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High Performance Computing (HPC) system

▪ Applications running on HPC system demand for efficient 
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High Performance Computing (HPC) system

▪ Applications running on HPC system demand for efficient 

storage management and high performance computation

▪ Tunable parameters are provided for higher performance

▪ Number of compute nodes, Stripe count, Stripe size, ..
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8 compute nodes

4 stripe count

Use Burst Buffer



Drawbacks on deploying HPC environment

▪ Users are not familiar with using tunable parameters

▪ They use default configurations the system provides or maximum 

available resource
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Cori default 
stripe size : 1MB

Cori maximum 
stripe count : 248

Understanding the different I/O demands of  HPC applications is important



Used Dataset

▪ Real-world user log data from Oct. 2017 to Jan. 2018

▪ Total 4-month Darshan log data is used

▪ Darshan I/O profiling tool captures I/O behaviors of applications 

run on Cori system

▪ Darshan interacts with Slurm workload manager

▪ Parser is used to extract meaningful information from Darshan log 

and Lustre monitoring tool

▪ Total 78 features are obtained from the parser
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Used Dataset

▪ Real-world user log data from Oct. 2017 to Jan. 2018

▪ Total 4-month Darshan log data is used

▪ Darshan I/O profiling tool captures I/O behaviors of applications 

run on Cori system

▪ Darshan interacts with Slurm workload manager and Lustre

monitoring tool

▪ Parser is used to extract meaningful information from Darshan log

▪ Total 78 features are obtained from the parser

▪ I/O throughput (writeRateTotal) is the target variable

▪ HPC applications are categorized based on their I/O behaviors
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Data Preprocessing

▪ User logs with less than 1GB I/O are dropped

▪ They cannot capture the relationship between features and the 

target variable 
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Data Preprocessing

▪ User logs with less than 1GB I/O are dropped

▪ They cannot capture the relationship between features and the 

target variable 

▪ Data having negative values are all set to zero

▪ The features with zero variance are eliminated

▪ The features with the constant value are not meaningful at all

▪ The features having highly correlated value with other 

features are eliminated

▪ The correlation value threshold is set to 0.8

▪ It is to reduce redundancy among the feature selection results

▪ The feature data is normalized to range from 0 to 1

▪ The features can have same scale and weight when calculated by 

feature selection methods
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Data Preprocessing

▪ Top 20 mostly executed programs after preprocessing step

15

Total 62,946 data from 

353 different applications



Feature Selection for Dimension Reduction

▪ Feature selection methods
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Feature Selection for Dimension Reduction

▪ Feature selection methods

▪ Mutual Information regression

▪ F Regression

▪ Decision Tree

▪ Extra Tree

▪ Min-max Mutual Information (the new feature selection method)

▪ The data preprocessing step of removing features that have highly 

correlated value with other features is not applied

▪ Min-max mutual information selects features that are less correlated 

to each other

▪ The first feature that has highest correlation value with wrtieRateTotal

is selected, and then this process is repeated
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Feature Selection for Dimension Reduction

▪ Analysis of Feature Selection results

20



Application of Clustering Model

▪ Clustering models

▪ KMeans Clustering

▪ Gaussian Mixture Model

▪ Ward Linkage Clustering
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For DBI, the lower the better the cluster quality

For Silhouette and Combined score, the higher the better the cluster quality



Performance Evaluation

▪ Selecting Best Clustering method

▪ The features selected from Min-max mutual information are used

▪ The most suitable feature selection method for our dataset's 

characteristic: every feature is considerably correlated to each other

▪ The number of clusters varies from 3 to 20
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characteristic: every feature is considerably correlated to each other
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Kmeans and Ward linkage show high cluster performance

The performance is highest when the number of  clusters is 3



Performance Evaluation

▪ Feature Selection methods comparison

▪ The impact the five feature selection methods have on Kmeans

clustering method is evaluated

▪ Mutual information, F-regression, Decision tree, Extra tree, and 

Min-max mutual information
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Clustering result using features selected from 

Min-max mutual information shows highest cluster performance



Cluster Characterization

▪ Cluster Characterization

▪ Min-max mutual information feature selection

▪ KMeans (or Ward linkage) clustering algorithm

▪ Clustering with 3 clusters scores highest 
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Cluster Characterization
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Cluster Characterization

▪ Cluster Characterization
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Cluster 1

- workloads with less than 1MB size read/write operations, mostly on stdio units

- Average I/O throughput is only a few MB/s



Cluster Characterization

▪ Cluster Characterization
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Cluster 2

- workloads with more than 1MB size read/write operations

- lots of  I/O operations during the processing time

- likely to use 8MB stripe size in average, which is 8 times the default size

- use the relatively small number of  cores 



Cluster Characterization

▪ Cluster Characterization
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Cluster 3

- workloads use more than 70,000 MPI ranks on average

- Use 62 times more processors on average

- Issue a large number of  I/O requests



Conclusion

▪ Summary

▪ We extracted the features highly related to the I/O performance

▪ We implemented new feature selection method, Min-max mutual 

information, in order to get meaningful information from real HPC 

workload data

▪ We clustered the HPC applications and evaluated with cluster 

quality score

▪ We could identify meaningful clusters from the large set of 

application logs

▪ Future work

▪ We aim to give applications in each cluster detailed guidance to 

improve their performance
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