# Finding the Optimal Reconfiguration for Network Function Virtualization Orchestration with Time-varied Workload

Satyajit Padhy, Jerry Chou National Tsing Hua University

The Third International Workshop on Systems and Network Telemetry and Analytics (SNTA2020)

- 1. Background
- 2. VNF Placement Problem
  - a. Approaches
- 3. VNF Reconfiguration Problem
  - a. Problem Definition
- 4. Objective & Approach
- 5. Results

### Introducing NFV (Softwarizing Middleboxes)



- Less CAPEX/OPEX
- More Flexibility
- No-Fixed Location
- Introduce new services to the network seamlessly
- Better resource and energy utilization
- For the Future (5G, SDN)

#### \*\* NFV=Network Function Virtualization, VNF= Virtual Network Function

- 1. Background
- 2. VNF Placement Problem
  - a. Approaches
- 3. VNF Reconfiguration Problem
  - a. Problem Definition
- 4. Objective & Approach
- 5. Results

### **VNF Placement**

- Service Function Chain (SFC) is group of chained Network Functions (NF).
- NFs are processed in virtualized instances called VNFs.
- Goal is to place VNFs in physical network.
- The NFs must be processed in the same order as SFC



5

## Static VNF Placement Approach

- Objective: Minimize energy cost
- Input: Resource demands of SFC
- Output: VNF Placement
- Constraint: Resource constraint
  - R\_demand(VNFs) < R\_capacity(PM)</li>
- Approach: Fit as many VNFs in a PM so that less PMs are used



### **Time-Varied Workload Challenges**

- Workload demands usually change over time.
- Resource violation can occur.
- How to process the increased demands?
- Energy cost can still be reduced
- Solution: VNF Reconfiguration



- 1. Background
- 2. VNF Placement Problem
  - a. Approaches
- 3. VNF Reconfiguration
  - a. Solutions
  - b. Problem Definition
- 4. Objective & Approach
- 5. Results

## **VNF Reconfiguration**

Scale-up

- Increase the resources of a VNF
- Constraint: There should be enough residual capacity in PMs



## **VNF Reconfiguration**

Scale-up

- Increase the resources of a VNF
- Constraint: There should be enough residual capacity in PMs

#### Scale-out

- Create a new instance of a VNF
- Constraint: Redirection of selected SFCs can cause delay



# **VNF Reconfiguration**

Scale-up

- Increase the resources of a VNF
- Constraint: There should be enough residual capacity in PMs

Scale-out

- Create a new instance of a VNF
- Constraint: Redirection of selected SFCs can cause delay

#### Migration

- Migrate VNF to another PM
- Constraint: Migrating all SFCs can cause delay, downtime etc.



#### **Problem Definition: VNF Reconfiguration Problem**

| Each SFC s with a chain of NFs $\{n_1, n_2,, n_f\}$ |                                                                      |  |                                                           |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------|--|-----------------------------------------------------------|--|--|
|                                                     | INPUT<br>SFCs<br>Resource demand<br>Bandwidth requirement            |  | OUTPUT<br>NF <> VNF Placement<br>VNF resource capacity    |  |  |
| VNF $V_{jk}$ , j is type of VNF and k is instance   |                                                                      |  |                                                           |  |  |
|                                                     | INPUT<br>VNFs Resource Capacity<br>PM Resource capacity<br>PM status |  | OUTPUT<br>VNF <> PM Placement<br>Reconfiguration Solution |  |  |
| PM P <sub>i</sub> , i <sup>th</sup> PM              |                                                                      |  |                                                           |  |  |



Multi-tenant VNF Type of NF = Type of VNF

- 1. Background
- 2. VNF Placement Problem
  - a. Approaches
- 3. VNF Reconfiguration Problem
  - a. Problem Definition
- 4. Objective & Approach

5. Results

# **Objectives & Approach**

- The objective is to address the tradeoff between reducing the energy cost and VNF reconfiguration.
  - Which reconfiguration solution should be chosen?
- Approach: Integer Linear Programming (ILP) formulation to get an optimal solution

#### **ILP Formulation**

#### ILP Formulation: Resource Constraints

1.<u>Constraint 1</u>
\* VNF Resource Constraint

 $\sum_{n=1}^{N} \sum_{s=1}^{S} H_{nsjk}^{t} * R_{ns} \leq C_{jk}^{t}, \forall j \in V, \forall k \in K$ Type(n) == Type(j)

2. <u>Constraint 2</u> \* PM Resource capacity constraint \* VNF <--> PM

$$\sum_{k=1}^{K} \sum_{j=1}^{V} X_{ijk}^{t} * C_{jk}^{t} < M_{i}, \forall i \in P, t \in T$$



#### ILP Formulation: Placement Constraints

3. <u>Constraint 3</u> \* VNF Placement constraint VNF should be placed on active PM only

$$X_{ijk}^t < A_i^t, \forall i \in P, j \in V, k \in K, t \in T$$

4. <u>Constraint 4</u>
\* Each VNF should be placed on one PM only

$$\sum_{i=1}^{P} X_{ijk}^{t} = 1, \forall j \in V, k \in K, t \in T$$



#### ILP Formulation: Link Constraints





#### ILP Formulation: Objective Function



*Minimize* Energy Cost + Migration Cost + Instantaniation Cost

#### Minimize

$$\alpha \sum_{i=1}^{N} A_i^t + \beta \sum_{i=1}^{P} \sum_{j=1}^{V} (X_{ijk}^{t-1} * [1 - X_{ijk}^t]) * Mig_{jk}$$

$$+\gamma \sum_{k=1}^{K} \sum_{j=1}^{V} (C_{jk}^{t} * [1 - C_{jk}^{t-1}]) * I_{jk}$$



- 1. Background
- 2. VNF Placement Problem
  - a. Approaches
- 3. VNF Reconfiguration Problem
  - a. Problem Definition
- 4. Objective & Approach
- 5. Results

### **Experimental Setup**

- Service Function Chains
  - Number of SFCs: 60
  - $\circ$   $\,$  Number of NFs in one SFC: 5  $\,$
  - Resource demands randomly generated
- Physical Infrastructure:
  - Number of PMs: 50
  - Heterogeneous resources
  - Bandwidth capacity of physical link: 1Gbps
- Solver: IBM CPLEX

Network services consisting of Network Address Translation (**NAT**), Firewall (**FW**), Traffic Monitor (**TM**), WAN Optimization Controller (**WOC**), Intrusion Detection System (**IDC**) and Video Optimization Controller (**VOC**)

| Network Service | <b>VNF Chain</b>  | Bandwidth            |
|-----------------|-------------------|----------------------|
| Web service     | NAT-FW-TM-WOC-IDS | 100 kbps             |
| VoIP            | NAT-FW-TM-FW-NAT  | 64 kbps              |
| Video Streaming | NAT-FW-TM-VOC-IDS | 4 Mbps <sup>23</sup> |

### **Results: Reconfiguration Solutions**

- Reconfiguration solutions with different traffic arrival rate
- Initially scale up is the most preferred solution
- As traffic increases, residual capacity of PM decreases
- Scale out becomes more preferred than Migration as traffic rate

increases





### **Results: Importance of Reconfiguration Costs**

- Only Migration has the highest cost since it's oblivious
- Migration + Scale out helps in reducing cost further
- All three methods gives the least cost since ILP solver can use both scale out/up to reduce

reconfiguration cost further.



#### Conclusions

- Reconfiguration solutions are highly beneficial for time-varied workload.
- There can be a tradeoff between reducing energy cost and VNF reconfiguration cost.
- We have proposed a ILP formulation for VNF reconfiguration problem.
- We have used a two level placement solution to solve this problem.
- Preferred reconfiguration solution:
  - Scale up is the most preferred
  - As traffic increases, scale out is preferred more
- As work in progress, we will propose a heuristic solution for this problem. <sup>27</sup>

# THANK YOU

Please don't hesitate to reach us if you have any questions