1. File Storage Type
enum TFileStorageType {VOLATILE, DURABLE, PERMANENT}

o Volatile file has an expiration time and the storage may delete all traces of the

file when it expires.
o Permanent file has no expiration time.
o Durable file has an expiration time, but the storage may not delete the file, and

should raise error condition instead.

1.2. File Type
enum TFileType {FILE, DIRECTORY, LINK}

1.3. Retention Policy
enum TRetentionPolicy { REPLICA , OUTPUT , CUSTODIAL }

o Quality of Retention (Storage Class) is a kind of Quality of Service. It refers
to the probability that the storage system lose a file. Numeric probabilities are
self-assigned.

• Replica quality has the highest probability of loss, but is appropriate
for data that can be replaced because other copies can be accessed in a
timely fashion.

• Output quality is an intermediate level and refers to the data which can
be replaced by lengthy or effort-full processes.

• Custodial quality provides low probability of loss.
o The type will be used to describe retention policy assigned to the files in the

storage system, at the moments when the files are written into the desired
destination in the storage system. It will be used as a property of space
allocated through the space reservation function. Once the retention policy is
assigned to a space, the files put in the reserved space will automatically be
assigned the retention policy of the space. The assigned retention policy on
the file can be found thought the TMetaDataPathDetail structure returned by
the srmLs function.

1.4. Access Latency
enum TAccessLatency { ONLINE, NEARLINE }

o Files may be Online, Nearline or Offline. These terms are used to describe
how latency to access a file is improvable. Latency is improved by storage
systems replicating a file such that its access latency is online.

 - 10 -

• The ONLINE cache of a storage system is the part of the storage
system which provides file with online latencies.

• ONLINE has the lowest latency possible. No further latency
improvements are applied to online files.

• NEARLINE file can have their latency improved to online latency
automatically by staging the file to online cache.

• For completeness, we also describe OFFLINE here.
• OFFLINE files need a human to be involved to achieve online latency.
• For the SRM we only keep ONLINE and NEARLINE.

o The type will be used to describe a space property that access latency can be
requested at the time of space reservation. The content of the space, files may
have the same or “lesser” access latency as the space.

1.5. Permission Mode
enum TPermissionMode {NONE, X, W, WX, R, RX, RW, RWX}

1.6. Permission Type
enum TPermissionType {ADD, REMOVE, CHANGE}

1.7. Request Type
enum TRequestType { PREPARE_TO_GET,
 PREPARE_TO_PUT,
 COPY,
 BRING_ONLINE,
 RESERVE_SPACE,
 UPDATE_SPACE,
 CHANGE_SPACE_FOR_FILES,

LS
}

1.8. Overwrite Mode
enum TOverwriteMode {NEVER,

ALWAYS,
WHEN_FILES_ARE_DIFFERENT}

o Use case for WHEN_FILES_ARE_DIFFERENT can be that files are different

when the declared size for an SURL is different from the actual one, or that
the checksum of an SURL is different from the actual one.

1.9. File Locality
enum TFileLocality { ONLINE,

 NEARLINE,
ONLINE_AND_NEARLINE,
LOST,
NONE.
UNAVAILABLE }

 - 11 -

o Files may be located online, nearline or both. This indicates if the file is online

or not, or if the file reached to nearline or not. It also indicates if there are
online and nearline copies of the file.

• The ONLINE indicates that there is a file on online cache of a storage
system which is the part of the storage system, and the file may be
accessed with online latencies.

• The NEARLINE indicates that the file is located on nearline storage
system, and the file may be accessed with nearline latencies.

• The ONLINE_AND_NEARLINE indicates that the file is located on
online cache of a storage system as well as on nearline storage system.

• The LOST indicates when the file is lost because of the permanent
hardware failure.

• The NONE value shall be used if the file is empty (zero size).
• The UNAVAILABLE indicates that the file is unavailable due to the

temporary hardware failure.
o The type will be used to describe a file property that indicates the current

location or status in the storage system.

1.10. Access Pattern
enum TAccessPattern { TRANSFER_MODE, PROCESSING_MODE }

o TAccessPattern will be passed as an input parameter to the srmPrepareToGet
and srmBringOnline functions. It will make a hint from the client to SRM how
the Transfer URL (TURL) produced by SRM is going to be used. If the
parameter value is “ProcessingMode”, the system may expect that client
application will perform some processing of the partially read data, followed
by more partial reads and a frequent use of the protocol specific “seek”
operation. This will allow optimizations by allocating files on disks with small
buffer sizes. If the value is “TransferMode” the file will be read at the highest
speed allowed by the connection between the server and a client.

1.11. Connection Type
enum TConnectionType { WAN, LAN }

o TConnectionType indicates if the client is connected though a local or wide
area network. SRM may optimize the access parameters to achieve maximum
throughput for the connection type. This will be passed as an input to the
srmPrepareToGet, srmPrepareToPut and srmBringOnline functions.

1.12. Status Codes
enum TStatusCode { SRM_SUCCESS,

SRM_FAILURE,
 SRM_AUTHENTICATION_FAILURE,
 SRM_AUTHORIZATION_FAILURE,

 - 12 -

 SRM_INVALID_REQUEST,
 SRM_INVALID_PATH,
 SRM_FILE_LIFETIME_EXPIRED,
 SRM_SPACE_LIFETIME_EXPIRED,

SRM_EXCEED_ALLOCATION,
 SRM_NO_USER_SPACE,
 SRM_NO_FREE_SPACE,
 SRM_DUPLICATION_ERROR,
 SRM_NON_EMPTY_DIRECTORY,
 SRM_TOO_MANY_RESULTS,
 SRM_INTERNAL_ERROR,
 SRM_FATAL_INTERNAL_ERROR,
 SRM_NOT_SUPPORTED,
 SRM_REQUEST_QUEUED,
 SRM_REQUEST_INPROGRESS,
 SRM_REQUEST_SUSPENDED,
 SRM_ABORTED,
 SRM_RELEASED,
 SRM_FILE_PINNED,
 SRM_FILE_IN_CACHE,
 SRM_SPACE_AVAILABLE,
 SRM_LOWER_SPACE_GRANTED,
 SRM_DONE,
 SRM_PARTIAL_SUCCESS,
 SRM_REQUEST_TIMED_OUT,

SRM_LAST_COPY,
SRM_FILE_BUSY,
SRM_FILE_LOST,
SRM_FILE_UNAVAILABLE,
SRM_CUSTOM_STATUS
}

1.13. Retention Policy Info
typedef struct {
 TRetentionPolicy retentionPolicy,
 TAccessLatency accessLatency
 } TRetentionPolicyInfo

o TRetentionPolicyInfo is a combined structure to indicate how the file needs to
be stored.

o When both retention policy and access latency are provided, their combination
needs to match what SRM supports. Otherwise request will be rejected.

1.14. Request Token

 - 13 -

o The Request Token assigned by SRM is unique and immutable (non-
reusable). For example, if the date:time is part of the request token it will be
immutable.

o Request tokens are case-sensitive.
o Request token is valid until the request is completed. However, SRM server

may choose to keep the request tokens for a short period of time after the
request is completed, and the time period depends on the SRM servers.

1.15. User Permission
typedef struct { string userID,
 TPermissionMode mode

} TUserPermission

o userID may represent the associated client’s Distinguished Name (DN)
instead of unix style login name. VOMS role may be included.

1.16. Group Permission
typedef struct { string groupID,
 TPermissionMode mode

} TGroupPermission

o groupID may represent the associated client’s Distinguished Name (DN)
instead of unix style login name. VOMS role may be included.

1.17. Size in Bytes

o Size in bytes is represented in unsigned long.

1.18. UTC Time

o Time is represented in dateTime.
o Formerly TGMTTime in SRM v2.1
o date and time in Coordinated Universal Time (UTC, formerly GMT) with

no local time extention.
o Format is same as in XML dateTime type, except no local time extension

is allowed. E.g. 1999-05-31T13:20:00 is ok (for 1999 May 31st,
13:20PM, UTC) but 1999-05-31T13:20:00-5:00 is not.

1.19. Lifetime in Seconds

o Lifetime in seconds is represented in integer.
o “0” (zero) indicates the site defined default lifetime.
o A negative value (-1) indicates “infinite (indefinite)” lifetime.
o Exceptions:

 Any “remaining” lifetimes may have zero (0) second when no
lifetime is left.

 - 14 -

1.20. SURL

o The type definition SURL is represented as anyURI and used for both site
URL and the “Storage File Name” (stFN). This was done in order to
simplify the notation. Recall that stFN is the file path/name of the
intended storage location when a file is put (or copied) into an SRM
controlled space. Thus, a stFN can be thought of a special case of an
SURL, where the protocol is assumed to be “srm” and the machine:port is
assumed to be local to the SRM. For example, when the request srmCopy
is made as a pulling case, the source file is specified by a site URL, and
the target location can be optionally specified as a stFN. By considering
the stFN a special case of an SURL, a srmCopy takes SURLs as both the
source and target parameters.

1.21. TURL

o TURL is represented in anyURI.

1.22. Return Status
typedef struct {TStatusCode statusCode,
 string explanation

} TReturnStatus

1.23. Return Status for SURL
typedef struct {anyURI surl,
 TReturnStatus status

} TSURLReturnStatus

1.24. File MetaData

typedef struct {string path, // absolute dir and file path
 TReturnStatus status,
 unsigned long size, // 0 if directory
 dateTime createdAtTime,
 dateTime lastModificationTime,
 TFileStorageType fileStorageType,
 TRetentionPolicyInfo retentionPolicyInfo,
 TFileLocality fileLocality,
 string[] arrayOfSpaceTokens,
 TFileType type, // Directory or File
 int lifetimeAssigned,
 int lifetimeLeft, // on the SURL
 TUserPermission ownerPermission,
 TGroupPermission groupPermission,

 - 15 -

 TPermissionMode otherPermission,
 string checkSumType,
 string checkSumValue,

TMetaDataPathDetail[] arrayOfSubPaths
 // optional recursive

} TMetaDataPathDetail

o The TMetaDataPathDetail describes the properties of a file. It is used as an
output parameter in srmLs.

o retentionPolicyInfo indicates the assigned retention policy.
o fileLocality indicates where the file is located currently in the system.
o arrayOfSpaceTokens as an array of string indicates where the file is currently

located for the client. Only space tokens that the client has authorized to
access to read the file must be returned.

o Permissions on the SURL represent unix-like permissions: e.g. rwxr--r--.
o ownerPermission describes the owner ID and owner permission on the SURL.
o groupPermission describes the group permission with group identifier on the

SURL.
o otherPermission describes the other permission on the SURL.
o For ACL-like permissions, srmGetPermission must be used.
o lifetimeAssigned is the total lifetime that is assigned on the SURL. It includes

all SURL lifetime extensions if extended.
o lifetimeLeft is the remaining lifetime that is left on the SURL.

1.25. Space MetaData
typedef struct { string spaceToken,
 TReturnStatus status,
 TRetentionPolicyInfo retentionPolicyInfo,

string owner,
 unsigned long totalSize, // best effort

unsigned long guaranteedSize,
 unsigned long unusedSize,

 int lifetimeAssigned,
 int lifetimeLeft

} TMetaDataSpace

o TMetaDataSpace is used to describe properties of a space, and is used as an
output parameter in srmGetSpaceMetaData.

o retentionPolicyInfo indicates the information about retention policy and
access latency that the space is assigned. retentionPolicyInfo is requested and
assigned at the time of space reservation through srmReserveSpace and
srmStatusOfReserveSpaceRequest.

o TMetaDataSpace refers to a single space with retention policy. It does not
include the extra space needed to hold the directory structures, if there is any.

o lifetimeAssigned is the total lifetime that is assigned to the space. It includes
all space lifetime extensions if extended.

 - 16 -

o lifetimeLeft is the remaining lifetime that is left on the space.

1.26. Directory Option
typedef struct {Boolean isSourceADirectory,
 Boolean allLevelRecursive, // default = false
 int numOfLevels // default = 1

} TDirOption

1.27. Extra Info
typedef struct {string key,
 string value

} TExtraInfo

o TExtraInfo is used where additional information is needed, such as for
additional information for transfer protocols of TURLs in srmPing,
srmGetTransferProtocols, srmStatusOfGetRequest, and
srmStatusOfPutRequest. For example, when it is used for additional
information for transfer protocols, the keys may specify access speed,
available number of parallelism, and other transfer protocol properties.

o It is also used where additional information to the underlying storage system
is needed, such as for additional information, but not limited to, for storage
device, storage login ID, storage login authorization. Formerly, it was
TStorageSystemInfo.

1.28. Transfer Parameters
typedef struct {TAccessPattern accessPattern,
 TConnectionType connectionType,
 string[] arrayOfClientNetworks
 string[] arrayOfTransferProtocols

} TTransferParameters

o TTransferParameters is used where arrayOfTransferProtocols was used
previously in SRM v2.1.

o TTransferParameters may be provided optionally in the methods such as
srmPrepareToGet, srmBringOnline, srmPrepareToPut and srmReserveSpace.
Optional input parameters in TTransferParameters may collide with the
characteristics of the space specified. In this case, TTransferParameters as an
input parameter must be ignored.

o File transfer protocols are specified in a preferred order on all SRM transfer
functions.

o arrayOfClientNetworks is a hint of the client IPs that SRM/dCache can use for
optimization of its internal storage systems based on the client’s accessible IP
addresses.

1.29. File Request for srmPrepareToGet
typedef struct {anyURI sourceSURL,

 - 17 -

TDirOption dirOption,
} TGetFileRequest

1.30. File Request for srmPrepareToPut
typedef struct {anyURI targetSURL , // local to SRM
 unsigned long expectedFileSize

} TPutFileRequest

o If the optional targetSURL is provided, then the reference SURL is generated
by the SRM. Specific SRM implementation may require targetSURL as an
input parameter.

1.31. File Request for srmCopy
typedef struct {anyURI sourceSURL,
 anyURI targetSURL,

TDirOption dirOption
} TCopyFileRequest

1.32. Return File Status for srmPrepareToGet
typedef struct {anyURI sourceSURL,
 TReturnStatus status,
 unsigned long fileSize,
 int estimatedWaitTime,

int remainingPinTime,
anyURI transferURL,
TExtraInfo[] transferProtocolInfo

} TGetRequestFileStatus

o transferProtocolInfo of type TExtraInfo is added to the
TGetRequestFileStatus. This output parameter can be used to provide more
information about the transfer protocol so that client can access the TURL
efficiently.

o estimatedWaitTime to be negative value, -1, for unknown.
o remainingPinTime is the lifetime on the TURL, and 0 means it expired. If a

TURL has an indefinite lifetime, then negative value, -1, may be used.

1.33. Return File Status for srmBringOnline
typedef struct {anyURI sourceSURL,
 TReturnStatus status,
 unsigned long fileSize,
 int estimatedWaitTime,

int remainingPinTime,
} TBringOnlineRequestFileStatus

o estimatedWaitTime to be negative value, -1, for unknown.

 - 18 -

o remainingPinTime is the lifetime on the TURL, and 0 means it expired. If a
TURL has an indefinite lifetime, then negative value, -1, may be used.

1.34. Return File Status for srmPrepareToPut
typedef struct { anyURI SURL,
 TReturnStatus status,

unsigned long fileSize,
 int estimatedWaitTime,

int remainingPinLifetime // on TURL
int remainingFileLifetime // on SURL
anyURI transferURL,

 TExtraInfo[] transferProtocolInfo
} TPutRequestFileStatus

o transferProtocolInfo of type TExtraInfo is added to the TPutRequestFileStatus

to give clients more information about the prepared transfer protocol so that
client may use the information to make an efficient access to the prepared
TURL through the transfer protocol.

o estimatedWaitTime to be negative value, -1, for unknown.
o remainingPinTime is the lifetime on the TURL, and 0 means it expired. If a

TURL has indefinite lifetime, then negative value, -1, may be used.
o remainingFileLifetime is the lifetime on the SURL, and 0 means it expired. If

SURL has an indefinite lifetime, then negative value, -1, may be used.

1.35. Return File Status for srmCopy
typedef struct {anyURI sourceSURL,
 anyURI targetSURL,
 TReturnStatus status,
 unsigned long fileSize,
 int estimatedWaitTime,

int remainingFileLifetime
// on target SURL

} TCopyRequestFileStatus

o estimatedWaitTime to be negative value, -1, for unknown.
o remainingFileLifetime is the lifetime on the SURL, and 0 means it expired. If

SURL has an indefinite lifetime, then negative value, -1, may be used.

1.36. Request Summary
typedef struct {string requestToken,
 TReturnStatus status,
 TRequestType requestType,
 int totalNumFilesInRequest,
 int numOfCompletedFiles,
 int numOfWaitingFiles,
 int numOfFailedFiles

 - 19 -

} TRequestSummary

1.37. Return Status for SURL
typedef struct {anyURI surl,
 TReturnStatus status
 int fileLifetime,
 int pinLifetime,

} TSURLLifetimeReturnStatus

o fileLifetime describes the file lifetime on SURL.
o pinLifetime describes the pin lifetime on TURL, if applicable.

1.38. Return File Permissions
typedef struct {anyURI surl,
 TReturnStatus status,
 TPermissionMode permission

} TSURLPermissionReturn

1.39. Return Permissions on SURL

typedef struct {anyURI surl, // both dir and file
 TReturnStatus status,
 string owner,
 TPermissionMode ownerPermission,

TUserPermission[] arrayOfUserPermissions,
TGroupPermission[] arrayOfGroupPermissions,
TPermissionMode otherPermission

} TPermissionReturn

o The TPermissionReturn describes the permission properties of a file. It is used
as an output parameter in srmGetPermission.

1.40. Return Request Tokens
typedef struct {string requestToken,
 dateTime createdAtTime

} TRequestTokenReturn

1.41. Supported File Transfer Protocol
typedef struct {string transferProtocol,
 TExtraInfo[] attributes

} TSupportedTransferProtocol

o transferProtocol (required): Supported transfer protocol. For example,
gsiftp, http.

 - 20 -

o attributes: Informational hints for the paired transfer protocol, such how
many number of parallel streams can be used, desired buffer size, etc.

 - 21 -

2. Space Management Functions

summary:
 srmReserveSpace
 srmStatusOfReserveSpaceRequest
 srmReleaseSpace
 srmUpdateSpace

srmGetSpaceMetaData
srmChangeSpaceForFiles
srmStatusOfChangeSpaceForFilesRequest
srmExtendFileLifeTimeInSpace
srmPurgeFromSpace
srmGetSpaceTokens

2.1. srmReserveSpace

This function is used to reserve a space in advance for the upcoming requests to get some
guarantee on the file management. Asynchronous space reservation may be necessary for
some SRMs to serve many concurrent requests.

2.1.1. Parameters

 In: string authorizationID,

String userSpaceTokenDescription,
 TRetentionPolicyInfo retentionPolicyInfo,

unsigned long desiredSizeOfTotalSpace,
unsigned long desiredSizeOfGuaranteedSpace,
int desiredLifetimeOfReservedSpace,
unsigned long [] arrayOfExpectedFileSizes,
TExtraInfo[] storageSystemInfo,
TTransferParameters transferParameters

 Out: TReturnStatus returnStatus,
string requestToken,

 int estimatedProcessingTime,
 TRetentionPolicyInfo retentionPolicyInfo,

unsigned long sizeOfTotalReservedSpace, // best effort
unsigned long sizeOfGuaranteedReservedSpace,
int lifetimeOfReservedSpace,
string spaceToken

2.1.2. Notes on the Behavior
a) Input parameter userSpaceTokenDescription is case-sensitive. SRM server is

expected to keep it as client provides. It can be reused by the client.

 - 22 -

srmGetSpaceTokens will return all the space tokens that have the
userSpaceTokenDescription.

b) If the input parameter desiredLifetimeOfReservedSpace is not provided, the
lifetime of the reserved space is set to “infinite (indefinite)” by default.

c) If the input parameter retentionPolicyInfo cannot be satisfied by the SRM server,
SRM_INVALID_REQUEST must be returned.

d) Asynchronous space reservation may be necessary for some SRMs to serve many
concurrent requests. In such case, request token must be returned, and space token
must not be assigned and returned until space reservation is completed, to prevent
the usage of the space token in other interfaces before the space reservation is
completed. If the space reservation can be done immediately, request token must
not be returned.

e) When asynchronous space reservation is necessary, the returned status code
should be SRM_REQUEST_QUEUED.

f) Input parameter arrayOfExpectedFileSize is a hint that SRM server can use to
reserve consecutive storage sizes for the request. At the time of space reservation,
if space accounting is done only at the level of the total size, this hint would not
help. In such case, the expected file size at the time of srmPrepareToPut will
describe how much consecutive storage size is needed for the file. However, some
SRMs may get benefits from these hints to make a decision to allocate some
blocks in some specific devices.

g) Optional input parameter storageSystemInfo is needed in case the underlying
storage system requires additional security information.

h) SRM may return its default space size and lifetime if not requested by the client.
SRM may return SRM_INVALID_REQUEST if SRM does not support default
space sizes.

i) If input parameter desiredSizeOfTotalSpace is not specified, the SRM will return
its default space size.

j) Output parameter estimateProcessingTime is used to indicate the estimation time
to complete the space reservation request, when known.

k) Output parameter sizeOfTotalReservedSpace is in best effort bases. For
guaranteed space size, sizeOfGuaranteedReservedSpace should be checked.
These two numbers may match, depending on the storage systems.

l) Output parameter spaceToken is a reference handle of the reserved space.
m) If an operation is successful (SRM_SUCCESS or

SRM_LOWER_SPACE_GRANTED), sizeOfGuaranteedReservedSpace,
lifetimeOfReservedSpace and spaceToken are required to return to the client.

n) Optional input parameters in TTransferParameters may collide with the
characteristics of the space specified. In this case, TTransferParameters as an
input parameter must be ignored.

2.1.3. Return Status Code

SRM_SUCCESS
 successful request completion. Space is reserved successfully as the

client requested.
SRM_ REQUEST_QUEUED

 - 23 -

 successful request submission and acceptance. Request token must be
returned, and space token must not be assigned and returned.

SRM_REQUEST_INPROGRESS
 the request is being processed.

SRM_LOWER_SPACE_GRANTED
 successful request completion, but lower space size is allocated than

what the client requested
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to reserve space
SRM_INVALID_REQUEST

 the input parameter retentionPolicyInfo cannot be satisfied by the
SRM server.

 If space size or lifetime is not requested by the client, and SRM does
not support default values for space size or lifetime.

 input parameters are invalid.
SRM_NO_USER_SPACE

 SRM server does not have enough user space for the client for client to
request to reserve.

SRM_NO_FREE_SPACE
 SRM server does not have enough free space for client to request to

reserve.
SRM_EXCEED_ALLOCATION

 SRM server does not have enough space for the client to fulfill the
request because the client request needs more than the allocated space
quota for the client.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

2.2. srmStatusOfReserveSpaceRequest

This function is used to check the status of the previous request to srmReserveSpace,
when asynchronous space reservation was necessary with the SRM. Request token must
have been provided in response to the srmReserveSpace.

2.2.1. Parameters

 - 24 -

 In: string authorizationID,
 string requestToken

 Out: TReturnStatus returnStatus,

int estimatedProcessingTime,
 TRetentionPolicyInfo retentionPolicyInfo,

unsigned long sizeOfTotalReservedSpace,
unsigned long sizeOfGuaranteedReservedSpace,
int lifetimeOfReservedSpace,
string spaceToken

2.2.2. Notes on the Behavior

a) If the space reservation is not completed yet, estimateProcessingTime is returned
when known. The returned status code in such case should be
SRM_REQUEST_QUEUED.

b) See notes for srmReserveSpace for descriptions for output parameters.
c) If an operation is successful (SRM_SUCCESS or

SRM_LOWER_SPACE_GRANTED), sizeOfGuaranteedReservedSpace,
lifetimeOfReservedSpace and spaceToken are required to return to the client.

2.2.3. Return Status Code

SRM_REQUEST_QUEUED
 successful request submission and the request is still on the queue to

be served.
SRM_REQUEST_INPROGRESS

 the request is being processed.
SRM_LOWER_SPACE_GRANTED

 successful request completion, but lower space size is allocated than
what the client requested

SRM_SUCCESS
 successful request completion. Space is reserved successfully as the

client requested.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to reserve space
SRM_INVALID_REQUEST

 requestToken does not refer to an existing known request in the SRM
server.

SRM_EXCEED_ALLOCATION
 SRM server does not have enough space for the client to fulfill the

request because the client request needs more than the allocated space
for the client.

SRM_NO_USER_SPACE

 - 25 -

 SRM server does not have enough user space for the client for the
client for client to request to reserve.

SRM_NO_FREE_SPACE
 SRM server does not have enough free space for the client for client to

request to reserve.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

2.3. srmReleaseSpace

srmReleaseSpace() releases an occupied space.

2.3.1. Parameters

 In: string authorizationID,

string spaceToken,
TExtraInfo[] storageSystemInfo,

 Boolean forceFileRelease

Out: TReturnStatus returnStatus

2.3.2. Notes on the Behavior

a) forceFileRelease is false by default. This means that the space will not be
released if it has files that are still pinned in the space. To release the space
regardless of the files it contains and their status forceFileRelease must be
specified to be true.

b) When space is releasable and forceFileRelease is true, all the files in the space are
released, even in OUTPUT or CUSTODIAL retention quality space.

c) srmReleaseSpace may not complete right away because of the lifetime of existing
files in the space. When space is released, the files in that space are treated
according to their types: If file storage types are permanent, keep them until
further operation such as srmRm is issued by the client. If file storage types are
durable, perform necessary actions at the end of their lifetime. If file storage types
are volatile, release those files at the end of their lifetime.

d) If space is being released with forceFileRelease option while SURLs are being
created with srmPrepareToPut or srmCopy, the file is removed and
SRM_INVALID_PATH must be returned by the srmPutDone,

 - 26 -

srmStatusOfPutRequest, or srmStatusOfCopyRequest when the file is volatile. If
the file is permanent type, the file is moved to the default space, and the space
would be successfully released. The subsequent srmPutDone,
srmStatusOfPutRequest, or srmStatusOfCopyRequest would be successful.

e) If space is being released without forceFileRelease option while SURLs are being
created with srmPrepareToPut or srmCopy, SRM_FAILURE must be returned in
srmReleaseSpace.

2.3.3. Return Status Code

SRM_SUCCESS
 successful request completion. Space is successfully released.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to release the space that is associated with the

spaceToken
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 forceFileRelease is not supported
 function is not supported

SRM_FAILURE
 space still contains pinned files.
 space associated with space is already released.
 any other request failure. Explanation needs to be filled for details.

2.4. srmUpdateSpace

srmUpdateSpace is to resize the space and/or extend the lifetime of a space.
Asynchronous operation may be necessary for some SRMs to serve many concurrent
requests.

2.4.1. Parameters

 In: string authorizationID,

string spaceToken,
unsigned long newSizeOfTotalSpaceDesired,
unsigned long newSizeOfGuaranteedSpaceDesired,
int newLifeTime,
TExtraInfo[] storageSystemInfo

 Out: TReturnStatus returnStatus,

 - 27 -

string requestToken,
unsigned long sizeOfTotalSpace, // best effort
unsigned long sizeOfGuaranteedSpace,
int lifetimeGranted

2.4.2. Notes on the Behavior
a) If neither size nor lifetime is provided in the input parameters, then the request

will be failed.
b) newSize is the new actual size of the space.
c) newLifetime is the new lifetime requested regardless of the previous lifetime. It

might even be shorter than the remaining lifetime at the time of the call. It is
relative to the calling time. Lifetime will be set from the calling time for the
specified period.

d) Output parameter, lifetimeGranted is the new lifetime granted regardless of the
previous lifetime. It might even be shorter than the previous lifetime. It is relative
to the calling time.

2.4.3. Return Status Code

SRM_SUCCESS
 successful request completion. Space is successfully updated as the

client requested.
SRM_ REQUEST_QUEUED

 successful request submission and acceptance. Request token must be
returned.

SRM_LOWER_SPACE_GRANTED
 successful request completion, but lower space size is allocated than

what the client requested
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to update the space that is associated with the
spaceToken

SRM_SPACE_LIFETIME_EXPIRED
 lifetime of the space that is associated with the spaceToken is already

expired.
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

 input parameter size or time is not provided.
SRM_EXCEED_ALLOCATION

 SRM server does not have enough space for the client to fulfill the
request because the client request has more than the allocated space for
the client.

SRM_NO_USER_SPACE
 SRM server does not have enough space for the client to fulfill the

request

 - 28 -

SRM_NO_FREE_SPACE
 SRM server does not have enough free space to fulfill the request

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 New requested size is less than currently used space.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported

2.5. srmStatusOfUpdateSpaceRequest

This function is used to check the status of the previous request to srmUpdateSpace,
when asynchronous space update was necessary with the SRM. Request token must have
been provided in response to the srmUpdateSpace.

2.5.1. Parameters

 In: string authorizationID,

string requestToken

 Out: TReturnStatus returnStatus,

unsigned long sizeOfTotalSpace, // best effort
unsigned long sizeOfGuaranteedSpace,
int lifetimeGranted

2.5.2. Notes on the Behavior
a) Output parameters for sew sizes are the new actual sizes of the space.
b) Output parameter, lifetimeGranted is the new lifetime granted regardless of the

previous lifetime. It might even be shorter than the previous lifetime. It is relative
to the calling time.

2.5.3. Return Status Code

SRM_REQUEST_QUEUED
 successful request submission and the request is still on the queue to

be served.
SRM_REQUEST_INPROGRESS

 the request is being processed.
SRM_SUCCESS

 successful request completion. Space is successfully updated as the
client requested.

SRM_LOWER_SPACE_GRANTED
 successful request completion, but lower space size is allocated than

what the client requested
SRM_AUTHENTICATION_FAILURE

 - 29 -

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to update the space that is associated with the
spaceToken

SRM_SPACE_LIFETIME_EXPIRED
 lifetime of the space that is associated with the spaceToken is already

expired.
SRM_INVALID_REQUEST

 spaceToken does not refer to an existing known space in the SRM
server.

 input parameter size or time is not provided.
SRM_EXCEED_ALLOCATION

 SRM server does not have enough space for the client to fulfill the
request because the client request has more than the allocated space for
the client.

SRM_NO_USER_SPACE
 SRM server does not have enough space for the client to fulfill the

request
SRM_NO_FREE_SPACE

 SRM server does not have enough free space to fulfill the request
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 New requested size is less than currently used space.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported

2.6. srmGetSpaceMetaData

This function is used to get information of a space. Space token must be provided, and
space tokens are returned upon a completion of a space reservation through
srmReserveSpace or srmStatusOfReserveSpaceRequest.

2.6.1. Parameters

 In: string authorizationID,

string[] arrayOfSpaceTokens

 Out: TReturnStatus returnStatus,
TMetaDataSpace[] arrayOfSpaceDetails

2.6.2. Notes on the Behavior
a) Output parameters unusedSize in TMetaDataSpace returns 0 if there is no space

left in the allocated space.

 - 30 -

b) When clients use more space than allocated, clients get warned to accommodate
their files in the spaces or update the space before running out. SRM

2.6.3. Return Status Code
For request level return Status,

SRM_SUCCESS
 successful request completion. Information of all requested spaces are

returned successfully.
SRM_PARTIAL_SUCCESS

 Request is completed. Information of some requested spaces are
returned successfully, and some are failed to be returned.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request space information

SRM_TOO_MANY_RESULTS
 Request produced too many results that SRM server cannot handle.

SRM_INVALID_REQUEST
 arrayOfSpaceToken is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All space requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

For space level return Status,

SRM_SUCCESS
 successful request completion for the spaceToken. Space information

is successfully returned.
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request information on the space that is
associated with the spaceToken

SRM_INVALID_REQUEST
 spaceToken does not refer to an existing known space in the SRM

server.
SRM_SPACE_LIFETIME_EXPIRED

 The life time on the space that is associated with the spaceToken has
expired

SRM_EXCEED_ALLOCATION
 Space that is associated with spaceToken has no more space left.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

 - 31 -

2.7. srmChangeSpaceForFiles

This function is used to change the space property of files to another space property by
specifying target space tokens. All files specified by SURLs will have a new space
token. SURLs must not be changed. New space token may be acquired from
srmReserveSpace. Asynchronous operation may be necessary for some SRMs, and in
such case, request token is returned for later status inquiry. There is no default behavior
when target space token is not provided. In such case, the request will be rejected, and the
return status must be SRM_INVALID_REQUEST.

2.7.1. Parameters

 In: string authorizationID,
 anyURI [] arrayOfSURLs,
 string targetSpaceToken,
 TExtraInfo[] storageSystemInfo

 Out: TReturnStatus returnStatus,

string requestToken,
 int estimatedProcessingTime,
 TSURLReturnStatus [] arrayOfFileStatuses

2.7.2. Notes on the Behavior

a) When space transition is completed successfully, SRM_SUCCESS must be
returned for each SURL.

b) For any forbidden transition by the SRM implementation,
SRM_INVALID_REQUEST must be returned. It includes changing spaces on
SURLs that statuses are SRM_FILE_BUSY.

c) Asynchronous operation may be necessary for some SRMs to serve many
concurrent requests. In such case, request token must be returned. If the request
can be completed immediately, request token must not be returned.

d) When asynchronous operation is necessary, the returned status code should be
SRM_REQUEST_QUEUED, and arrayOfFileStatuses may not be filled and
returned.

e) All files specified in arrayOfSURLs will be moved to the space associated with
targetSpaceToken.

f) When target space token is used, space allocation for a new space token must be
done explicitly by the client before using this function.

g) If a directory path is provided, then the effect is recursive for all files in the
directory.

h) Space de-allocation may be necessary in some cases, and it must be done by the
client explicitly after this operation completes. The status can be checked by
srmStatusOfChangeSpaceForFilesRequest.

 - 32 -

i) When a space is successfully changed for a file from one space to another, it will
either retain its remaining lifetime, or the lifetime will be reduced to that of the
target space, whichever is the lesser.

j) If the target space is only large enough to transfer a subset of the files, the request
will continue taking place until the target space cannot hold any more files, and
the request must be failed. The status of the request must return an error of
SRM_EXCEED_ALLOCATION in such case.

2.7.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All file requests are successfully completed. All SURLs have new

targetSpaceToken.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL requests have new
targetSpaceToken, and some SURL requests are failed to have new
targetSpaceToken. Details are on the files status.

SRM_ REQUEST_QUEUED
 request is submitted and accepted. requestToken must be returned.
 The status can be checked by

srmStatusOfChangeSpaceForFilesRequest.
SRM_ REQUEST_INPROGRESS

 The request is being processed. Some files are still queued, and some
files are completed in space transition.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the file types

SRM_INVALID_REQUEST
 SURL is empty.
 targetSpaceToken is empty.
 targetSpaceToken does not refer to an existing space in the SRM

server.
 targetSpaceToken refers to a forbidden transition by the SRM

implementation.
SRM_SPACE_LIFETIME_EXPIRED

 target space that is associated with targetSpaceToken has an expired
lifetime.

SRM_EXCEED_ALLOCATION
 target space that is associated with targetSpaceToken is not enough to

hold all SURLs.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 - 33 -

 function is not supported in the SRM
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. The SURL has a new
targetSpaceToken.

SRM_ REQUEST_QUEUED
 file request is on the queue.

SRM_ REQUEST_INPROGRESS
 file request is being processed.

SRM_INVALID_PATH
 SURL does not refer to an existing file

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the space for the file that is

associated with the SURL
SRM_INVALID_REQUEST

 targetSpaceToken refers to a forbidden transition for the particular
SURL by the SRM implementation.

 The status of SURL is SRM_FILE_BUSY.
SRM_EXCEED_ALLOCATION

 target space that is associated with targetSpaceToken is not enough to
hold SURL.

SRM_FILE_LOST
 the requested file with the SURL is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 The requested file with the SURL is being used by other clients.

SRM_FILE_UNAVAILABLE
 the requested file with the SURL is temporarily unavailable.

SRM_FAILURE
 All file requests are failed.
 any other request failure. Explanation needs to be filled for details.

2.8. srmStatusOfChangeSpaceForFilesRequest

This function is used to check the status of the previous request to
srmChangeSpaceForFiles, when asynchronous operation was necessary in the SRM.
Request token must have been provided in response to the srmChangeSpaceForFiles.

2.8.1. Parameters

 - 34 -

 In: string authorizationID,
 string requestToken

 Out: TReturnStatus returnStatus

int estimatedProcessingTime,
TSURLReturnStatus [] arrayOfFileStatuses

2.8.2. Notes on the Behavior

a) When space transition is completed successfully, SRM_SUCCESS must be
returned for each SURL.

b) If changing space is not completed, estimateProcessingTime is returned when
known.

c) If all files are still in the queue and none of the files are completed in changing
space, the returned status code should be SRM_REQUEST_QUEUED.

d) If some files are queued, and some files are completed in changing space,
SRM_REQUEST_INPROGRESS must be returned as the return status code.
Each file should have its own status code.

e) If the target space is only large enough to transfer a subset of the files, the request
will continue taking place until the target space cannot hold any more files, and
the request must be failed. The status of the request must return an error of
SRM_EXCEED_ALLOCATION in such case.

2.8.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All file requests are successfully completed. All SURLs have new

targetSpaceToken.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL requests have new
targetSpaceToken, and some SURL requests are failed to have new
targetSpaceToken. Details are on the files status.

SRM_ REQUEST_QUEUED
 Request submission was successful and the entire request is still on the

queue.
SRM_ REQUEST_INPROGRESS

 Some files are still queued, and some files are completed in space
transition.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the file types

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 targetSpaceToken refers to a forbidden transition by the SRM

implementation.

 - 35 -

SRM_SPACE_LIFETIME_EXPIRED
 target space that is associated with targetSpaceToken has an expired

lifetime.
SRM_EXCEED_ALLOCATION

 target space that is associated with targetSpaceToken is not enough to
hold SURLs.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All file requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

For file level return status,
SRM_SUCCESS

 successful request completion for the SURL. The SURL has a new
targetSpaceToken.

SRM_ REQUEST_QUEUED
 file request is on the queue.

SRM_ REQUEST_INPROGRESS
 file request is being processed.

SRM_INVALID_PATH
 SURL does not refer to an existing file request

SRM_AUTHORIZATION_FAILURE
 client is not authorized to change the space for the file that is

associated with the SURL
SRM_INVALID_REQUEST

 targetSpaceToken refers to a forbidden transition for the particular
SURL by the SRM implementation.

 The status of SURL is SRM_FILE_BUSY.
SRM_EXCEED_ALLOCATION

 target space that is associated with targetSpaceToken is not enough to
hold SURL.

SRM_FILE_LOST
 the requested file with the SURL is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 The requested file with the SURL is being used by other clients.

SRM_FILE_UNAVAILABLE
 the requested file with the SURL is temporarily unavailable.

SRM_FAILURE

 - 36 -

 any other request failure. Explanation needs to be filled for details.

2.9. srmExtendFileLifeTimeInSpace

This function is used to extend lifetime of the files (SURLs) in a space.

2.9.1. Parameters

 In: string authorizationID,

string spaceToken,
 anyURI [] arrayOfSURLs,
 int newLifeTime

 Out: TReturnStatus returnStatus,
 TSURLLifetimeReturnStatus [] arrayOfFileStatuses

2.9.2. Notes on the Behavior

a) arrayOfSURLs are optional. When SURLs are not provided, all files in the space
must have the new extended lifetimes.

b) newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

c) The new file lifetime, newTimeExtended must not exceed the remaining lifetime
of the space.

d) The number of lifetime extensions may be limited by SRM according to its
policies.

e) If original lifetime is longer than the requested one, then the requested one will be
assigned.

f) If newLifeTime is not specified, the SRM can use its default to assign the
newLifeTime.

g) If input parameters newLifetime request exceed the remaining lifetime of the
space, then SRM_SUCCESS is returned at the request and file level, and
TSURLLifetimeReturnStatus contains the remaining lifetime.

h) Lifetime extension must fail on SURLs when their status is SRM_FILE_BUSY.
i) This method applied only to SURLs, and output parameter pinLifetime in

TSURLLifetimeReturnStatus must be null.

2.9.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs have a new

extended lifetime.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURLs have a new extended
lifetime, and some SURLS have failed. Details are on the files status.

 - 37 -

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to extend lifetime of files in the space specified

by the space token.
SRM_INVALID_REQUEST

 spaceToken is empty.
 spaceToken does not refer to an existing known space in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 All file requests updating lifetimes in a space are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. The SURL has a new

extended lifetime.
SRM_INVALID_PATH

 SURL does not refer to an existing file request
 SURL does not refer to an existing file request that is associated with

the space token
SRM_AUTHORIZATION_FAILURE

 client is not authorized to extend the lifetime for the file that is
associated with the SURL

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_FILE_LIFETIME_EXPIRED
 the requested file is expired already.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

2.10. srmPurgeFromSpace

This function is used when removing files from the given space is needed. Difference
from srmReleaseFiles and srmAbortFiles is that srmPurgeFromSpace is not associated

 - 38 -

with a request. This function must not remove the SURLs, but only the "copies" or
"states" of the SURLs. srmRm must be used to remove SURLs.

2.10.1. Parameters

 In: string authorizationID
 anyURI [] arrayOfSURLs
 string spaceToken,
 TExtraInfo[] storageSystemInfo

 Out: TReturnStatus returnStatus,

TSURLReturnStatus[] arrayOfFileStatuses

2.10.2. Notes on the Behavior

a) If the specified SURL is the only remaining copy of the file in the storage system,
SRM_LAST_COPY must be returned. To remove the last copy of the SURL,
srmRm may be used.

b) If the client has an administers role that SRM server can accept in an
understandable form, this request will forcefully release the pins owned by the
group, and remove the “copy” (or “state”) of the file.

c) In most cases, all pins on files that are associated with the client will be released.
In such cases, files may still be pinned by others and SRM_FILE_BUSY will be
returned.

d) SRM will remove only the “copies” (or “state”) of the SURLs associated with the
space token.

2.10.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are purged from

the space specified by the spaceToken.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURLs are successfully purged from
the space specified by the spaceToken, and some SURLs are failed to
be purged from the space specified by the spaceToken. Details are on
the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to clean up the space that is associated with

spaceToken
SRM_INVALID_REQUEST

 arrayOfSURLs is empty.
 spaceToken is empty.

 - 39 -

 spaceToken does not refer to an existing known space in the SRM
server.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All file requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

For file level return Status,

SRM_SUCCESS
 successful request completion for the SURL. SURL is purged from the

space specified by the spaceToken.
SRM_INVALID_PATH

 SURL does not refer to an existing file
 SURL does not refer to an existing file that is associated with the space

token
SRM_AUTHORIZATION_FAILURE

 Client is not authorized to purge SURL in the space that is associated
with spaceToken

SRM_FILE_LOST
 the request file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 The requested file is used by other clients.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_LAST_COPY
 the requested file is the last copy and will not be purged from the

space. srmRm must be used to remove the last copy.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

2.11. srmGetSpaceTokens

srmGetSpaceTokens() returns space tokens for currently allocated spaces.

2.11.1. Parameters

 In: string userSpaceTokenDescription,
 string authorizationID

 Out: TReturnStatus returnStatus

 - 40 -

string[] arrayOfSpaceTokens

2.11.2. Notes on the Behavior

a) If userSpaceTokenDescription is null, returns all space tokens this user owns.
b) Input parameter userSpaceTokenDescription is case-sensitive. SRM server is

expected to keep it as client provides. It can be reused by the client.
srmGetSpaceTokens will return all the space tokens that have the
userSpaceTokenDescription.

c) If the user assigned the same name to multiple space reservations, he may get
back multiple space tokens.

2.11.3. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. Space tokens are returned

successfully.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request spaceTokens associated with the
userSpaceTokenDescription

SRM_INVALID_REQUEST
 userSpaceTokenDescription does not refer to an existing space

description.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

 - 41 -

3. Permission Functions

summary:

srmSetPermission
srmCheckPermission
srmGetPermission

3.1. srmSetPermission

srmSetPermission is to set permission on local SURL.

3.1.1. Parameters

 In: string authorizationID,

anyURI SURL,
TPermissionType permissionType,
TPermissionMode ownerPermission,
TUserPermission[] arrayOfUserPermissions,
TGroupPermission[] arrayOfGroupPermissions,
TPermissionMode otherPermission,

 TExtraInfo[] storageSystemInfo

Out: TReturnStatus returnStatus

3.1.2. Notes on the Behavior
a) Applies to both dir and file.
b) Support for srmSetPermission is optional.
c) User permissions are provided in order to support dynamic user-level permission

assignment similar to Access Control Lists (ACLs).
d) Permissions can be assigned to set of users and sets of groups, but only a single

owner.
e) In this version, SRMs do not provide any group operations (setup, modify,

remove, etc.)
f) Groups are assumed to be set up before srmSetPermission is used.
g) If TPermissionType is ADD or CHANGE, and TPermissionMode is null, then it is

assumed that TPermissionMode is READ only.
h) If TPermissionType is REMOVE, then the TPermissionMode is ignored.
i) if TPermissionType is CHANGE, but it is being applied to a [user|group] which

currently does not have permissions set up for it, then the request works as ADD.
It follows the setfacl: Adds one or more new ACL entries to the file, and/or
modifies one or more existing ACL entries on the file. If an entry already exists
for a specified uid or gid, the specified permissions will replace the current
permissions. If an entry does not exist for the specified uid or gid, an entry will be
created.

 - 42 -

j) srmSetPermission will modify permissions on SURLs even if the statuses of the
SURLs are SRM_FILE_BUSY.

3.1.3. Return Status Code

SRM_SUCCESS
 successful request completion. SURL has a new permission.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to set permissions
 client is not authorized to set permissions on the SURL

SRM_INVALID_PATH
 SURL does not refer to an existing known path

SRM_INVALID_REQUEST
 Permissions are provided incorrectly

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server

3.2. srmCheckPermission

srmCheckPermission is used to check the client permissions on the SURLs. It only
checks for the client for authorization on the SURLs in the local storage.

3.2.1. Parameters

 In: anyURI [] arrayOfSURLs,
 string authorizationID,
 TExtraInfo[] storageSystemInfo

 Out: TReturnStatus returnStatus,

TSURLPermissionReturn[] arrayOfPermissions

3.2.2. Notes on the Behavior

a) SRM will check files in its local online and nearline storage.

3.2.3. Return Status Code
For request level return status,

 - 43 -

SRM_SUCCESS
 All requests are successfully completed. Permissions on SURLs are

checked and returned.
SRM_PARTIAL_SUCCESS

 All requests are completed. Permissions of some SURLs are
successfully checked and returned, but some permission of some
SURLs are failed to be checked. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request permission information

SRM_INVALID_REQUEST
 arrayOfSURL is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. Permissions on SURL are

checked and returned.
SRM_INVALID_PATH

 SURL does not refer to an existing known path
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request permission information on the SURL
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

3.3. srmGetPermission

srmGetPermission is used to get the permissions on the SURLs. It only checks for the
client for authorization on the SURLs in the local storage.

3.3.1. Parameters

 In: anyURI [] arrayOfSURLs,
 string authorizationID,
 TExtraInfo[] storageSystemInfo

 Out: TReturnStatus returnStatus,

TPermissionReturn[] arrayOfPermissionReturns

 - 44 -

3.3.2. Notes on the Behavior

b) SRM will check files in its local online and nearline storage.

3.3.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. Permissions on SURLs are

returned.
SRM_PARTIAL_SUCCESS

 All requests are completed. Permissions of some SURLs are
successfully returned, but some permission of some SURLs are failed
to be returned. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request permission information

SRM_INVALID_REQUEST
 arrayOfSURL is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. Permissions on SURL are

returned.
SRM_INVALID_PATH

 SURL does not refer to an existing known path
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request permission information on the SURL
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

 - 45 -

4. Directory Functions

summary:

srmMkdir
srmRmdir
srmRm
srmLs
srmStatusOfLsRequest
srmMv

4.1. srmMkdir

srmMkdir create a directory in a local SRM space.

4.1.1. Parameters

 In: string authorizationID,

anyURI SURL,
 TExtraInfo[] storageSystemInfo

Out: TReturnStatus returnStatus

4.1.2. Notes on the Behavior

a) Consistent with unix, recursive creation of directories is not supported.
b) SURL is a directory path and can include paths, as long as all directory hierarchy

exists.

4.1.3. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. SURL is created.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to create a directory
 client is not authorized to create a directory as SURL

SRM_INVALID_PATH
 SURL does not refer to a valid path
 component of SURL does not refer to an existing path

SRM_DUPLICATION_ERROR
 SURL exists already

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED

 - 46 -

 function is not supported in the SRM server

4.2. srmRmdir

srmRmdir removes an empty directory in a local SRM space.

4.2.1. Parameters

 In: string authorizationID,

anyURI SURL,
 TExtraInfo[] storageSystemInfo,
 boolean recursive // false by default

Out: TReturnStatus returnStatus

4.2.2. Notes on the Behavior

a) It applies to directory only.
b) recursive is false by default.
c) To distinguish from srmRm(), this function is for directories only

4.2.3. Return Status Code

SRM_SUCCESS
 All requests are successfully completed. SURL is removed.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to remove a directory
 client is not authorized to remove a directory as SURL

SRM_INVALID_PATH
 SURL does not refer to a valid path

SRM_NON_EMPTY_DIRECTORY
 SURL is not empty

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server
 input parameter recursive is not supported in the SRM server

4.3. srmRm

This function will remove SURLs (the name space entries) in the storage system.
Difference from srmPurgeFromSpace is that srmPurgeFromSpace removes only

 - 47 -

previously requested “copies” (or “state”) of the SURL in a particular space, and
srmPurgeFromSpace shall not remove SURLs or the name space entries.

4.3.1. Parameters

 In: string authorizationID,

anyURI[] arrayOfSURLs,
 TExtraInfo[] storageSystemInfo

 Out: TReturnStatus returnStatus,

TSURLReturnStatus[] arrayOfFileStatuses

4.3.2. Notes on the Behavior
a) To distinguish from srmRmdir(), this function applies to files only
b) srmRm removes all copies or states on the storage, and removes the entry from the

name space.
c) When an SURL is removed, all associated pinned TURLs are all released and

removed as well.
d) srmLs, srmPrepareToGet or srmBringOnline will not find these removed files any

more. It must set file requests on SURL from srmPrepareToGet as
SRM_ABORTED.

e) srmRm aborts the SURLs from srmPrepareToPut requests not yet in
SRM_PUT_DONE state, and must set its file status as SRM_ABORTED.

f) srmRm will remove SURLs even if the statuses of the SURLs are
SRM_FILE_BUSY. In this case, operations such as srmPrepareToPut or srmCopy
that holds the SURL status as SRM_FILE_BUSY must return
SRM_INVALID_PATH upon status request or srmPutDone.

4.3.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are removed.

SRM_PARTIAL_SUCCESS
 All requests are completed. Some SURLs are successfully removed,

and some SURLs are failed to be removed. Details are on the files
status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to remove any files

SRM_INVALID_REQUEST
 arrayOfSURLs is empty.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

 - 48 -

SRM_FAILURE
 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL is removed.

SRM_INVALID_PATH
 SURL does not refer to an existing known file path

SRM_AUTHORIZATION_FAILURE
 client is not authorized to remove SURL

SRM_FILE_LOST
 the request file is permanently lost.

SRM_FILE_UNAVAILABLE
 the request file is temporarily unavailable.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

4.4. srmLs

 srmLs() returns a list of files with a basic information. This operation may be
asynchronous, and in such case, requestToken must be returned.

4.4.1. Parameters

 In: string authorizationID,

anyURI [] arrayOfSURLs,
TExtraInfo[] storageSystemInfo,

 TFileStorageType fileStorageType,
 boolean fullDetailedList,

boolean allLevelRecursive,
int numOfLevels,
int offset,
int count

 Out: TReturnStatus returnStatus
 string requestToken

TMetaDataPathDetail[] details

4.4.2. Notes on the Behavior

a) Applies to both directory and file
b) fullDetailedList is false by default.

o For directories, only path is required to be returned.
o For files, path and size are required to be returned.

 - 49 -

c) If fullDetailedList is true, the full details are returned.
o For directories, path and userPermission are required to be returned.
o For files, path, size, userPermission, lastModificationTime, file type, and

lifetimeLeft are required to be returned, similar to unix command ls –l.
d) If allLevelRecursive is true then file lists of all level below current will be

provided as well.
e) If allLevelRecursive is "true" it dominates, i.e. ignore numOfLevels. If

allLevelRecursive is "false" or missing, then do numOfLevels. If numOfLevels is
"0" (zero) or missing, assume a single level. If both allLevelRecursive and
numOfLevels are missing, assume a single level.

f) If numOfLevels is 0, then information about directory itself is returned.
g) If numOfLevels is 1, then information about files in the directory is returned.
h) When listing for a particular type specified by “fileStorageType”, only the files

with that type will be in the output.
i) Empty directories will be returned.
j) For non-existing file or directory, SRM_INVALID_PATH must be returned.

4.4.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are checked and

the information for all SURLs is returned successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL request is successfully
completed, and some SURL request is failed. Details are on the files
status.

SRM_REQUEST_QUEUED
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_INPROGRESS

 Some files are completed, and some files are still on the queue. Details
are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to request information

SRM_TOO_MANY_RESULTS
 srmLs request has generated too many results that SRM cannot handle.

In most cases, it needs to be narrowed down with offset and count by
the client.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_INVALID_REQUEST
 Negative values for numOfLevels, offset and count are provided.
 Operation on the path such as browsing the top directory may be

prohibited. Explanation needs to be filled for details.

 - 50 -

SRM_NOT_SUPPORTED
 Requested fileStorageType is not supported in SRM
 Filtering fileStorageType is not supported in SRM
 Directory operation (directory SURL, allLevelRecursive and

numOfLevels) is not supported in SRM
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. The information for the

SURL is checked and returned successfully.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_INVALID_PATH

 SURL does not refer to an existing known file path.
SRM_AUTHORIZATION_FAILURE

 client is not authorized to receive the information of the SURL or to
access the directory or sub-directories

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
SRM_FILE_LIFETIME_EXPIRED

 lifetime on SURL is expired. There is no guarantee of the file still in
the cache.

SRM_FILE_IN_CACHE
 lifetime on SURL has expired, but the file is still in the cache.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

4.5. srmStatusOfLsRequest

srmStatusOfLsRequest() returns a list of files with a basic information. This is an
asynchronous operation of srmLs.

4.5.1. Parameters

 In: string authorizationID,

string requestToken
int offset,
int count

 - 51 -

 Out: TReturnStatus returnStatus
TMetaDataPathDetail[] details

4.5.2. Notes on the Behavior

a) Empty directories will be returned.
b) For non-existing file or directory, SRM_INVALID_PATH must be returned.

4.5.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are checked and

the information for all SURLs is returned successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURL request is successfully
completed, and some SURL request is failed. Details are on the files
status.

SRM_REQUEST_QUEUED
 successful request submission and all files request is still on the queue.

SRM_REQUEST_INPROGRESS
 Some files are completed, and some files are still on the queue. Details

are on the files status.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request information
SRM_TOO_MANY_RESULTS

 srmLs request has generated too many results that SRM cannot handle.
In most cases, it needs to be narrowed down with offset and count by
the client.

SRM_INVALID_REQUEST
 Negative values for offset and count are provided.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 Requested fileStorageType is not supported in SRM
 Filtering fileStorageType is not supported in SRM
 Directory operation (directory SURL, allLevelRecursive and

numOfLevels) is not supported in SRM
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS

 - 52 -

 successful request completion for the SURL. The information for the
SURL is checked and returned successfully.

SRM_REQUEST_INPROGRESS
 file request is being served.

SRM_REQUEST_QUEUED
 file request is still on the queue.

SRM_INVALID_PATH
 SURL does not refer to an existing known file path

SRM_AUTHORIZATION_FAILURE
 client is not authorized to receive the information of the SURL or to

access the directory or sub-directories
SRM_FILE_BUSY

 client requests for files which there is an active srmPrepareToPut (no
srmPutDone is not yet called) for.

SRM_FILE_LIFETIME_EXPIRED
 lifetime on SURL is expired. There is no guarantee of the file still in

the cache.
SRM_FILE_IN_CACHE

 lifetime on SURL has expired, but the file is still in the cache.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

4.6. srmMv

srmMv is to move a file from one local path to another local path.

4.6.1. Parameters

 In: string authorizationID,

anyURI fromSURL,
 anyURI toSURL,
 TExtraInfo[] storageSystemInfo

Out: TReturnStatus returnStatus

4.6.2. Notes on the Behavior
a) Applies to both directory and file.
b) Authorization checks need to be performed on both fromSURL and toSURL.
c) srmMv must fail on SURL that its status is SRM_FILE_BUSY, and

SRM_INVALID_REQUEST must be returned.

4.6.3. Return Status Code

SRM_SUCCESS

 - 53 -

 All requests are successfully completed. SURL is moved successfully
from one local path to another local path.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to move fromSURL.
 Client is not authorized to move a file into toSURL

SRM_INVALID_PATH
 fromSURL does not refer to an existing known path
 toSURL does not refer to a valid path
 status of fromSURL is SRM_FILE_BUSY.

SRM_DUPLICATION_ERROR
 toSURL exists already.

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
 The requested file is being used by other clients.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM server

 - 54 -

5. Data Transfer Functions

summary:

srmPrepareToGet
srmStatusOfGetRequest
srmPrepareToPut
srmStatusOfPutRequest
srmCopy
srmStatusOfCopyRequest
srmBringOnline
srmStatusOfBringOnlineRequest

srmReleaseFiles
srmPutDone

srmAbortRequest
srmAbortFiles
srmSuspendRequest
srmResumeRequest

srmGetRequestSummary

srmExtendFileLifeTime
srmGetRequestTokens

5.1. srmPrepareToGet

This function is used to bring files online upon the client’s request and assign TURL so
that client can access the file. Lifetime (pinning expiration time) is assigned on the
TURL. When specified target space token which must be referred to an online space, the
files will be prepared using the space associated with the space token. It is an
asynchronous operation, and request token must be returned if request is valid and
accepted. The status must be checked through srmStatusOfGetRequest with the returned
request token.

5.1.1. Parameters

 In: string authorizationID,

TGetFileRequest[] arrayOfFileRequests,
 string userRequestDescription,

TExtraInfo[] storageSystemInfo,
 TFileStorageType desiredFileStorageType
 int desiredTotalRequestTime
 int desiredPinLifetime,

string targetSpaceToken

 - 55 -

TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferParameters transferParameters

 Out: TReturnStatus returnStatus

string requestToken,
TGetRequestFileStatus[] arrayOfFileStatuses

 int remainingTotalRequestTime

5.1.2. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) If input parameter targetSpaceToken is provided, then the target space token must
refer to online space. All requested files will be prepared into the target space.

c) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is
prepared online.

d) If both input parameters targetSpaceToken and TRetentionPolicyInfo are
provided, then their types must match exactly. Otherwise, the request may be
rejected with SRM_INVALID_REQUEST.

e) Access latency must be ONLINE always.
f) Input parameter TAccessPattern is provided at the request-level, and all files will

have the same access pattern.
g) Optional input parameters in TTransferParameters may collide with the

characteristics of the space specified. In this case, TTransferParameters as an
input parameter must be ignored.

o) The userRequestDescription is a user designated name for the request. It is case-
sensitive. SRM server is expected to keep it as client provides. It can be reused by
the client. It can be used in the srmGetRequestTokens function to get back the
system assigned request tokens. srmGetRequestTokens will return all the request
tokens that have the userRequestDescription.

h) Only pull mode is supported for file transfers that client must pull the files from
the TURL within the expiration time (remainingPinTime).

i) Input parameter desiredPinLifetime is for a client preferred lifetime (expiration
time) on the prepared TURL.

j) If request is accepted, SRM assigns the requestToken for asynchronous status
checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

k) totalRequestTime means: All the file transfer for this request must be complete
within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the request status code with individual file status of
SRM_FAILURE with an appropriate explanation.

l) If desiredTotalRequestTime is unspecified as NULL, the request will be retried
for a duration which is dependent on the SRM implementation.

m) If input parameter desiredTotalRequestTime is 0 (zero), each file request will be
tried at least once. Negative value is invalid.

 - 56 -

n) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

o) The invocation of srmReleaseFile() is expected for finished files later on.
p) The returned request token should be valid until all files in the request are

released or removed.
q) Streaming mode is allowed. If streaming mode is supported and there is not

enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime. In the output parameter of explanation in
returnStatus, the server may make explicit that the retry is being done. If
streaming mode is not supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if
some file requests were successful) or SRM_FAILURE at the request level.

5.1.3. Return Status Code
For request level return status,

SRM_REQUEST_QUEUED
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue.
Request token must be returned.

SRM_SUCCESS
 all file requests are successfully completed. All SURLs are

successfully pinned. For TURLs, file level status needs to be checked.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some file request is successfully pinned,
and some file request is failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 arrayOfFileRequest is empty
 If both input parameters targetSpaceToken and TRetentionPolicyInfo

are provided, then their types must match exactly.
 Access latency is something other than ONLINE.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

 - 57 -

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free. When

client does not specify the targetSpaceToken, SRM uses a default
space. The default space is not sufficient to accommodate the request.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_FILE_PINNED
 successful request completion for the SURL. SURL is successfully

pinned, and TURL is available for access.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.
SRM_FILE_LOST

 the requested file is permanently lost.
SRM_FILE_BUSY

 client requests for files which there is an active srmPrepareToPut (no
srmPutDone is not yet called) for.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_INVALID_PATH
 SURL does not refer to an existing known file request that is associated

with the request token
SRM_AUTHORIZATION_FAILURE

 - 58 -

 client is not authorized to retrieve the file that is associated with the
SURL

SRM_FILE_LIFETIME_EXPIRED
 SURL is expired
 TURL is expired
 pin lifetime on TURL has expired, but the file is still in the cache.

SRM_NO_USER_SPACE
 user space is not enough to hold requested SURL.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold requested SURL for free. When

client does not specify the targetSpaceToken, SRM uses a default
space. The default space is not sufficient to accommodate the request.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.

5.2. srmStatusOfGetRequest

This function is used to check the status of the previously requested srmPrepareToGet.
Request token from srmPrepareToGet must be provided.

5.2.1. Parameters

 In: string requestToken,
 string authorizationID
 anyURI [] arrayOfSourceSURLs,

 Out: TReturnStatus returnStatus,

TGetRequestFileStatus[] arrayOfFileStatuses
 int remainingTotalRequestTime

5.2.2. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) If arrayOfSourceSURLs is not provided, SRM must return status for all file
requests in the request that is associated with the request token.

c) When the file is ready and TURL is prepared, the return status code should be
SRM_FILE_PINNED.

d) When the file is ready for the client, the file is implicitly pinned in the cache and
lifetime will be enforced, subject to the policies associated with the underlying
storage.

 - 59 -

e) If any of the request files is temporarily unavailable,
SRM_FILE_UNAVAILABLE must be returned for the file.

f) If any of the request files is permanently lost, SRM_FILE_LOST must be
returned for the file.

g) The file request must fail with an error SRM_FILE_BUSY if srmPrepareToGet
requests for files which there is an active srmPrepareToPut (no srmPutDone is not
yet called) for.

h) SRM must fail (SRM_FAILURE) only if all files in the request failed.
i) totalRequestTime means: All the file transfer for this request must be complete

within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the request status code with individual file status of
SRM_FAILURE with an appropriate explanation.

j) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

k) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. remainingTotalRequestTime is
being returned. In the output parameter of explanation in returnStatus, the server
may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if
some file requests were successful) or SRM_FAILURE at the request level.
Clients may need to release files or clean up the target space when target space
token was provided.

5.2.3. Return Status Code
For request level return status,

SRM_SUCCESS
 all file requests are successfully completed. All SURLs are

successfully pinned. For TURLs, file level status needs to be checked.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue
SRM_PARTIAL_SUCCESS

 All requests are completed. Some file request is successfully pinned,
and some file request is failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST

 - 60 -

 requestToken does not refer to an existing known request in the SRM
server.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold all requested SURLs for free.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_ABORTED
 The request has been aborted.

SRM_REQUEST_TIMED_OUT
 Total request time is over and the rest of the request is failed.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_FILE_PINNED
 successful request completion for the SURL. SURL is successfully

pinned, and TURL is available for access.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.
SRM_FILE_LOST

 the requested file is permanently lost.
SRM_FILE_BUSY

 - 61 -

 client requests for files which there is an active srmPrepareToPut (no
srmPutDone is not yet called) for.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_INVALID_PATH
 SURL does not refer to an existing known file request that is associated

with the request token
SRM_AUTHORIZATION_FAILURE

 client is not authorized to retrieve the file that is associated with the
SURL

SRM_FILE_LIFETIME_EXPIRED
 SURL is expired
 TURL is expired
 pin lifetime on TURL has expired, but the file is still in the cache

SRM_NO_USER_SPACE
 user space is not enough to hold requested SURL.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold requested SURL for free. When

client does not specify the targetSpaceToken, SRM uses a default
space. The default space is not sufficient to accommodate the request.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.

5.3. srmBringOnline

This function is used to bring files online upon the client’s request so that client can make
certain data readily available for future access. In hierarchical storage systems, it is
expected to “stage” files to the top hierarchy and make sure that the files stay online for a
certain period of time. When client specifies target space token which must be referred to
an online space, the files will be brought online using the space associated with the space
token. It is an asynchronous operation, and request token must be returned if
asynchronous operation is necessary in SRM. The status may be checked through
srmStatusOfBringOnlineRequest with the returned request token.
This function is similar to srmPrepareToGet, but it does not return Transfer URL
(TURL).

5.3.1. Parameters

 In: string authorizationID,

TGetFileRequest[] arrayOfFileRequests,
 string userRequestDescription,

 - 62 -

TExtraInfo[] storageSystemInfo,
 TFileStorageType desiredFileStorageType
 int desiredTotalRequestTime
 int desiredLifetime, // life time on online

string targetSpaceToken,
TRetentionPolicyInfo targetFileRetentionPolicyInfo,
TTransferParameters transferParameters,

 int deferredStartTime

 Out: TReturnStatus returnStatus

string requestToken
TBringOnlineRequestFileStatus[] arrayOfFileStatuses

 int remainingTotalRequestTime
 int remainingDeferredStartTime

5.3.2. Notes on the Behavior

a) Input parameter deferredStartTime is to support CE-SE resource co-allocation and
tape mounting efficiency. It means that client does not intent to use the files
before that time. If SRM decides not to bring any files until deferredStartTime is
reached, SRM_REQUEST_QUEUED must be returned. By default
deferredStartTime is 0 (zero) and the request gets queued or processed upon
submission. Negative value is invalid.

b) Output parameter remainingDeferredStartTime indicates how long the
deferredStartTime is left, if supported. Negative value is not valid.

c) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is
brought online.

d) If both input parameters targetSpaceToken and TRetentionPolicyInfo are
provided, then their types must match exactly. Otherwise, the request may be
rejected, and SRM_INVALID_REQUEST will be returned.

e) Optional input parameters in TTransferParameters may collide with the
characteristics of the space specified. In this case, TTransferParameters as an
input parameter must be ignored.

f) If the transfer protocol hints are not specified, default is assumed to be processing
mode and LAN access for the site.

g) Access latency must be ONLINE always.
h) It is up to the SRM implementation to decide TConnectionType if not provided.
i) The userRequestDescription is a user designated name for the request. It is case-

sensitive. SRM server is expected to keep it as client provides. It can be reused by
the client. It can be used in the srmGetRequestTokens function to get back the
system assigned request tokens. srmGetRequestTokens will return all the request
tokens that have the userRequestDescription.

j) Input parameter desiredLifetime is for a client preferred lifetime (expiration time)
on the file “copies (or “states”) of the SURLs that will be “brought online” into
the target space that is associated with the targetSpaceToken.

 - 63 -

k) This call may be an asynchronous (non-blocking) call, and SRM assigns the
requestToken when the request is valid and accepted. The returned status code
should be SRM_REQUEST_QUEUED. To get subsequent status and results,
separate calls should be made through srmStatusOfBringOnline.

l) The returned request token should be valid until all files in the request are
released, removed or aborted.

m) totalRequestTime means: All the file transfer for this request must be complete
within this desiredTotalRequestTime. Otherwise,
SRM_REQUEST_TIMED_OUT must be returned as the request status code with
individual file status of SRM_FAILURE with an appropriate explanation.

n) If input parameter desiredTotalRequestTime is unspecified as NULL, the request
will be retried for a duration which is dependent on the SRM implementation.

o) If input parameter desiredTotalRequestTime is 0 (zero), each file request will be
tried at least once. Negative value is not valid.

p) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

q) When srmAbortRequest is requested for srmBringOnline request, the request gets
aborted, but those files that are brought online will remain in the space where they
are brought in, and are not removed. Clients need to remove those files through
srmPurgeFromSpace or srmRm.

r) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. In the output parameter of
explanation in returnStatus, the server may make explicit that the retry is being
done. If streaming mode is not supported, the server returns
SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level and
SRM_PARTIAL_SUCCESS (if some file requests were successful) or
SRM_FAILURE at the request level.

5.3.3. Return Status Code
For request level return status,

SRM_REQUEST_QUEUED
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are not completed yet.
Request token must be returned.

SRM_SUCCESS
 All requests are successfully completed. All SURLs are successfully

brought online.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some files are successfully brought online,
and some files are failed. Details are on the files status.

 - 64 -

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 arrayOfFileRequest is empty
 Access latency refers to something other than ONLINE.
 If both input parameters targetSpaceToken and TRetentionPolicyInfo

are provided, then their types must match exactly.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
 deferredStartTime is negative.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold all requested SURLs for free.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 deferredStartTime is not supported in the SRM server.
 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_FAILURE
 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL is successfully

brought online.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.

 - 65 -

SRM_AUTHORIZATION_FAILURE
 client is not authorized to retrieve the file that is associated with the

SURL
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.
SRM_FILE_LOST

 the requested file is permanently lost.
SRM_FILE_BUSY

 client requests for files which there is an active srmPrepareToPut (no
srmPutDone is not yet called) for.

SRM_FILE_UNAVAILABLE
 the requested file is temporarily unavailable.

SRM_INVALID_PATH
 SURL does not refer to an existing known file request that is associated

with the request token
SRM_FILE_LIFETIME_EXPIRED

 SURL is expired
 pin lifetime has expired, but the file is still in the cache

SRM_NO_USER_SPACE
 user space is not enough to hold requested SURL.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold requested SURL for free. When

client does not specify the targetSpaceToken, SRM uses a default
space. The default space is not sufficient to accommodate the request.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.

5.4. srmStatusOfBringOnlineRequest

This function is used to check the status of the previous request to srmBringOnline, when
asynchronous operation is necessary in the SRM. Request token must have been provided
in response to the srmBringOnline.

5.4.1. Parameters

 In: string requestToken,
 string authorizationID
 anyURI [] arrayOfSourceSURLs,

 - 66 -

 Out: TReturnStatus returnStatus,
TBringOnlineRequestFileStatus[] arrayOfFileStatuses

 int remainingTotalRequestTime
 int remainingDeferredStartTime

5.4.2. Notes on the Behavior

a) If arrayOfSourceSURLs is not provided, returns status for all files in this request.
b) When the file is ready online, the return status code should be

SRM_FILE_IN_CACHE.
c) Output parameter remainingDeferredStartTime indicates how long the

deferredStartTime is left, if supported. Negative value is not valid.
d) When the file is ready for the client, the file is implicitly pinned in the cache and

lifetime will be enforced, subject to the policies associated with the underlying
storage.

e) If any of the request files is temporarily unavailable,
SRM_FILE_UNAVAILABLE must be returned for the file.

f) If any of the request files is permanently lost, SRM_FILE_LOST must be
returned for the file.

g) The file request must fail with an error SRM_FILE_BUSY if srmBringOnline
requests for files which there is an active srmPrepareToPut (no srmPutDone is not
yet called) for.

h) SRM must fail (SRM_FAILURE) only if all files in the request failed.
i) totalRequestTime means: All the file transfer for this request must be complete

within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the request status code with individual file status of
SRM_FAILURE with an appropriate explanation.

j) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

k) If SRM decides not to bring any files until input parameter deferredStartTime is
reached, SRM_REQUEST_QUEUED must be returned.

l) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. remainingTotalRequestTime is
being returned. In the output parameter of explanation in returnStatus, the server
may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if
some file requests were successful) or SRM_FAILURE at the request level.
Clients may need to release files or clean up the target space when target space
token was provided.

5.4.3. Return Status Code
For request level return status,

 - 67 -

SRM_SUCCESS
 All requests are successfully completed. All SURLs are successfully

brought online.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are not completed yet.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some files are successfully brought online,
and some files are failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 deferredStartTime is not supported in the SRM server.
 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 None of the file transfer protocols are supported in the SRM server.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold all requested SURLs for free.
SRM_ABORTED

 The request has been aborted.
SRM_REQUEST_TIMED_OUT

 Total request time is over and the rest of the request is failed.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

 - 68 -

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL is successfully

brought online.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_AUTHORIZATION_FAILURE

 client is not authorized to retrieve the file that is associated with the
SURL

SRM_ABORTED
 The requested file has been aborted.

SRM_RELEASED
 The requested file has been released.

SRM_FILE_LOST
 the requested file is permanently lost.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) for.
SRM_FILE_UNAVAILABLE

 the requested file is temporarily unavailable.
SRM_INVALID_PATH

 SURL does not refer to an existing known file request that is associated
with the request token

SRM_FILE_LIFETIME_EXPIRED
 SURL is expired
 pin lifetime has expired, but the file is still in the cache

SRM_NO_USER_SPACE
 user space is not enough to hold requested SURL.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold requested SURL for free. When

client does not specify the targetSpaceToken, SRM uses a default
space. The default space is not sufficient to accommodate the request.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.

5.5. srmPrepareToPut

 - 69 -

This function is used to write files into the storage. Upon the client’s request, SRM
prepares a TURL so that client can write data into the TURL. Lifetime (pinning
expiration time) is assigned on the TURL. When a specified target space token is
provided, the files will be located finally in the targeted space associated with the target
space token. It is an asynchronous operation, and request token must be returned if the
request is valid and accepted to the SRM. The status may be checked through
srmStatusOfPutRequest with the returned request token.

5.5.1. Parameters

 In: string authorizationID,

TPutFileRequest[] arrayOfFileRequests,
string userRequestDescription,

 TOverwriteMode overwriteOption,
 TExtraInfo[] storageSystemInfo,
 int desiredTotalRequestTime
 int desiredPinLifetime, // on TURL
 int desiredFileLifetime, // on SURL
 TFileStorageType desiredFileStorageType,

string targetSpaceToken
TRetentionPolicyInfo targetFileRetentionPolicyInfo
TTransferParameters transferParameters

 Out: TReturnStatus returnStatus

string requestToken,
TPutRequestFileStatus[] arrayOfFileStatuses

 int remainingTotalRequestTime

5.5.2. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) TURL returned by the srmPrepareToPut may not be used for read access with any
protocol. An explicit srmPrepareToGet or srmBringOnline is required.

c) Optional input parameters in TTransferParameters may collide with the
characteristics of the space specified. In this case, TTransferParameters as an
input parameter must be ignored.

d) Input parameter userRequestDescription may be null, and it is case-sensitive
when provided. SRM server is expected to keep it as client provides. It can be
reused by the client. It can be used in the srmGetRequestTokens function to get
back the system assigned request tokens. srmGetRequestTokens will return all the
request tokens that have the userRequestDescription.

e) Input parameter targetSpaceToken is provided at the request-level, and all files in
the request will end up in the space that is associated with the target space token if
the space is enough for all files.

 - 70 -

f) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is written
into the target storage system.

g) If both input parameters targetSpaceToken and TRetentionPolicyInfo are
provided, then their types must match exactly. Otherwise, the request may be
rejected and SRM_INVALID_REQUEST must be returned.

h) Only push mode is supported for file transfers that client must “push” the file to
the prepared TURL.

i) Input parameter targetSURL in the TPutFileRequest has to be local to SRM. If
targetSURL is not specified, SRM will make a reference for the file request
automatically and put it in the specified user space if provided. This reference
SURL will be returned along with the “Transfer URL”. Some SRM
implementation may require targetSURL.

j) srmPutDone() is expected after each file is “put” into the prepared TURL.
k) Input parameter desiredPinLifetime is the lifetime (expiration time) on the TURL

when the Transfer URL is prepared. It does not refer to the lifetime of the SURL.
TURLs will not be valid any more after the desiredPinLifetime is over if
srmPutDone or srmAbortRequest is not submitted on the SURL before expiration.
In such case, the server returns SRM_FAILURE at the file level.

l) Input parameter desiredFileLifetime is the lifetime of the SURL when the file is
put into the storage system. It does not refer to the lifetime (expiration time) of the
TURL. Lifetime on SURL starts when successrul srmPutDone is executed.

m) The lifetime of the SURL starts as soon as SRM receives the srmPutDone(). If
srmPutDone() is not provided, then the files in that space are subject to removal
when the lifetime on the TURL expires or the lifetime on the space expires. The
lifetime on the TURL can be found in the status of the file request as output
parameter remainingPinTime in TPutRequestFileStatus.

n) If request is accepted, SRM assigns the requestToken for asynchronous status
checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

o) totalRequestTime means: All the file transfer for this request must be complete
within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the request status code with individual file status of
SRM_FAILURE with an appropriate explanation.

p) If input parameter desiredTotalRequestTime is unspecified as NULL, the request
will be retried for a duration which is dependent on the SRM implementation.

q) If input parameter desiredTotalRequestTime is 0 (zero), each file request will be
tried at least once. Negative value is invalid.

r) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

s) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. In the output parameter of

 - 71 -

explanation in returnStatus, the server may make explicit that the retry is being
done. If streaming mode is not supported, the server returns
SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level and
SRM_PARTIAL_SUCCESS (if some file requests were successful) or
SRM_FAILURE at the request level.

t) Upon srmPrepareToPut, SURL entry is inserted to the name space, and any
methods that access the SURL such as srmLs, srmBringOnline and
srmPrepareToGet must return SRM_FILE_BUSY at the file level. If another
srmPrepareToPut or srmCopy were requested on the same SURL,
SRM_FILE_BUSY must be returned if the SURL can be overwritten, otherwise
SRM_DUPLICATION_ERROR must be returned at the file level.

5.5.3. Return Status Code
For request level return status,

SRM_REQUEST_QUEUED
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue.
Request token must be returned.

SRM_SUCCESS
 All requests are successfully completed. For all SURLs, spaces are

allocated, and TURLs are prepared.
SRM_PARTIAL_SUCCESS

 All requests are completed. For some file requests, the spaces are
allocated and TURLs are prepared, but for some file requests, it is
failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 If both input parameters targetSpaceToken and TRetentionPolicyInfo

are provided, then their types must match exactly.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free.

SRM_INTERNAL_ERROR

 - 72 -

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 None of the file transfer protocols are supported in the SRM server.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SPACE_AVAILABLE
 successful request completion for the “put” request. The space is

allocated, and TURL is prepared.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_SUCCESS

 Client’s file transfer into TURL is completed, and srmPutDone on the
targetSURL is completed. The file is now in the cache and lifetime on
the targetSURL is started.

SRM_FILE_IN_CACHE
 lifetime on SURL has expired, but the file is still in the cache.

SRM_INVALID_PATH
 targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR
 targetSURL refers to an existing SURL and overwriting is not allowed.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) or srmCopy for.
SRM_AUTHORIZATION_FAILURE

 client is not authorized to retrieve the file that is associated with the
SURL

SRM_ABORTED
 The requested file has been aborted.

SRM_NO_USER_SPACE
 user space is not enough to hold the requested SURL.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold the requested SURL for free.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

 - 73 -

 The file request would not be able to be completed within the
totalRequestTime.

 The requested file has been suspended because the request has timed
out.

 The file request is not aborted or completed by srmPutDone, and the
TURL (available space allocation for the file) is not valid any more.

5.6. srmStatusOfPutRequest

This function is used to check the status of the previously requested srmPrepareToPut.
Request token from srmPrepareToPut must be provided.

5.6.1. Parameters

 In: string requestToken,
 string authorizationID
 anyURI [] arrayOfTargetSURLs,

 Out: TReturnStatus returnStatus,

TPutRequestFileStatus[] arrayOfFileStatuses
 int remainingTotalRequestTime

5.6.2. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of
“fileStorageType” is Volatile.

b) If arrayOfTargetSURLs is not provided, returns status for all the file requests in
this request.

c) When the space is ready for client to “put” data and TURL is prepared, the return
status code should be SRM_SPACE_AVAILABLE.

d) When the file space is ready for the client, the TURL is available in the cache and
pin lifetime on the TURL will be enforced. TURLs will not be valid any more
after the pin lifetime is over if srmPutDone or srmAbortRequest is not submitted
on the SURL before expiration. In such case, the server returns SRM_FAILURE
at the file level.

e) If a targetSURL is provided with some directory structure, the directory structure
must exist, and SRM will not create the directory structure for the targetSURL. In
such case, SRM_INVALID_PATH must be returned. srmMkdir may be used to
create the directory structure.

f) Lifetime on SURL starts when successrul srmPutDone is executed.
g) If the space for the requested files is full, and TURL cannot be returned, then

SRM_EXCEED_ALLOCATION, SRM_NO_USER_SPACE, or
SRM_NO_FREE_SPACE must be returned for the files.

h) SRM must fail (SRM_FAILURE) only if all files in the request failed.

 - 74 -

i) totalRequestTime means: All the file transfer for this request must be complete
within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the request status code with individual file status of
SRM_FAILURE with an appropriate explanation.

j) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

k) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. remainingTotalRequestTime is
being returned. In the output parameter of explanation in returnStatus, the server
may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if
some file requests were successful) or SRM_FAILURE at the request level.
Clients may need to clean up the target space when target space token was
provided.

l) Upon srmPrepareToPut, SURL entry is inserted to the name space, and any
methods that access the SURL such as srmLs, srmBringOnline and
srmPrepareToGet must return SRM_FILE_BUSY at the file level. If another
srmPrepareToPut or srmCopy were requested on the same SURL,
SRM_FILE_BUSY must be returned if the SURL can be overwritten, otherwise
SRM_DUPLICATION_ERROR must be returned at the file level.

m) srmRm may remove SURLs even if the statuses of the SURLs are
SRM_FILE_BUSY. In this case, the status for srmPrepareToPut request must
return SRM_INVALID_PATH upon status request or srmPutDone.

5.6.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. For all SURLs, spaces are

allocated, and TURLs are prepared.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue
SRM_PARTIAL_SUCCESS

 All requests are completed. For some file requests, the spaces are
allocated and TURLs are prepared, but for some file requests, it is
failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

 - 75 -

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 targetSpaceToken that client provided does not refer to an existing

space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold all requested SURLs for free.

SRM_REQUEST_TIMED_OUT
 Total request time is over and the rest of the request is failed.

SRM_ABORTED
 The request has been aborted.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED
 SRM server does not support the given input parameters. For example,

client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 None of the file transfer protocols are supported in the SRM server.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SPACE_AVAILABLE
 successful request completion for the “put” request. The space is

allocated, and TURL is prepared.
SRM_REQUEST_QUEUED

 file request is still on the queue.
SRM_REQUEST_INPROGRESS

 file request is being served.
SRM_SUCCESS

 Client’s file transfer into TURL is completed, and srmPutDone on the
targetSURL is completed. The file is now in the cache and lifetime on
the targetSURL is started.

SRM_FILE_IN_CACHE
 lifetime on SURL has expired, but the file is still in the cache.

 - 76 -

SRM_INVALID_PATH
 targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR
 targetSURL refers to an existing SURL and overwriting is not allowed.

SRM_FILE_BUSY
 client requests for files which there is an active srmPrepareToPut (no

srmPutDone is not yet called) or srmCopy for.
SRM_AUTHORIZATION_FAILURE

 client is not authorized to retrieve the file that is associated with the
SURL

SRM_ABORTED
 The requested file has been aborted.

SRM_NO_USER_SPACE
 user space is not enough to hold the requested SURL.

SRM_NO_FREE_SPACE
 SRM space is not enough to hold the requested SURL for free.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.
 The file request is not aborted or completed by srmPutDone, and the

TURL (available space allocation for the file) is not valid any more.

5.7. srmCopy

This function is used to copy files from source storage sites into the target storage sites.
The source storage site or the target storage site needs to be the SRM itself that the client
makes the srmCopy request. If both source and target are local to the SRM, it performed a
local copy. There are two cases for remote copies: 1. Target SRM is where client makes a
srmCopy request (PULL case), 2. Source SRM is where client makes a srmCopy request
(PUSH case).

1. PULL case: Upon the client’s srmCopy request, the target SRM makes a space at
the target storage, and makes a request srmPrepareToGet to the source SRM.
When TURL is ready at the source SRM, the target SR M transfers the file from
the source TURL into the prepared target storage. After the file transfer
completes, srmReleaseFiles is issued to the source SRM.

2. PUSH case: Upon the client’s srmCopy request, the source SRM prepares a file to
be transferred out to the target SRM, and makes a request srmPrepareToPut to the
target SRM. When TURL is ready at the target SRM, the source SRM transfers
the file from the prepared source into the prepared target TURL. After the file
transfer completes, srmPutDone is issued to the target SRM.

When specified target space token is provided, the files will be located finally in the
targeted space associated with the space token. It is an asynchronous operation, and

 - 77 -

request token must be returned. The status may be checked through
srmStatusOfCopyRequest with the returned request token.

5.7.1. Parameters

 In: string authorizationID,

TCopyFileRequest[] arrayOfFileRequests,
 string userRequestDescription,
 TOverwriteMode overwriteOption,
 int desiredTotalRequestTime,
 int desiredTargetSURLLifetime,
 TFileStorageType targetFileStorageType,

string targetSpaceToken,
TRetentionPolicyInfo targetFileRetentionPolicyInfo,

 TExtraInfo[] sourceStorageSystemInfo,
 TExtraInfo[] targetStorageSystemInfo

 Out: TReturnStatus returnStatus,

string requestToken,
TCopyRequestFileStatus[] arrayOfFileStatuses,

 int remainingTotalRequestTime

5.7.2. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime
left in the space of the corresponding file type. The default value of “fileType” is
Volatile.

b) When aborted, target SURLs need to be provided.
c) Input parameter userRequestDescription may be null, and it is case-sensitive

when provided. SRM server is expected to keep it as client provides. It can be
reused by the client. It can be used in the srmGetRequestTokens function to get
back the system assigned request tokens. srmGetRequestTokens will return all the
request tokens that have the userRequestDescription.

d) Input parameter targetSpaceToken is provided at the request-level, and all files in
the request will end up in the space that is associated with the target space token.

e) Input parameter targetFileRetentionPolicyInfo of TRetentionPolicyInfo is to
specify the desired retention policy information on the file when the file is written
into the target storage system.

f) If both input parameters targetSpaceToken and TRetentionPolicyInfo are
provided, then their types must match exactly. Otherwise, the request may be
rejected, and SRM_INVALID_REQUEST must be returned.

g) If request is accepted, SRM assigns the requestToken for asynchronous status
checking. In such case, the returned status code should be
SRM_REQUEST_QUEUED.

h) Pull mode: copy from remote location to the SRM. (e.g. from remote to MSS.)
i) Push mode: copy from the SRM to remote location.

 - 78 -

j) Always release files through srmReleaseFiles from the source after copy is done,
if source is an SRM and PULL mode was performed.

k) Always issue srmPutDone to the target after copy is done, if target is an SRM and
PUSH mode was performed.

l) Note there is no protocol negotiation with the client for this request.
m) totalRequestTime means: if all the file transfer for this request must be complete

in this totalRequestTime. Otherwise, the request is returned as failed at the end of
the totalRequestTime, and SRM_REQUEST_TIMED_OUT must be returned as
the request status code with individual file status of SRM_FAILURE with an
appropriate explanation. All completed files must not be removed, but status of
the files must be returned to the client.

n) If input parameter desiredTotalRequestTime is unspecified as NULL, the request
will be retried for a duration which is dependent on the SRM implementation.

o) If input parameter desiredTotalRequestTime is 0 (zero), each file request will be
tried at least once. Negative value is invalid.

p) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

q) When both sourceSURL and targetSURL are local, local copy must be performed.
r) Empty directories are copied as well.
s) If a targetSURL is provided with some directory structure, the directory structure

must exist, and SRM will not create the directory structure for the targetSURL. In
such case, SRM_INVALID_PATH must be returned. srmMkdir may be used to
create the directory structure.

t) If the sourceSURL and targetSURL are provided as directories (copying
directories) when SRM implementation supports, then all sub directories will be
copied over from the source to the target, and complete sub-directory structure
will be created only if TDirOption indicates them.

u) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. In the output parameter of
explanation in returnStatus, the server may make explicit that the retry is being
done. If streaming mode is not supported, the server returns
SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level and
SRM_PARTIAL_SUCCESS (if some file requests were successful) or
SRM_FAILURE at the request level. Clients may need to clean up the target
space when target space token was provided.

v) Upon srmCopy, SURL entry is inserted to the target name space, and any
methods that access the target SURL such as srmLs, srmBringOnline and
srmPrepareToGet must return SRM_FILE_BUSY at the file level. If another
srmPrepareToPut or srmCopy were requested on the same target SURL,
SRM_FILE_BUSY must be returned if the target SURL can be overwritten,
otherwise SRM_DUPLICATION_ERROR must be returned at the file level.

 - 79 -

5.7.3. Return Status Code
For request level return status,

SRM_REQUEST_QUEUED
 successful request submission and acceptance. Request token must be

returned.
SRM_REQUEST_INPROGRESS

 Some files are completed, and some files are still on the queue. Details
are on the files status. Request token must be returned.

SRM_SUCCESS
 All requests are successfully completed. All source SURLs are copied

into the target destination successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some file request is successfully copied
into the target destination, and some file request is failed. Details are
on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request
 Client is not authorized to copy files into the space that client provided

with targetSpaceToken or targetFileRetentionPolicyInfo
SRM_INVALID_REQUEST

 If both input parameters targetSpaceToken and TRetentionPolicyInfo
are provided, then their types must match exactly.

 targetSpaceToken does not refer to an existing known space in the
SRM server.

SRM_SPACE_LIFETIME_EXPIRED
 space associated with the targetSpaceToken is expired.

SRM_EXCEED_ALLOCATION
 space associated with the targetSpaceToken is not enough to hold all

requested SURLs.
SRM_NO_USER_SPACE

 user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold all requested SURLs for free.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested desiredFileStorageType that is not supported by the
SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.

 - 80 -

 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server
 function is not supported in the SRM server

SRM_FAILURE
 all files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS
 successful request completion for the file. The source SURL is copied

into the target destination targetSURL successfully, and lifetime on the
targetSURL is started.

SRM_REQUEST_QUEUED
 file request is still on the queue.

SRM_REQUEST_INPROGRESS
 file request is being served.

SRM_FILE_LOST
 the request file (sourceSURL) is permanently lost.

SRM_FILE_BUSY
 client requests for files at the source (sourceSURL) which there is an

active srmPrepareToPut (no srmPutDone is not yet called) for.
 client requests for files at the target (targetSURL) which there is an

active srmPrepareToPut (no srmPutDone is not yet called) or srmCopy
for.

SRM_FILE_UNAVAILABLE
 the request file (sourceSURL) is temporarily unavailable.

SRM_FILE_LIFETIME_EXPIRED
 lifetime on targetSURL has expired, but the file is still in the cache.

SRM_INVALID_PATH
 sourceSUR does not exist
 targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR
 targetSURL refers to an existing SURL and overwriting is not allowed.

SRM_AUTHORIZATION_FAILURE
 Client is not authorized to copy files from sourceSURL
 Client is not authorized to copy files into targetSURL
 Client is not authorized to copy files into the space that client provided

with targetSpaceToken or targetFileRetentionPolicyInfo
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.
SRM_NO_USER_SPACE

 user space is not enough to hold the requested SURL.
SRM_NO_FREE_SPACE

 - 81 -

 SRM space is not enough to hold the requested SURL for free.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.

5.8. srmStatusOfCopyRequest

This function is used to check the status of the previously requested srmCopy. Request
token from srmCopy must be provided.

5.8.1. Parameters

 In: string requestToken,
 string authorizationID,
 anyURI [] arrayOfSourceSURLs,
 anyURI [] arrayOfTargetSURLs,

 Out: TReturnStatus returnStatus,

TCopyRequestFileStatus[] arrayOfFileStatuses,
 int remainingTotalRequestTime

5.8.2. Notes on the Behavior

a) If arrayOfSourceSURLs and/or arrayOfTargetSURLs are not provided, return
status for all file requests in the request.

b) If the target space for the requested files is full, then
SRM_EXCEED_ALLOCATION, SRM_NO_USER_SPACE, or
SRM_NO_FREE_SPACE must be returned.

c) SRM must fail (SRM_FAILURE) only if all files in the request failed.
d) totalRequestTime means: All the file transfer for this request must be complete

within this totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must
be returned as the request status code with individual file status of
SRM_FAILURE with an appropriate explanation.

e) Output parameter remainingTotalRequestTime indicates how long the
desiredTotalRequestTime is left. If remainingTotalRequestTime is 0 (zero), the
request has been timed out. If remainingTotalRequestTime is a negative value (-
1), it would mean that each file request will be tried at least once.

f) Streaming mode is allowed. If streaming mode is supported and there is not
enough space to hold the request or partially hold the request, the SRM server
returns SRM_REQUEST_QUEUED and keeps trying the request for the duration
of desiredTotalRequestTime from the request. remainingTotalRequestTime is
being returned. In the output parameter of explanation in returnStatus, the server

 - 82 -

may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if
some file requests were successful) or SRM_FAILURE at the request level.
Clients may need to clean up the target space when target space token was
provided.

g) Upon srmCopy, SURL entry is inserted to the target name space, and any
methods that access the target SURL such as srmLs, srmBringOnline and
srmPrepareToGet must return SRM_FILE_BUSY at the file level. If another
srmPrepareToPut or srmCopy were requested on the same target SURL,
SRM_FILE_BUSY must be returned if the target SURL can be overwritten,
otherwise SRM_DUPLICATION_ERROR must be returned at the file level.

h) srmRm may remove SURLs even if the statuses of the SURLs are
SRM_FILE_BUSY. In this case, the status for srmCopy request must return
SRM_INVALID_PATH upon status request.

5.8.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All source SURLs are copied

into the target destination successfully.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 Some files are completed, and some files are still on the queue. Details
are on the files status.

SRM_PARTIAL_SUCCESS
 All requests are completed. Some file request is successfully copied

into the target destination, and some file request is failed. Details are
on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to submit the request

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 targetSpaceToken does not refer to an existing known space in the

SRM server.
SRM_TOO_MANY_RESULTS

 Request produced too many results that SRM server cannot handle,
and arrayOfSourceURLs and arrayOfTargetURLs cannot fit the
results to return.

SRM_REQUEST_TIMED_OUT
 Total request time is over and the rest of the request is failed.

SRM_SPACE_LIFETIME_EXPIRED

 - 83 -

 space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

 space associated with the targetSpaceToken is not enough to hold all
requested SURLs.

SRM_NO_USER_SPACE
 Insufficient space left in the space that is associated with spaceToken.

SRM_NO_FREE_SPACE
 When client does not specify the spaceToken, SRM uses a default

space. The default space is insufficient to accommodate the request.
SRM_ABORTED

 The request has been aborted.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 SRM server does not support the given input parameters. For example,
client requested bbftp for the only transfer protocol, but SRM cannot
support that. Client requested desiredFileStorageType that is not
supported by the SRM server.

 targetFileRetentionPolicyInfo does not refer to a supported retention
policy in the SRM server.

 Overwrite option is not supported in the SRM server.
 Directory operation is not supported in the SRM server.
 Recursive directory operation is not supported in the SRM server.
 any input parameter is not supported in the SRM server
 a particular type of an input parameter is not supported in the SRM

server
 function is not supported in the SRM server

SRM_FAILURE
 all files requests are failed.
 any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS
 successful request completion for the file. The source SURL is copied

into the target destination targetSURL successfully, and lifetime on the
targetSURL is started.

SRM_REQUEST_QUEUED
 file request is still on the queue.

SRM_REQUEST_INPROGRESS
 file request is being served.

SRM_FILE_LOST
 the request file (sourceSURL) is permanently lost.

SRM_FILE_BUSY
 client requests for files at the source (sourceSURL) which there is an

active srmPrepareToPut (no srmPutDone is not yet called) for.

 - 84 -

 client requests for files at the target (targetSURL) which there is an
active srmPrepareToPut (no srmPutDone is not yet called) or srmCopy
for.

SRM_FILE_UNAVAILABLE
 the request file (sourceSURL) is temporarily unavailable.

SRM_FILE_LIFETIME_EXPIRED
 lifetime on targetSURL has expired, but the file is still in the cache.

SRM_INVALID_PATH
 sourceSUR does not exist
 targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR
 targetSURL refers to an existing SURL and overwriting is not allowed.

SRM_AUTHORIZATION_FAILURE
 Client is not authorized to copy files from sourceSURL
 Client is not authorized to copy files into targetSURL
 Client is not authorized to copy files into the space that client provided

with targetSpaceToken or targetFileRetentionPolicyInfo
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.
SRM_NO_USER_SPACE

 user space is not enough to hold the requested SURL.
SRM_NO_FREE_SPACE

 SRM space is not enough to hold the requested SURL for free.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
 The file request would not be able to be completed within the

totalRequestTime.
 The requested file has been suspended because the request has timed

out.

5.9. srmReleaseFiles

This function is used to release pins on the previously requested “copies” (or “state”) of
the SURL. This function normally follows srmPrepareToGet or srmBringOnline
functions.

5.9.1. Parameters

 In: string requestToken,
 string authorizationID,
 anyURI [] arrayOfSURLs,
 Boolean doRemove

 - 85 -

 Out: TReturnStatus returnStatus,
TSURLReturnStatus[] arrayOfFileStatuses

5.9.2. Notes on the Behavior

a) doRemove by default is false. If remove is true, the pin on the file is released, the
“copy” or “state” is removed and SRM may release the resource.

b) Directory is okay for SURL. In such case, it will release all files recursively in the
directory.

c) If requestToken is not provided and SURLs are provided, then the SRM will
release all the files specified by the SURLs owned by the caller, regardless of the
requestToken.

d) If requestToken is provided and SURLs are not provided, then the SRM will
release all the files in the request that is associated with the requestToken.

e) At least one of requestToken and SURLs must be provided.
f) If requestToken is not provided, then authorizationID may be needed as an

additional verification method for the client authorization to release files. It may
be inferred or provide in the call.

g) srmReleaseFiles is only valid after srmPrepareToGet or srmBringOnline
operations. To release TURLs after a srmPrepareToPut, srmAbortRequest or
srmAbortFiles must be used. If a client submits srmReleaseFiles after
srmPrepareToPut or srmPutDone, then the SRM server returns
SRM_INVALID_REQUEST.

5.9.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs are released

successfully.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some SURLs are successfully released,
and some SURLs are failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to release files

SRM_INVALID_REQUEST
 arrayOfSURLs is empty.
 requestToken does not refer to an existing known request of

srmPrepareToGet or srmBringOnline in the SRM server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

 - 86 -

 input parameter doRemove is not supported in the SRM. srmRm must
be used.

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL is released

successfully.
SRM_INVALID_PATH

 SURL does not refer to an existing file
SRM_AUTHORIZATION_FAILURE

 client is not authorized to release SURL
SRM_LAST_COPY

 SURL is the last copy when remove flag is on
SRM_FILE_LIFETIME_EXPIRED

 SURL is expired already.
SRM_ABORTED

 The requested file has been aborted.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

5.10. srmPutDone

srmPutDone() is used to notify the SRM that the client completed a file transfer to the
TransferURL in the allocated space. This call should normally follow srmPrepareToPut.

5.10.1. Parameters

 In: string requestToken,
 string authorizationID,
 anyURI [] arrayOfSURLs

 Out: TReturnStatus returnStatus,

TSURLReturnStatus[] arrayOfFileStatuses

5.10.2. Notes on the Behavior

a) Called by client after srmPrepareToPut() prepares the TURL and the client
completes the file transfer into the prepared TURL.

b) srmRm may remove SURLs even if the statuses of the SURLs are
SRM_FILE_BUSY. In this case, SRM_INVALID_PATH must be returned upon
srmPutDone request.

c) If any additional srmPutDone is requested on the same SURL,
SRM_DUPLICATION_ERROR must be returned at the file level.

5.10.3. Return Status Code
For request level return status,

 - 87 -

SRM_SUCCESS
 All requests are successfully completed. TURLs contain data, and file

lifetimes on the SURLs start.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some file requests are successfully
completed, and some file requests are failed. Details are on the files
status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to call the request specified by the

requestToken
SRM_INVALID_REQUEST

 arrayOfSURLs is empty.
 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_REQUEST_TIMED_OUT

 Total request time is over and the request is failed.
SRM_ABORTED

 The request has been aborted.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

For file level return status,

SRM_SUCCESS
 successful request completion of the “put done” for the targetSURL

SRM_INVALID_PATH
 SURL does not refer to an existing file request

SRM_AUTHORIZATION_FAILURE
 client is not authorized to call the request srmPutDone() on the SURL

SRM_DUPLICATION_ERROR
 targetSURL exists already.

SRM_FILE_LIFETIME_EXPIRED
 targetSURL has an expired TURL.

SRM_SPACE_LIFETIME_EXPIRED
 targetSURL has an expired space allocation.

SRM_ABORTED
 The requested SURL file has been aborted.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

 - 88 -

5.11. srmAbortRequest

srmAbortRequest() allows clients to prematurely terminate asynchronous requests of any
types. It may involve data transfer requests initiated by a call to srmPrepareToGet(),
srmBringOnline(), srmPrepareToPut() or srmCopy(). The effect of srmAbortRequest()
depends on the type of request. For data transfer request, the SRM will attempt a
complete cleanup of running transfers and files in intermediate state.

5.11.1. Parameters

 In: string requestToken,
 string authorizationID

 Out: TReturnStatus returnStatus

5.11.2. Notes on the Behavior

a) Terminate all files in the request regardless of the file state. Remove files from the
queue, and release cached files if a limited lifetime is associated with the file.
Expired files are released.

b) Those files that are brought online with unlimited lifetime will remain in the
space where they are brought in. and are not removed. Clients need to remove
explicitly through srmRm or srmPurgeFromSpace.

c) Abort must be allowed to all requests with requestToken.

5.11.3. Return Status Code

SRM_SUCCESS
 successful request completion. Request is aborted successfully.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to abort files in the request specified by the

requestToken
SRM_INVALID_REQUEST

 requestToken does not refer to an existing known request in the SRM
server.

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

5.12. srmAbortFiles

 - 89 -

srmAbortFiles() allows clients to abort selective file requests from the asynchronous
requests of any type. It may include data transfer requests initiated by a call to
srmPrepareToGet(), srmBringOnline(), srmPrepareToPut(), or srmCopy(). The effect of a
srmAbortFiles() depends on the type of the request.

5.12.1. Parameters

 In: string requestToken,
 anyURI [] arrayOfSURLs,
 string authorizationID

 Out: TReturnStatus returnStatus,

TSURLReturnStatus[] arrayOfFileStatuses

5.12.2. Notes on the Behavior
a) Abort all files in this call regardless of the state.

5.12.3. Return Status Code
For request level return status,

SRM_SUCCESS
 successful request completion. All SURLs are aborted successfully.

SRM_PARTIAL_SUCCESS
 All requests are completed. Some SURLs ares successfully aborted,

and some SURLs are failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to abort files in the request specified by the
requestToken

SRM_INVALID_REQUEST
 arrayOfSURLs is empty.
 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

For file level return status,

SRM_SUCCESS

 - 90 -

 successful abort request completion for the SURL. SURL is aborted
successfully.

SRM_INVALID_PATH
 SURL does not refer to an existing file request that is associated with

the request token
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

5.13. srmSuspendRequest

srmSuspendedRequest is to suspend a previously submitted active request.

5.13.1. Parameters

In: string requestToken
 string authorizationID

Out: TReturnStatus returnStatus

5.13.2. Notes on the Behavior

a) Suspend all files in this request until srmResumeRequest is issued.

5.13.3. Return Status Code

SRM_SUCCESS
 successful request completion. Request is suspended successfully.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to suspend the request specified by the

requestToken
SRM_INVALID_REQUEST

 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

5.14. srmResumeRequest

srmResumeRequest is to resume previously suspended requestst.

 - 91 -

5.14.1. Parameters

In: string requestToken,
 string authorizationID

Out: TReturnStatus returnStatus

5.14.2. Notes on the Behavior
a) Resume the previously suspended request.

5.14.3. Return Status Code

SRM_SUCCESS
 successful request completion. Request is resumed successfully.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to resume the request specified by the

requestToken
SRM_INVALID_REQUEST

 requestToken is empty.
 requestToken does not refer to an existing known request in the SRM

server.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

 function is not supported in the SRM server

5.15. srmGetRequestSummary

srmGetRequestSummary is to retrieve a summary of the previously submitted request.

5.15.1. Parameters

 In: string [] arrayOfRequestTokens,
 string authorizationID

 Out: TReturnStatus returnStatus

TRequestSummary[] arrayOfRequestSummaries

5.15.2. Return Status Code

 - 92 -

For request interface level return status,
SRM_SUCCESS

 All requests are successfully completed. All requests summaries are
checked and returned successfully. Details are on the request status.

SRM_PARTIAL_SUCCESS
 All requests are completed. Summaries of some requests are

successfully checked and returned, but some requests summaries are
failed. Details are on the request status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to get summary of the request specified by the

requestToken
SRM_INVALID_REQUEST

 arrayOfRequestTokens is empty.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 function is not supported in the SRM
SRM_FAILURE

 SRM failed to get summaries of all requests that are associated with
request tokens.

 any other request failure. Explanation needs to be filled for details.

For request level return status,

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
SRM_SUCCESS

 The request has been completed successfully.
SRM_REQUEST_QUEUED

 successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS

 some files are completed, and some files are still on the queue
SRM_REQUEST_TIMED_OUT

 Total request time is over and the request is failed.
SRM_REQUEST_SUSPENDED

 The request has been suspended.
SRM_ABORTED

 The request has been aborted.
SRM_PARTIAL_SUCCESS

 All requests are completed. Some request is successfully completed,
and some request is failed.

SRM_FAILURE
 The request is failed. Explanation needs to be filled for details.

 - 93 -

5.16. srmExtendFileLifeTime

srmExtendFileLifetime() allows clients to extend lifetime of existing SURLs of volatile
and durable file storage types or lifetime of pinned files (TURLs and those TURLs are of
the results of srmPrepareToGet, srmPrepareToPut or srmBringOnline).

5.16.1. Parameters

 In: string authorizationID,

string requestToken,
 anyURI [] arrayOfSURLs
 int newFileLifetime
 int newPinLifetime

 Out: TReturnStatus returnStatus,
 TSURLLifetimeReturnStatus [] arrayOfFileStatuses

5.16.2. Notes on the Behavior

a) This method allows to change only one lifetime at a time (either SURL lifetime
by the newFileLifetime or pin lifetime by the newPinLifetime), depending on the
presence or absence of the request token. SURL lifetimes are on SURLs that
resulted from the successful srmCopy or srmPrepareToPut followed by
srmPutDone, and pin lifetimes are on TURLs or file copies that resulted from
srmPrepareToGet, srmPrepareToPut or srmBringOnline.

b) newPinLifetime and newFileLifetime are relative to the calling time. Lifetime will
be set from the calling time for the specified period.

c) When the requestToken is provided, only pin lifetime is extended with
newPinLifetime.

d) When SURL lifetime is extended with newFileLifetime, the request token must
not be specified.

e) The number of lifetime extensions maybe limited by SRM according to its
policies.

f) If original lifetime is longer than the requested one, then the requested one will be
assigned.

g) When lifetime input parameters (newPinLifetime or newFileLifetime) are not
specified, the SRM server uses its default value.

h) Lifetime cannot be extended on the released files, aborted files, expired files, and
suspended files. For example, pin lifetime cannot be extended after srmPutDone
is requested on SURLs after srmPrepareToPut. In such case,
SRM_INVALID_REQUEST at the file level must be returned, and
SRM_PARTIAL_SUCCESS or SRM_FAILURE must be returned at the request
level.

i) Extending file lifetime on SURL is similar to srmExtendFileLifetimeInSpace.

 - 94 -

j) If input parameters newFileLifetime or newPinLifetime request exceeds the
remaining lifetime of the space, then SRM_SUCCESS is returned at the request
and file level, and TSURLLifetimeReturnStatus contains the remaining lifetime.

k) Lifetime extension must fail on SURLs when their status is SRM_FILE_BUSY.

5.16.3. Return Status Code
For request level return status,

SRM_SUCCESS
 All requests are successfully completed. All SURLs or TURLs

associated with SURLs in the specified request have an extended
lifetime. Details are on the files status.

SRM_PARTIAL_SUCCESS
 All requests are completed. Lifetimes on some SURLs or TURLs are

successfully extended, and lifetimes on some SURLs or TURLs are
failed to be extended. Details are on the files status.

SRM_AUTHENTICATION_FAILURE
 SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
 client is not authorized to extend file lifetime

SRM_INVALID_REQUEST
 requestToken does not refer to an existing known request in the SRM

server.
 requestToken is not provided, and extending pinning lifetime of

TURLs associated with SURLs require requestToken.
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_FAILURE

 All files requests are failed.
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

For file level return status,

SRM_SUCCESS
 successful request completion for the SURL. SURL or TURL

associated with the SURL in the request has an extended lifetime.
SRM_INVALID_PATH

 SURL does not refer to an existing file
 SURL does not refer to an existing file request that is associated with

the request token
SRM_FILE_LIFETIME_EXPIRED

 Lifetime on SURL is expired already.
SRM_ABORTED

 The requested file has been aborted.
SRM_RELEASED

 The requested file has been released.

 - 95 -

SRM_INVALID_REQUEST
 Attempt to extend pin lifetimes on TURLs that have been already

expired.
SRM_FAILURE

 The requested file has been suspended because the request has timed
out.

 any other request failure. Explanation needs to be filled for details.

5.17. srmGetRequestTokens

srmGetRequestTokens retrieves request tokens for the client’s requests, given client
provided request description. This is to accommodate lost request tokens. This can also
be used for getting all request tokens.

5.17.1. Parameters
 In: string userRequestDescription,
 string authorizationID

Out: TReturnStatus returnStatus
TRequestTokenReturn[] arrayOfRequestTokens

5.17.2. Notes on the Behavior

a) If userRequestDescription is null, returns all requests the client has.
b) If the user assigned the same description to multiple requests, the client may get

back multiple request tokens each with the time the request was made.

5.17.3. Return Status Code

SRM_SUCCESS
 successful request completion. Request tokens are returned

successfully.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is notauthorized to get request tokens specified by the
userRequestDescription

SRM_INVALID_REQUEST
 userRequestDescription does not refer to any existing known requests

SRM_INTERNAL_ERROR
 SRM has an internal transient error, and client may try again.

SRM_FAILURE
 any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED
 function is not supported in the SRM

 - 96 -

 - 97 -

6. Discovery Functions

summary:

srmGetTransferProtocols
srmPing

6.1. srmGetTransferProtocols

This function is to discover what transfer protocols are supported by the SRM.

6.1.1. Parameters

 In: string authorizationID,

 Out: TReturnStatus returnStatus,
 TSupportedTransferProtocol [] protocolInfo

6.1.2. Notes on the Behavior

a) srmGetTransferProtocols() returns the supported file transfer protocols in the
SRM with any additional information about the transfer protocol.

6.1.3. Return Status Code

SRM_SUCCESS
 successful request completion. List of supported transfer protocols are

returned successfully.
SRM_AUTHENTICATION_FAILURE

 SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

 client is not authorized to request storage information
SRM_INTERNAL_ERROR

 SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

 function is not supported in the SRM
SRM_FAILURE

 any other request failure. Explanation needs to be filled for details.

6.2. srmPing

This function is used to check the state of the SRM. It works as an “are you alive” type of
call.

6.2.1. Parameters

 - 98 -

 In: string authorizationID,

 Out: string versionInfo
 TExtraInfo[] otherInfo

6.2.2. Notes on the Behavior

a) srmPing() returns a string containing SRM v2.2 version number as a minimal “up
and running” information. For this particular SRM v2.2 version, it must be
“v2.2”. Other versions may have “v1.1”, “v3.0”, and so on.

b) Any additional information about the SRM can be provided in the output
parameter otherInfo.

 - 99 -

7. Appendix

7.1. Status Code Specification

Note:

• Status codes represent errors, warnings and status.
• For each function, status codes are defined with basic meanings for the function.

Only those status codes are valid for the function. Specific cases are not stated for
each status code.

• If other status codes need to be defined for a specific function, send an email to
the collaboration to discuss the usage

 - 100 -

7.2. SRM WSDL discovery method

May 1, 2003

A) SURL format:
srm://host[:port]/[soap_end_point_path?SFN=]site_file_name

where […] means optional, and letters in bold are fixed.

We note if the SURL contains the soap_end_point_path, then it is not possible to change
the soap endpoint without changing all the previously published SURLs.

Example SURLs:

Without soap_end_point_path:
srm://dm.lbl.gov:4001/ABC/file_x

with soap_end_point_path:
srm://dm.lbl.gov:4001/srm_servlet?SFN=ABC/file_x

B) Given that soap-end-point-path clause is provided, then the soap endpoint is:
https://host[:port]/soap_end_point_path

C) If port is missing, the default port assumed is 8443, which is the port for https with
GSI.

The discussion below assumes no endpoint in the SURL, and shows how the soap
endpoints and wsdl can be found given an SURL

Issues:

1. We wish to have a way of finding the SRM WSDL for multiple versions from the
SURL.

2. We wish to support clients that know what SRM version they want to use. For

example, a client that uses version 1.1, should be able to got the WSDL and/or the
SOAP endpoint for it directly.

3. We wish to have a default where an SRM version number is not mentioned. The

version returned in this case is whatever the SRM currently supports, or if
multiple versions are supported, the SRM chooses what to return.

 - 101 -

4. We wish to allow a file accessed by a previous SRM version to be accessed by a
future SRM version without having to change the SURL. Furthermore, if the file
can be accessed by either version simultaneously (that depend on the SRM
implementation) that should be possible too.

5. We wish to have a way for a client to find out which version the SRM supports

and the endpoint without having to read the WSDL. This is necessary in a
changing world, where new version can be introduced.

6. We wish to have a client that can use multiple SRM versions to find out which

SRM version is supported by the SRM. This is probably the most realistic
scenario, since we cannot expect all SRMs to support the same version at any one
time.

7. We wish to have a client find out which SRM versions are supported for

accessing a particular file, in case that files can be accessed by multiple SRM
versions simultaneously. This is related to point 3 above.

This is a long wish list, but the proposed solution is simple. We assume that the WSDL
will contain the version number. First, we propose that every SRM WSDL starts with:
SRM version number--> (e.g. <!--SRM version 2.1.3-->)

Now, the solution is as follows:

Give an SURL: srm://host[:port]/path/file (e.g. srm://dm.lbl.gov:4001/ABC/file_x)
The following can be derived:

Case 1)
For clients that know what SRM versions they want to use:
https://host:port/srm/srm.version.wsdl
https://host:port/srm/srm.version.endpoint

For example, given the SURL above, and the client uses version 1.1, you derive:
https://dm.lbl.gov:4001/srm/srm.1.1.wsdl
https://dm.lbl.gov:4001/srm/srm.1.1.endpoint

Note: the endpoint returned can be any URI, e.g.:
https://gizmo.lbl.gov:10001/srm/v1.0
or: https://dm.lbl.gov:12345/servlet/srm.1.1)

Case 2)

For clients that don’t know the version, and want to use the default:
https://host:port/srm/srm.wsdl
https://host:port/srm/srm.endpoint

For the example above:
https://dm.lbl.gov:4001/srm/srm.wsdl

 - 102 -

https://dm.lbl.gov:4001/srm/srm.endpoint

Case 3)

For clients that want to find out the SRM version and endpoint without getting the
entire WSDL:
https://host:port/srm/srm.info

The srm.info file will contain:
<!--SRM version number-- --srmEndpoint-->
For example:
<!--SRM version 2.1.3-- -- https://gizmo.lbl.gov:10001/srm-->

Case 4)

For servers that support multiple srm version accessing the SAME file:
The same format as above repeating for each srm version.
For example:
<!--SRM version 1.1-- -- https://sdm.lbl.gov:5005/srm-->
<!--SRM version 2.1.3-- -- https://gizmo.lbl.gov:10001/srm-->

To summarize, the following is what should be supported for WSDL and endpoint
discovery:

Given an SURL:
srm://host[:port]/site_file_name

The following can be derived:

a) https://host[:port]/srm/srm[.version].wsdl
b) https://host[:port]/srm/srm[.version].endpoint
c) https://host[:port]/srm/srm.info
Where the content have the format repeated as many time as there are supported versions:
<!--SRM version number-- --srmEndpoint-->
