
Real-time Multi-process 

Tracing Decoder 
Architecture

Jun 24, 2019

Youngsoo Kim

(Electronics & Telecommunications Research Institute)



Introduction (Tracing)

 A technique used to determine how the system is behaving

 Debugging or Monitoring purpose

 Statically or dynamically set trace points to collect information

 Tracing information

 typically used for debugging purposes

 used to detect diverse programming problems 

depending on details of the information contained in the trace log

 used both in the development cycle and after the software release

 Include IRQ handlers, system calls, scheduling activities, network activities, and 

tracepoints within applications



Introduction (Tracing)

 Event logging 

 It is primarily used by system administrators

 It records high-level information such as program installation errors

 Event logs are clearly and concisely expressed in the standard form

 Tracing

 It is primarily used by developers

 It records low-level information such as thrown exceptions

 The output format is not standardized

 Duplicate events or information can be recorded



Introduction (Tracing)

 Since the tracer generates and decodes huge amounts of data in real time, 

many tracers use dedicated hardware

 ARM Coresight and Intel® PT (Processor Trace) are typical hardware-based tracers

 Intel® PT records all information related to software execution from each 

hardware thread

 When the execution of the corresponding software is completed, the accurate 

program flow can be indicated through the recorded trace data



Introduction (Tracing)

 (Linux systems) Intel® PT-based hardware trace programs are integrated into 

the operating system and can be used through commands such as perf

 (Windows system) tight integration with profiling and debugging mechanisms is 

not achieved due to kernel-related policies

 To solve this problem, many attempts have been made to implement the 

Intel® PT in Windows environment

 Both perf and Windows environments can only trace a single process using the 

Intel® PT and do not provide a way of tracing multiple process streams

 If we have a method of tracing multiple process streams, we can use it in diverse 

fields, specially data analysis for preventing some cyber threats



Introduction (Tracing)

 In this paper,

 Propose a way of extending the Intel® PT trace program to provide the ability to 

trace multiple process streams in Windows environment for various applications

 Introduce the main features of  the Intel® PT and related software

 Describe a decoder implementation that traces multiple process streams in Windows

environment



Intel® PT

 A hardware feature logging all the information about software execution

 Intel® PT decoder

 Reconstruct accurate software execution flow from stored trace information

 Store cycle count and timestamp information to synchronize with other trace log

 The trace log includes

 Program flow information

 Program trigger mode related information

 The debugger can use the trace log information

 To reconstruct the code flow leading to a specific location



Intel® PT (Main Features)

 Control Flow Tracing

 Records branch to infer program flow

 Configures MSR (Machine State Register)s

 Setups buffers

 Generates a trace packet

 Stores trace packet in a buffer or forwards it to transport layer

 Trace Packet

 Generates heartbeat packet, PSB (Packet Stream Boundary), every 4K packets

 Creates PIP (Paging Information Packet) when changing CR3 (Control Register 3)

 TSC (Time Stamp Counter), OVF (Overflow), CBR (Core Bus Ratio) packets

 Flow control



Intel® PT (Main Features)

 Cycle Accurate Mode (CYC Packet)

 Cycle counter data related to instruction count, IPC, tracking wall-clock time

 MTC (Mini Timestamp Counter)

 A more commonly used timer based on the crystal clock counter (CTC)

 Used with the TSC (Time Stamp Counter) to obtain accurate timestamp values at low 

cost

 Perf Support

 Perf driver can configure or control PT hardware

 Trace data generation on perf buffer

 Perf data decoding in userspace of perf



WindowsIntelPT driver

 Attempts to implement PT drivers and applications in the Windows 

environment are underway

 Ex. WindowsIntelPT

 The WindowsIntelPT driver

 Implements the Intel® processor trace feature of the Skylake architecture in a 

Windows environment

 Writes trace logs directly to physical memory to prevent cache and TLB polling

 Uses a compressed logging format suitable for long-time tracing

 Can track all branches of the CPU core, including user space and the kernel



WindowsIntelPT driver (DriveEntry())

 When developing a 

driver, the entry 

function is 

DriverEntry()

 A function called by 

the system thread 

(I/O manager) at the 

time the driver file is 

loaded into memory

 Must be named 

DriverEntry when the 

driver is loaded into 

memory

 Since the operating 

system first looks for 

a function with the 

name DriverEntry



WindowsIntelPT driver

(DriveEntry() Parameters)

 The PUNICODE_STRING-> RegistryPath structure and the PDRIVER_OBJECT-

>DriverObject structure are required as parameters

 The PDRIVER_OBJECT->DriverObject is a structure representing the driver

 The PUNICODE_STRING->RegistryPath structure is the key value stored in the registry

 \Registry\Machine\System\CurrentControlSet\Services\DriverName



WindowsIntelPT driver

(DriveEntry() Functions in order)
① Identify the number of processors

② Allocate all data space for the driver

③ Check whether virtualization Hyper V is 
supported

④ Check whether PT is supported

⑤ Create a PMI (Performance Monitoring Interrupt) 
event and register interrupt

⑥ Initialize user mode callback function list

⑦ Initialize Unicode conversion

⑧ Create and control IOCTL

⑨ Create and control DriverObject

⑩ Create and control DeviceIoControl

⑪ Create and control PT_USER_REQ

⑫ Start/stop PT



Multi-process Tracer Extension

 We analyzed the NoCmdlineStartup function for multi-process analysis and 

studied the extension scheme 

 A function tracing without a command line argument

 For multi-process analysis, it is necessary to execute several device controls

 To do this, it is necessary to declare array variables additionally

 Ex) PT device handle value variable and target process path

 First, the dump file should be created and initialized for analyzing multi-

processes

 Then, the PT device handles the value of the global variable of the initialized 

application information



Multi-process Tracer Extension

 It shows that when tracing for multiple processes, it determines the number of 

processors to run in the process, and scheduling should be added between 

processes and the available processors



Multi-process Tracer Extension

 It shows the part responsible for creating and registering the performance 

measurement threads 

 When multiple analyses are concurrently performed, multi-thread generation is 

required



Multi-process Tracer Extension

 It shows the kernel test mode

 It should be modified to find multiple addresses if multiple traces are running 

concurrently 



Multi-process Tracer Extension

 It is part of the code that tests 

multiple streams of traces using the 

extended WindowsIntelPT driver 

 The test program calls the 

createProcess function and passes 

the path ptcontrolapp.exe to 

processPath

 It also provides functions

 To detect and pass new processes

 To retrieve a list of currently running 

processes for selecting the traced 

processes



Multi-process Tracer Extension

 It shows tracing two applications, Paint and Notepad 



Multi-process Tracer Extension

 It shows a dump of the results of tracing two applications simultaneously 



Future Work (Dynamic Analysis for malwares)

 2 types of malware analysis

 (Static or Code Analysis) Performed by dissecting the different 

resources of the binary file without executing it and studying each 

component

The binary file can also be disassembled (or reverse engineered) using 

a disassembler

 (Dynamic or Behavioral Analysis) Performed by observing the 

behavior of the malware while it is actually running on a host system

This form of analysis is often performed in a sandbox environment to 

prevent the malware from actually infecting production systems

We’re focucing dynamic analysis in an actual environment 

not sandbox

Using tracing logs from multi-stream Intel-PT decoder



Future Work (Dynamic Analysis for malwares)

 A Malicious Code Analyzing System

 Multi-stream PT decoder in Windows environment

 A storage for malwares (input)

 A storage for accumulating tracing logs (output)

 An AI-based Analysis Server

 Preprocessing tracing logs

Generating and applying diverse learning models

 Trace log dumper

 It dumps trace logs of processes starting/stoping for N minutes from running a 

specific malware

 Automatic rebooter

 It reboots this system repeatedly after N+1 minutes from running a malware

…



Summary

 Intel® PT uses proprietary hardware to record all information about software 

execution on each hardware thread 

 When the software execution is completed, PT can process the trace data of 

the software and reconstruct the correct program flow 

 (Windows systems) There is no close integration with the profiling and 

debugging mechanism due to problems such as kernel opening 

 To this end, some individuals/organizations are implementing PTs in Windows

environments

 However, the perf and the WindowIntelPT can trace only a single process using PT

 We propose a method to extend the existing PT trace program in order to 

overcome this shortcoming by supporting multi-process stream tracing in 

Windows environment

 As a future plan, we’re designing a malicious code analyzing system using 

multi-stream PT decoder 



Thank You


