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Context

 Cloud Computing runs large part of IT Infrastructure.

 Large number of Virtual Machines (VMs) – several thousands.

 Each executing services of unknown nature.

 Non-intrusive VM analysis by cloud provider.

 VMs typically monitored by resource consumption metrics. 
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Problem Domain

 Anomaly Detection – consequential for VM monitoring.

 Anomaly – unexpected system load/behavior based on collected
system metrics.
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Objectives

 Generic solution to detect anomalies.

 Processing unlabelled time series.

 High accuracy (recall & precision) in anomaly detection.

 Quick Execution.
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Challenges
 Large Data Sizes -

● Execution Time per VM.

● No labels available.

 Data Content -

● Diverse normal & abnormal behavior.

● Noise along with seasonal data.
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Contributions

 KDetect –

● Unsupervised learning technique to detect anomalies.

● In time series exhibiting periodic behavior.

● Dynamic Partitional Clustering Based Solution.

● Generic heuristics without any configuration changes 

 Evaluation done on production dataset from EasyVirt.

 Recall more than 94% & Precision more than 95%.

 Fast execution (330 days data analyzed in under 3 mins).
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Related Work

 Anomaly Detection in Cloud - 

● [Aggarwal2017] Adaptive Real-Time -  Analyze nodes running similar
applications & predict next values to detect outliers.

● [Zhang2019] Cross-Dataset Transfer Learning - Orthogonal to our solution.
Transfer anomalies patterns from 1 cloud to next.

 Unsupervised Anomaly Detection for Time Series - 

● [Xu2018] Donut - State-of-the-art. Variational Auto-Encoder based.

● [Paparrizos2015] k-Shape - Basic block of every KDetect iteration.
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k-Shape

 Iterative Refinement Clustering algorithm.

 Uses Shape Based Distance (SBD) measure.

 Positioning in Euclidean Space - shape comparison.

 Number of clusters (k) required to be known in advance.
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 Unsupervised Iterative Refinement Clustering algorithm.

 Progressively increase 'k' and cluster time series into normal & abnormal. 

 Challenges - 

● Deciding what k gives good segregation?

● How to label each cluster ('N/'Ab') at every iteration?

 Provides generic heuristics to solve these challenges without specific
application to a particular VM. 

Solution: KDetect Algorithm
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Initially : C1 – Single cluster for all time series
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At k=2, Bigger cluster is assumed to be normal.
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At auto-halt iteration -

 Good segregation of normal & abnormal clusters.

 Clusters labelled 'N/Ab'.
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Cluster Segregation Metrics : Density

Cluster Density - avg of distance (SBD) between any 2 time series
(degree of similarity between time series).
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Cluster Segregation Metrics : Density
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KDetect Auto-Stop

 Density (cluster compactness), Standard Deviation (time series variation).

 Threshold - density increase between 2 consecutive iterations.

 Thresholds - Locate good local optimum.

 Further iterations -  Refinement.
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Cluster Labelling
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Cluster Labelling
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β = 2 x avg. dist. b/w any 2 points in Initial Normal Cluster.
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SBD between C
3
 & initial normal cluster > β → abnormal label ('Ab').

Cluster Labelling
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Cluster Labelling

SBD between C
3
 & initial normal cluster > β → abnormal label ('Ab').
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Evaluation

 Performance Statistics

 Comparison with State-of-the-Art

 Auto-Stop Criteria

 Execution Time
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Setup & Configuration

 K-Shape in Python3 → Tslearn v0.3.0 

 Experiments conducted on Server - 

● CPU → 12-core Intel Xeon E5645.

● Mem → 48 GB.

● OS → Linux server edition – Debian 4.9.0-4-amd64.
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Dataset
 Dataset Description -

● Data Collection – French Company EasyVirt.

● Production Data contains almost 2000 VMs.

● 4 VMs illustrated – 

 Diverse normal and diverse abnormal behavior.

 Differentiating normal from abnormal is not trivial.

● Manual labelling by EasyVirt Experts to evaluate KDetect.

 Data Characteristics -

● Total number of days for each VM ≈ 300.

● 24-hour time windows to capture time series seasonality.

● Averaged over 10 minute intervals - 144 points in each TS.

● Metric = CPU consumption percentage.

● Normal : Abnormal = 3:1.
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Performance Statistics

KDetect - recall > 94% in most cases, precision > 95%.

VM Recall Precision FP %

A 0.94 1 0

B 0.81 0.95 1.11

C 0.98 0.99 0.31

D 0.99 1 0
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 Implementation in Python3 using Tensorflow 1.5.0 by
Donut authors.

 Reconstruction Probability Threshold → normal/abnormal.

● Each VM - 1000 threshold values tested b/w
lowest & highest probability.

 60% training data & 40% testing data.

Comparison with State-of-the-Art : Donut
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Comparison with State-of-the-Art : Donut

KDetect outperforms Donut - precision → 48%, recall → 20%.
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Auto-Stop Criteria Analysis
 Performance statistics for VM B.

 Stop at significant local optimum – not 1st.

 Tradeoff → execution time vs. precision.

KDetect selects “good” value of 'k'.
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Execution Time Analysis
 Avg of 10 executions.

 Linear increase as function of 'k'.

 Same k → Different execution times for VMs as
different sizes.
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Execution Time Analysis
 Avg of 10 executions.

 Linear increase as function of 'k'.

 Same k → Different execution times for VMs as
different sizes.

Fast KDetect execution → < 3 mins in worst case (B).

Virtual
Machine

Auto-Stop
Iteration (k)

Execution
Time (sec)

VM A 5 100

VM B 7 172

VM C 3 63

VM D 3 101
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Conclusions

 KDetect - 

● Unsupervised Learning Algorithm to identify anomalies.

● Time Series exhibiting seasonal behavior.

● Dynamic Partitional Clustering based solution.

● Relies on generic heuristics to apply to large number of VMs.

● Based on k-Shape as a building block.

 Evaluation for multiple VM traces on production data -

● High precision, recall & low false positives.

● Fast Execution.
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Future Work

 Reinforcement Learning - improve Recall and Precision.

 Adapt to run online - reduce lead time for anomaly detection.
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Thank You !!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

