The Storage Resour ce Manager | nterface Specification
Verson 2.1

This version prepared by:
Junmin Gu, Alex Sim, Arie Shoshani
LBNL

THISIS A WORK IN PROGRESS DRAFT
It reflects decisions discussed in
http://sdm.lbl.gov/srm/documents/joint.docs/SRM.v2.1.joint.func.design.doc

I ntroduction

This document contains the interface specification of SRM 2.1. It incorporates the
functionality of SRM 20 (see “srm.methodsv2.0.rev2.doc” posted at
http://sdm.Ibl.gov/srm), but is much expanded to include additional functionaity,
especially in the area of dynamic storage space reservation and directory functionality in
client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting whose
purpose was to further define the functionality and standardize the interface of Storage
Resource Managers (SRMs) — a Grid middleware component. The meeting took place at
CERN on December 4-5, 2002. This document is a follow up to the basic SRM design
consideration document that describes the basic functionality of SRM Version 2.0 (see
“SRM.v2.0.joint.func.design.rev2.doc” posted at http://sdm.Ibl.gov/srm). The
participants at the meeting are listed below.

Participants:

EDG-WP2: Peter Kunszt, Heinz Stockinger, Kurt Stockinger, Erwin Laure

EDG-WP5: JeanPhilippe Baud, Stefano Occhetti, Jens Jensen, Emil Knezo, owen synge
JLAB: Bryan Hess, Andy Kowalski

FermiLab: Don Petravick, Timur Perelmutov

LBNL: Arie Shoshani, Alex Sim

Other contributors not at the meeting: Chip Watson (Jlab), Rich Wellner (FermiLab),
Junmin Gu (LBNL)

The document is organized in four sections. Thefirst, called “ Defined Structures’
contain all the type definitions used to define the functions (or methods). The next 3
sections contain the specification of “ Space Management Functions’, “ Directory
Functions’, and “Data Transfer Functions’. All the “ Space Management Functions’,
“Directory Functions’ are newly added functions, and “Data Transfer Functions’ are
dightly modified versions of the SRM V2.0 specification.

It is advisable to read the document SRM.v2.1.joint.func.design.doc posted at
http://sdm.Ibl.gov/srm before reading this specification, since the reasoning for the
decisions reflected in this specification are described there in detail.

Namespace SRM:

Notation: underlined attributes arerequired.

Defined Structures:

enum
enum

enum
enum

enum

enum

enum

typedef
typedef
typedef

typedef

Typedef

typedef

typedef

TSpaceType {Volatile, Durable, Permanent}
TFileType {Volatile, Durable, Permanent}

TPermissonType {RW,X}
TRequestType {GET, PUT, COPY}

T StatusCodeGet { Queued, Processing, Error, Released,
Suspended, Aborted,
Pinned, WaitToBePinned}
T StatusCodePut { Queued, Processing, Error,
Suspended, Aborted,
SpaceAllocated, PutDone,
Pinned, WaitToBePinned, Rel eased}
TStatusCodeCopy { Queued, Processing, Error
Suspended, Aborted,
CopyDone, Released}

string TRequestToken
string TReason
string TUserID

unsigned long TSizelnM B

struct { TPermissionType owner,
TPermissionType group,
TPermissionType world} TPermission

struct {int year,
int month // 1-12
intday, //1-31

int hour, // 0-23
int minute, // 0-59
int second // 0-59} TGMTTime

struct {int day,
int hour,
int minute} TTimeDuration

typedef struct { boolean isDir,

string name,

TSizelnMB Size,

TPermissionType yourPermission,

TGMTTime createdAtTime,

string OWner,

string fromURL // if path isafile

} TMetaDataPathDetail

typedef struct { TSpaceType typeOf ThisSpace,

string owner,

TSizelnMB total SizeOf ThisSpace,

TSizelnMB sizeOfUnusedSpace,

TSizelnMB sizeOfUsedSpace,

TTimeDuration durationAssigned,

TTimeDuration durationLeft} TMetaDataSpace
typedef struct { TFileType typeOfThisFile,

TSpaceType typeOf Space,

string owner,

TSizelnMB sizeOf ThisFile,

TTimeDuration durationAssigned,

TTimeDuration durationLeft} TMetaDataFile
typedef string TStorageSystem| D
typedef string T StorageSystemAuth
typedef string TSURL // site URL
typedef string TTURL // transfer URL
typedef struct { TStorageSystemID storageSystemiD,

TStorageSystemAuth encryptedAuthinfo} T StorageSystemlnfo
typedef struct { TStorageSysteminfo storageSysteml DandA uth,

TSURL SURLOrStEN} TAccess
typedef struct { TAccess SURLInfo

TAccess stFNInfo

string globalFileName

TTimeDuration lifetime // pin time

TFileType fileType

TSizelnMB knownSizeOfThisFile,

TSizelnMB maxFileLength} TFileRequest

typedef struct { TAccess fromSURLInfo

typedef

typedef

typedef

typedef

notes:

TAccess toSURL Info

string globalFileName

TTimeDuration lifetime // pin time

TFileType fileType

TSizelnMB knownSizeOf ThisFile,

TSizelnMB maxFileLength} TCopyFileRequest

struct { TStatusCodeGet getStatus,
T StatusCodePut putStatus,
TStatusCodeCopy copyStatus} T StatusCode

gruct { TStatusCode status,
string explanation} T Status
struct { TSURL siteURL,
TStatus Status,
TTimeDuration estimatedWaittingTimeOnQueue,
TTimeDuration estimatedProcessingTime,
TTURL transfertURL FromSRM
TTimeDuration remainingPinTimelfAny} TFileStatus
struct { TRequestToken requestToken,
TRequestType requestType,
int total FilesInThisRequest,
int numOfQueuedRequests,
int numOfFinishedRequests,
int numOfProgressingRequests,
Boolean isSuspened} TRequestSummary

UserID is not needed when we use gsi.

SorageSystemID is a string that contains the login and password required by the
storage system. For example, it might have the form of login: pwd@hostname,
where “:” is a reserved separator between login and pwd. If hostname is not
provided, it is defaulted to what’s in the accompanying site URL or the host of
RM.

SorageSystemAuth is an encrypted string that is required by the storage system.
TMetaDataSpace can refer to a single space of each type (.e. volatile, durable,
permanent). It does not include the extra space needed to hold the directory
structures.

Regarding filesin Volatile space: Any file in Volatile space is owned by the SRM,
but the requester(s) have read permission to it. If another user requests this file,
he needs to provide a source sitetURL so SRM can check from the source site

whether the user has a read/write permission. If permission is granted, then the
SRM updates its permission list to include this caller and returns the flein
Volatile space instead getting the file from the source site.

GlobalFileName is not a required attribute.

The type definition SURL above is used for both site URL and the “ Storage File
Name” (stFN). This was done in order to simplify the notation. Recall that stFN
is the file path/name of the intended storage location when a fileis put (or copied)
into an SRM controlled space. Thus, a stFN can be thought of a special case of
an SURL, where the protocol is assumed to be “srm” and the machine:port is
assumed to be local to the SRM. For example, when the request srmCopy is
made, the source file is specified by a site URL, and the target location can be
optionally specified as a stFN. By considering the stFN a special case of an
SURL, an srmCopy takes SURLSs as both the source and target parameters.

The requestToken assigned by SRM is unique and immutable (non-reusable). For
example, if the date:timeis part of the requestToken it will be immutable.

Function specification:

Space M anagement Functions:

summary:
srmReserveSpace
srmReleaseSpace
srmUpdateSpace(includes size and time)
srmCompactSpace:
srmGetCurrentSpace:

srmGetFilesMetaData:
srmGetSpaceMetaData:

srmChangeFileType:

details:
srmReser veSpace:
In: TUseID useriD,
TSpaceType typeOf SpaceT oReserve,
TSizelnMB sizeOf SpaceToReserve,
TTimeDuration lifetimeOf SpaceToReserve,
TStorageSysteminfo storageSysteminfo
Out: TSpaceType typeOfReservedSpace,

TSizelnMB sizeOf ReservedSpace,
TTimeDuration lifetimeOf ReservedSpace,

TReason possi bleExplanation,
Boolean isSpaceReserved

notes:

lifetimeOfSpaceToReserve is not needed if requesting permanent space.

SRM can provide default size and duration if not supplied.

storageSysteminfo is optional in case storage system requires additional security
check.

If isSpaceReserved=false, it means SRM refuses the request, and all the other
parameters should be null, except possibleExplanation.

srmReleaseSpace:
In: TUserID useriD,
TSpaceType typeOf Space,
Boolean forceFileRelease
Out: Boolean rel easel sSuccesful,
TReason possibleExplanation
notes:

A request to release a non-reserved space (e.g. non-exist, or already released
space) will return true.

forceFileRelease=false is default. This means that the space will not be released
if it hasfilesthat are still pinned in the space. To release the space regardless of
thefilesit contains and their status forcefFileRel ease=true must be specified.

To be safe, a request to release a reserved space that has an on-going file transfer
will return false, even forceFileRelease= true.

When space is releasable and forceFileRelease=true, all the files in the space are
released, even in durable or permanent space.

It is up to each SRM whether a released space will result in removing all its
files/directories immediately. One possibility is to keep files/directoriesin volatile
space when the Durable or Permanent spaces are released.

srmUpdateSpace(includes size and time)

notes:

In: TUserlD userlD,
TSpaceType designatedSpaceType,
TSizelnMB newsSize,
TTimeDuration newDurationFromCallingTime
Out: TSizelnMB actual SizeGranted,
TTimeDuration actual DurationGranted,
TReason possibleExplanation

If neither size or duration are supplied in the input, then return will be null.
newSze isthe new actual size of the space, so hasto be positive.

newDurationFromCallingTime is the new lifetime requested regardless of the
previous lifetime, and has to be positive. It might even be shorter than the
remaining lifetime at the time of the call.

srmCompact Space:
In: TUserlD userlD,
TSpaceType typeOf Space,
Boolean doDynamicCompactFromNowOn
Out: TSizelnMB newSizeOf ThisSpace
notes:

Thisfunction is called to reclaim the space for all released files and update space
size in Durable and Permanent spaces. Files not released are not going to be
removed (even if lifetime expired.) Directory structure will stay intact.
doDynamicCompactFromNowOn=fal se by default, which implies that only a one
time compactSpace will take place.

If doDynamicCompactFromNowOnN=true, then the space of released files will be
automatically compacted until the value of doDynamicCompactFromNowOn is
set to false.

When space is compacted, the files in that space do not have to be removed by the
SRM. For example, the SRM can choose to move them to volatile space. The
client will only perceive that the compacted space is now available to them.

To physically force a removal of afile, the client should use srmRm.

srmGetFilesM etaData:

notes:

In: TUseID userlD,
String([] arrayOfPath,
TSpaceType spaceType,
String[] arrayOfGlobal FileName

Out: TMetaDataFil€] fileDetails

The path can be specified as ~user/relative_path where ~user can be omitted if
caller isreferring to self. Like unix, one user needs access permission granted by
the owner of the file/space to look into another user’ s directory.

If the path is null, then return fileDetails on all the files in the space.

spaceType is needed to determine which space to look into, because the file path
isrelative to each space type.

srmGetSpaceM etaData:

In: TUserID useriD,
TSpaceType|] array Of TypeOf Space

notes:

Out: TMetaDataSpace[] arrayOfSpaceDetails

If no typeOfSpace is given, return ALL caller spaces under each of the types.

srmChangeFileType:

notes:

In: TUserlD userlD,
string[] arrayOf Path/filename,
String([] arrayOfGlobal FileName,
TSpaceType typeOf Space,
TFileType desiredType

Out: Boolean changel sSuccessful

Either path or global FileName must be supplied.
If a path is pointing to a directory, then the effect is recursive for all the files in
this directory.

Changing the file type is bound to the restriction of filetypes in spacetypes, e.g. a
Volatile file can not be changed to Permanent if it is not in a Permanent space.

Directory Functions:

summary:

srmMkdir:

srmRmdir: (applies to dir)

srmRm: (applies to file)

srmLs: (applies to both dir and file)
srmMv: (applies to both dir and file)
srmCp: (applies to both dir and file)
srmCd:

srmPwd:

srmReassignToUser:
srmAddPermission:

details:
smM kdir:
In: TUseID userlD,
TSpaceType designedSpaceType,
string currentDirectory,
string newDirectoryPath,
Out: Boolean dirCreatedSuccessfully

notes:

The topDirectory can be omitted if referring to the user’ s top directory.
Consistent with unix, recursive creation of directoriesis not supported.
newDiretoryPath can include paths, as long as all sub directories exist.

srmRmdir: (appliesto dir)

In: TUserID useriD,
string dirToBeDeleted,
TSpaceType spaceType,
boolean doRecursiveRemowve
Out: Boolean pathDel etedSuccessfully

notes:
doRecursiveRemove is false by default.
To distinguish from srmRm(), this function is for directories only.

srmRm: (appliestofiles)

In: TUseID userlD,
string([] array OfFilePathsT oBeDel eted,
TSpaceType spaceType

Out: Boolean(] arrayOf Del etedSuccessfully

notes:
To distinguish from srmRmDir (), this function appliesto files only.

srmLs: (appliesto both dir and file)

In: TUseID userlD,
string pathToBel isted,
TSpaceType spaceType,
boolean fullDetailedList,
boolean onelevel Recursive

Out: TMetaDataPathDetail[] details
notes:
doFullDetailedList=false by default.
If doFullDetailedList=true provide full details similar to unix “Is—".
If oneLevelRecursive=true then file lists of one level below current will be

provided as well.
srmMv: (appliesto both dir and file)
In: TUserlD userlD,
string pathToBeMovedFrom,
string pathToBeMovedTo,
TSpaceType spaceTypeOfFromPath,

TSpaceType spaceTypeOfToPath

Out: Boolean movel sSuccessful

notes:

Spoace allocation and de-allocation may be involved if moving from one type of
space to another.

Both paths here are assumed to be owned by the same user.

ssrmCp: (appliesto both dir and file)

In: TUseID toUserD,
string pathToBeCopiedTo,
TSpaceType spaceTypeOf ToPath,
TUserlD fromUserID,
string pathToBeCopiedFrom,
TSpaceType spaceTypeOfFromPath,
Boolean copyRecursively // default = false
Out: Boolean copylsSuccessful
notes:
The toUserID must be the ID of the user making the srmCp call.
The fromUserID can be the ID of either the user making the srmCp call or
another user.
Spoace allocation may be involved at the destination side.
Permission checking isrequired if different users are involved.
srmCd:
In: TUseID useriD,
string pathToBeChangedTo
Out: Boolean cdisSuccessful
srmPwd:
In: TUserlD userlD
Out: String currentPath
srmAddPer mission: (appliesto both dir and file)
In: TUseID userlD,
string pathTargeted,
TSpaceType spaceTypeOfFromPath
TPermission newPermission,
String anotherUser
Out: Boolean addPermissionl sSuccessful

notes:
If anotherUser = “world”, it means world permission.

AnotherUser depends on the security model of the SRM. For example, If gsi is
used, the * distinguished name” may be used.

srmReassignToUser :
In: TUseID useriD,
string assignedUser,
TTimeDuration lifeTimeOfThisAssignment,
String designatedPathFromOwner // file or dir,
TSpaceType designatedSpaceTypeFromOwner
Out: Boolean acknowledged

notes:

This function implies actual lifetime of file/space involved is extended up to the
lifeTimeOf ThisAssignment.

The caller must be the owner of the files to be reassigned.

permission is omitted because it has to be READ permission.
lifeTimeOfThisAssignment is relative to the calling time. So it must be positive.
After lifeTimeOfThisAssignment time period, or when assignedUser obtained a
copy of files through srmCp(), the files involved are released and space is
compacted automatically, which ever isfirst.

If the path hereis a directory, then all the files under it are included recursively.

If there are any files involved that are released before this function call, then
these files will not be involved in reassignment.

If a compact() is called before this function is complete, then this function has
priority over compact(). Compact will be done automatically as soon asfiles are
copies to the assignedUser. Whether to dynamically compact or not is an
implementation choice.

Data Transfer Functions:

summary:

srmPrepareToGet:
srmPrepareToPut:
srmCopy:

srmReleaseFiles: (dir is ok. Will release recursively for dirs)
srmPutDone:

srmAbortRequest:
srmAbortFiles:
srmSuspendRequest:
srmResumeRequest:

srmGetRequestStatus:
srmGetFilesStatus:
srmGetRequestSummary:

srmExtendFileLifeTime:
srmGetRequestID:

srmChecklnLocalCache:

details:
srmPrepareT oGet:
In: TUserlD useriD,

TFileRequest[] arrayOfFileReugest,
string([] arrayOfProtocols,
string callbackReference,
string userRequestDescription,
TSpaceType designatedSpace

notes:

Out: TRequestToken requestToken,
TFileRequestStatug[] arrayOfFileStatus

If callbackReference is provided then callback will be performed.

Only pull mode is supported.

SRM rejectsthefile request if stFN (in the TFileRequest) is not local.

If StFN is not specified, SRM will generate a name automatically and put it in the
specified user space. Thiswill be returned as part of the “ transfer URL” .

SRM assigns the requestToken at thistime.

Normally this call will be followed by srmReleass().

srmPrepareT oPut:
In: TUserlD userlD,
TFileRequest[] array OfFileRequest,
string([] arrayOfProtocols,
string callbackReference,
string userReguestDescription,
TSpaceType designatedSpace

notes:

Out: TRequestToken requestToken,
TFileRequestStatug[] arrayOfFileStatus

If callbackReference is provided then callback will be performed.

Only push mode is supported for srmPrepareToPut.

SFN (in the TfileRequest) hasto be local. If stFN is not specified, SRM will name
it automatically and put it in the specified user space. This will be returned as
part of the “ transfer URL” .

srmPutDone() is expected after each fileis* put” into the allocated space.

The lifetime of the file starts as soon as SRM get the ssmPutDone(). If
srmPutDone() is not provided then the files in that space are subject to removal
when the space lifetime expires.

srmCopy:
In: TUserlD useriD,
TCopyFileRequest[] arrayOfFileReugest,
string callbackReference,
string userRequestDescription,
TSpaceType designatedSpace,
Boolean releaseSourceFiles (default = false)

notes:

Out: TRequestToken requestToken,
TFileRequestStatug[] arrayOfFileStatus

If callbackReference is provided then callback will be performed.

Pull mode: copy from remote location to SRM. (e.g. from remote to MSS)

Push mode: copy from SRM to remote location.

When releaseSourceFiles=true, then SRM will release the source files on behalf
of the caller after copy is done.

In pull mode, send srmRelease() to remote location when transfer is done.

If in push mode, then after transfer is done, notify the caller. User can then
release thefile. If user releases a file being copied to another location beforeit is
done, then refuse to release.

srmReleaseFiles:

notes:

In: TRequestToken requestToken,

TUserID userlD,
TSURL[] steURLs
Out: Boolean(] array Of Rel easeStatus

If requestToken is not provided, then the SRM will release all the files specified
by the siteURLs owned by this user, regardless of the requestToken.

If requestToken is not provided, then userID is needed. It may be inferred or
providein the call.

Releasing files will be followed by compacting space, if
doDynamicCompactFromNowOn was set to true in a previous srmCompactSpace
call.

srmPutDone:

In: TRequestToken requestToken,
TSURL]] arrayOfSiteURL

Out: //Inone
notes:
Called by user after srmPut()

srmAbortRequest:
In: TRequestToken reguestToken

Out: Boolean terminated

notes:
Terminate all file requestsin this request regardless of the state. Expired files are
released.

srmAbortFiles
In: TRequestToken requestToken,

TSURL]] arrayOfSiteURL s
Out: Boolean[] terminated
TReason possi bleExplanation
notes:
If no siteURLs are given, return terminated="false.
If siteURL does not exist, return terminated=false.
PossibleExplanation should be used for the reason of terminated=false.
srmSuspendRequest:
In: TRequestToken requestToken
Out: Boolean suspended
notes:
Return false if request was completed.
srmResumeRequest:
In: TRequestToken requestToken
Out: Boolean resumed
notes:
Return false if request was compl eted.
srmGetRequestStatus.
In: TRequestToken reguestToken
Out: TFileRequestStatug] arrayOfFileStatus
notes:

Returns status for all the file requests in this request.

srmGetFilesStatus:

In: TRequestToken requestToken,
TSURLOrStFN[] arrayOf SURL OrStFNs

Out: TFileRequestStatug[] arrayOfFileStatus

notes:
For put requests, the target stFNs are checked, otherwise, source SURLs are
checked.

srmGetRequestSummary:
In: TRequestToken[] arrayOfRequestToken

Out: TRequestSummary[] arrayOfRequestSummary

srmExtendFileLifeTime:
In: TRequestToken requestToken,

TSURL siteURL,

TTimeDuration newLifeTimeRequestedFromCallingTime
Out: Boolean isExtened.

TTimeDuration newTimeExtended

notes:
newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.
The number of lifetime extensions maybe limited by SRM according to its policies.
IsExtended = false if SRM refuse to do it. (set newTimeExtended = 0 in this case.)
If original lifetimeislonger than the requested one, then the requested one will be
assigned.
If newLifeTime is not specified, the SRM can use its default to assign the
newLifeTime.

srmGetRequest| D:
In: string userRequestDescription

Out: TRequestToken([] arrayOf PossibleRequest Token
notes:

If user RequestDescription is null, returns null.

srmChecklnL ocal Cache:
In: TSURL]] arrayOfSiteURL

Out: Boolean(] arrayOfSiteURL IsInCache
notes:

spaceType is not specified here. It isup to SRM to decide whether to respond with
one or more of Volatile/Durable/Permanent spaces.
We assume caller has permission for the filesin question.

