eal-time Mulli-process
Tracing Decoder
Architecture

Jun 24, 2019

Youngsoo Kim

(Electronics & Telecommunications Research Institute)

Intfroduction (Tracing)

A technique used to determine how the system is behaving
®» Debugging or Monitoring purpose
» Statically or dynamically set trace points to collect information
= Tracing information
» typically used for debugging purposes
» ysed to detect diverse programming problems

depending on details of the information contained in the frace log

» ysed both in the development cycle and after the software release

» |nclude IRQ handlers, system calls, scheduling activities, network activities, and
tracepoints within applications

Intfroduction (Tracing)

Event logging
» |t is primarily used by system administrators
» |t records high-level information such as program installation errors
» Eventlogs are clearly and concisely expressed in the standard form
= Tracing

= |fis primarily used by developers

» |t records low-level information such as thrown exceptions
» The output format is not standardized

» Duplicate events or information can be recorded

Intfroduction (Tracing)

Since the tracer generates and decodes huge amounts of data in real time,
many tracers use dedicated hardware

= ARM Coresight and Intel® PT (Processor Trace) are typical hardware-based tracers

» |ntel® PT records all information related to software execution from each
hardware thread

» When the execution of the corresponding software is completed, the accurate
program flow can be indicated through the recorded trace data

Intfroduction (Tracing)

(Linux systems) Intel® PT-based hardware trace programs are integrated into
the operating system and can be used through commands such as perf

» (Windows system) tight integration with profiling and debugging mechanisms is
not achieved due to kernel-related policies

» To solve this problem, many attempts have been made to implement the
Intel® PT in Windows environment

» Both perf and Windows environments can only trace a single process using the
Intel® PT and do not provide a way of tfracing multiple process streams

» |f we have a method of tracing multiple process streams, we can use it in diverse
fields, specially data analysis for preventing some cyber threats

Intfroduction (Tracing)

In this paper,

» Propose a way of extending the Intel® PT trace program to provide the ability to
trace multiple process streams in Windows environment for various applications

» |nfroduce the main features of the Intel® PT and related software

» Describe a decoder implementation that fraces multiple process streams in Windows
environment

INntel® PT

A hardware feature logging all the information about software execution

» |ntel® PT decoder

® Reconstruct accurate software execution flow from stored tfrace information

» Store cycle count and timestamp information to synchronize with other trace log
» The frace log includes

» Program flow information

= Program trigger mode related information
®» The debugger can use the trace log information

» To reconstruct the code flow leading to a specific location

Intel® PT (Main Features)

Control Flow Tracing
® Records branch to infer program flow
» Configures MSR (Machine State Register)s
» Setups buffers
» Generates a frace packet

» Stores trace packet in a buffer or forwards it to fransport layer

» Trace Packet

» Generates heartbeat packet, PSB (Packet Stream Boundary), every 4K packets
» Creates PIP (Paging Information Packet) when changing CR3 (Conftrol Register 3)
» TSC (Time Stamp Counter), OVF (Overflow), CBR (Core Bus Ratio) packets

» [low control

Intel® PT (Main Features)

Cycle Accurate Mode (CYC Packet)
» Cycle counter data related to instruction count, IPC, fracking wall-clock time
» MTC (Mini Timestamp Counter)
» A more commonly used timer based on the crystal clock counter (CTC)

» Used with the TSC (Time Stamp Counter) to obtain accurate timestamp values at low
cost

» Perf Support

» Perf driver can configure or control PT hardware
» Trace data generation on perf buffer

» Perf data decoding in userspace of perf

WindowsIntelPT driver

®» Atftempts to implement PT drivers and applications in the Windows
environment are underway

» Fx. WindowsintelPT
» The WindowsIntelPT driver

» |mplements the Intel® processor trace feature of the Skylake architecture in a
Windows environment

= Writes trace logs directly to physical memory to prevent cache and TLB polling

» Uses a compressed logging format suitable for long-time fracing

» Can frack all branches of the CPU core, including user space and the kernel

WindowslIntelPT driver (DriveEntry())

/

ZlCPUIDEX ElHvCpuld || El HvStatusToNtStatus » i
—i El CheckintelPtSupport When developing a
e driver, the entry
DI function is
- s COUNTOF DriverEntry()
—1 El CreateSharedPmiEvent]
E7wCreateEvent » A function called by

the system thread
(I/O manager) at the
—| Ml DBG_BREAK time the driver file is
—i El DetectMicrosoftHyperV loaded into memory

—{ ki DBG_BREAK

E DriverEntry

— El EnableDebugOutput » Must be named
—mr El DetectMicrosoftHyperV DriverEntry when the
— ElInitGlobalHv i i i
=DDbgPrint driver is loaded info
memaory
— EInitializeCpusXSaveArea = CheckPtXSaveSupport » Since the operating
system first looks for
— E|RegisterPmilnterrupt | DrvDbgPrint a function with the

name DriverEntry

— ElRevertToDefaultDbgSettings

W\

WindowsIntelPT driver
DriveEntry() Parameters)

» The PUNICODE_STRING-> RegistryPath structure and the PDRIVER_OBJECT-

>DriverObject structure are required as parameters
» The PDRIVER_OBJECT->DriverObject is a structure representing the driver

» The PUNICODE_STRING->RegistryPath structure is the key value stored in the registry
» \Registry\Machine\System\CurrentConftrolSet\Services\DriverName

NTsTATUS DriverEntry (PDRIVER_OBIECT pDriverObject, PUNICODE_STRING pRegPath)

{

UNREFERENCED PARAMETER(pRegPath);
NTSTATUS ntStatus = STATUS SUCCESS;
KAFFINITY activeProcessorsMask = @; /f The active processors mask

DWORD dwNumOfProcs = @; /f Number of system processors

DWORD dwBuffSize = O, /f The global driver data size in bytes
UNICODE_STRING devNameString = { @ }; S The I/0 device name

UNICODE_STRING dosDevNameString = { @ }; // The DOS device name (Usermode access)
PDEVICE_OBJECT pDevObj = NULL; // The device object

INTEL PT CAPABILITIES ptCap = { @ }; Jf The Intel PT Capabilities for this processor

l CheckIntelPtSupport

l cl_wprintf

sl COUNTOF

ElDoKermnelTrace

+

ZElNoCmdlineStartup

ElFreePerCpuData

ElInitPerCpuData

£l SpawnSuspendedProcess

ElWriteCpuTextDumpsHeader

L

= 7wQuerySysteminformation

@@ @& ©®OO

WindowslIntelPT driver
DriveEntry() Functions in order)

ldentify the number of processors
Allocate all data space for the driver

Check whether virtualization Hyper V is
supported

Check whether PT is supported

Create a PMI (Performance Monitoring Interrupt)
event and register interrupt

Initialize user mode callback function list
Initialize Unicode conversion

Create and control IOCTL

Create and control DriverObject
Create and control DeviceloControl
Create and control PT_USER_REQ
Start/stop PT

Multi-process Tracer Extension

We analyzed the NoCmdlineStartup function for multi-process analysis and
studied the extension scheme

» A function tracing without a command line argument
» [For multi-process analysis, it is necessary to execute several device controls

» To do this, it is necessary to declare array variables additionally

» Ex) PT device handle value variable and target process path

» First, the dump file should be created and initialized for analyzing multi-
processes

» Then, the PT device handles the value of the global variable of the initialized
application information

Multi-process Tracer Extension

It shows that when fracing for mulfiple processes, it determines the number of
processors 1o run in the process, and scheduling should be added between
processes and the available processors

if (syslnfo.dwhumberOfProcessors > 1) {
/f Ask how many processor to use
wprintf(L"On how many processors would you like to run the process? [1/%i] ",
wscanf s(L"¥i", &dwCpusCount);

if (dwCpusCount > sysInfo.dwNumberOfProcessors) {
wprintf(L"Invalid value, assuming all the processors as valid.\r\n");
cpudffinity = sysInfo.dwActiveProcessorMask;
dwCpusCount = sysInfo.dwhumberOfProcessors)

| else

((DWorD PTR) (-1i64) s> ((sizeof (DWORD_PTR) * 8) - dwCpus

cpulffinity
if (FALSE)

f/ 1f you would like to test the different affinities:

cpulbffinity = Bud;
_ASSERT((sysInfo.dwActiveProcessorMask | cpubffinity) == sysInfo.dwActiveProc

Multi-process Tracer Extension

It shows the part responsible for creating and registering the performance
measurement threads

» When multiple analyses are concurrently performed, multi-thread generation is
required

// Create the PMI threads (1 per target (PU)
for (int 4 = 8; i < (int)dwlCpusCount; i++) {
PT_PMI_USER_CALLBACK pmiDesc - { @ };
HANDLE hNewThr = NULL;

DWORD newTheld = @;

hNewThr = CreateThread(NULL, @, PmiThreadProc, (LPVOID)i, CREATE

// Register this thread and its callback

pmiDesc.dwThrld = newThrld;

pmiDesc.kCpuAffinity = (1164 << 1i);

pmiDesc. lpAddress = PmiCallback;

bRetVal = DeviceloControl(hPtDev, IOCTL_PTDRV_REGISTER_PMI_ROUTI

if (bRetVal) {
pCpuDescArray[i].dwPmiThrld = newThrld;
pCpuDescArray[i].hPmiThread = hNewThr;
ResumeThread(hNewThr);

}
}

#pragma endregion

Multi-process Tracer Extension

IT shows the kernel test mode

» |t should be modified to find multiple addresses if multiple traces are running
concurrently

else {

f/ Grab the target module base address

SYSTEM_ALL_MODULES * pSysAllModules = NULL;

NTSTATUS ntStatus - ©;

CHAR modNameAnsi[0xB0] = { @ };

sprintf_s(modNameAnsi, COUNTOF(modNameAnsi), "%XS", procPath);

ntStatus = ZwQuerySystemInformation(11l, pSysAllModules, @, &dwByteslo);

if (ntStatus == STATUS_INFO_LENGTH_MISMATCH) {
pSysAllModules = (SYSTEM _ALL_MODULES*)VirtualAlloc(NULL, dwByteslo + 64
RtlZeroMemory(pSysAllModules, dwByteslo);

ntStatus = IwQuerySystemInformation(11l, pSysAllModules, dwByteslo, &dwB
if (ntStatus == @) {
/f Search for the SimplePt
for (unsigned 4 = @; i < pSysAllModules->dwNumOfModules; i++) {
SYSTEM_MODULE_INFORMATION curMod = pSysAllModules->modules[i];
LPSTR lpTargetModMame - curMod.ImageName + curMod.ModuleNameOff
if (_stricmp(modNameAnsi, lpTargetModName) == @) {
f/ Target module found
wprintf(L"Found \"%X5\" kernel driver in memory.\r\n", lpTar
remoteModInfo.lpBase0fD1l = curMod.Base;
remoteModInfo.Size0OfImage = curMod.Size;
break;

}
}
if (pSysAllModules) VirtualFree((LPVOID)pSysAllModules, @, MEM_RELEASE);

ptStartStruct.bTraceKernel = TRUE;
ptStartStruct.bTraceUser = FALSE;

tatu

- . - - o e » oo e -

i <THESE I3 . N
fis <EChsar. hix
= opEaEi . h*
 CEroCass . hi=

| T elise = { 43F.0 1:
ProcessPathl 2550
Provegsmamal 255

O BIHAPE SearchPfrocassl |sEThirasad LPYOID IpPeremb
MOLE BFrocoss = MOLL:
S PROCESS_LIZET & mrocasslist = [LPFROCESS_LIST = ipPuar

PROCESSENTRYIZ = = § 0O 32
PROGE AFOAHAT W opio= [@ k2
nT indexs = 0O
int ont = 0
char Duf [2690] = [sl 1:
HAF grimagePathn]me _FPaTH] = § O, 1:]

ZaroHemssryt sz IsepeFath, Ssizecld sz issgeFath) i
printfd - | E2%s® B Lt H

E T. Towstem ProCessT
padZ dwEise = 5

el [PROCEEEENTRYIZ :

LOIREE

WP rgcads = CrgataToolhelgddinapenstd THIZCE _SMAaPPROCESES.,

PP fPFroceeediT iratinProscaas,. Epedir bl |
wfuile [ProcsaaifMesl] PFroceig. EpaldZad |
cng o= QU

if IwcRftripeds szEMaFile,. DEFLAULT . FROCESS

B)

Mimiz FF

For cingE J = 0 | = plist.nuwmlFFrocass:

i¥ [pList. deProcessldlist[il == pe3Z thdZProcessiD) §

ok = 1
biresk:

A\ W \

Multi-process Tracer Extension

» |t is part of the code that tests
multiple streams of fraces using the
extended WindowslIntelPT driver

» The test program calls the
createProcess function and passes
the path ptcontrolapp.exe to
processPath

» |t also provides functions
®» To detect and pass new processes

» To refrieve a list of currently running
processes for selecting the traced
processes

Multi-process Tracer Extension

/‘ It shows fracing two applications, Paint and Nofepad

d = ¢ TN TE ZES O .
- e - o1
v i P = EEEE EEE g p—

=T Te ot

Multi-process Tracer Extension

It shows a dump of the results of tracing two applications simultaneously

B s et liogy -
LnEF B

A EOn =

el =#EH

—
¥

Irte
oI - 0
Bese sdd-ems T D

Begins Drdets Dpms=
[ik

Dl OO0 T fip
Dl O

WCHSN N I

sl e roass- wsosint sz
DO FEReF

BT Trace File. Versiss LS

0] = Size ScIGEENn

B
[et S |

== R

FEEERERR)

0T 1% = OCS | S0

=

Bese sdd-ems

BEgin Tordets [pms=
anmuvyyyl
D000
L]
DO e
i

85

iseh

sapya yyseys 33 =gy g1 g

Iletel PT Trace File. Versipa 3L S
P D -

o

=

Exmculsble roms” gotecad e=s
D000 FFEOCECD00] = Size S0 | OO0

*

i = i

e R R e v =

bl = =igiial
!
']
o
o
o
o
W’
.|

[=]

Bl L P

4 nEEs

[EED,

w Eas

- s
= AH

> wm

e ER O=E T

w1 S s
= BE

a_— OO
B P
& LEES
B E=a
[]
L
27 W

TEES0E 7T S T D

Future Work (Dynamic Analysis for malwares)

2 types of malware analysis

» (Static or Code Analysis) Performed by dissecting the different
resources of the binary file without executing it and studying each
component

» The binary file can also be disassembled (or reverse engineered) using
a disassembler

» (Dynamic or Behavioral Analysis) Performed by observing the
behavior of the malware while it is actually running on a host system

®» This form of analysis is often performed in a sandbox environment to
prevent the malware from actually infecting production systems

» \We're focucing dynamic analysis in an actual environment
not sandbox

» Jsing tracing logs from mulfi-stream Intel-PT decoder

Future Work (Dynamic Analysis for malwares)

A Malicious Code Analyzing System
» Mulfi-stream PT decoder in Windows environment
» A storage for malwares (input)
» A storage for accumulating tracing logs (output)

» An Al-based Analysis Server

®» Preprocessing tracing logs

» Generating and applying diverse learning models
®» Trace log dumper

» |t dumps trace logs of processes starting/stoping for N minutes from running @
specific malware

» Automatic rebbooter

®» |t reboots this system repeatedly after N+1 minutes from running a malware

Summary

Intel® PT uses proprietary hardware to record all information about software
execution on each hardware thread

» When the software execution is completed, PT can process the frace data of
the sofftware and reconstruct the correct program flow

» (Windows systems) There is no close integration with the profiling and
debugging mechanism due to problems such as kernel opening

® To this end, some individuals/organizations are implementing PTs in Windows
environments

» However, the perf and the WindowintelPT can trace only a single process using PT

» We propose a method to extend the existing PT frace program in order to
overcome this shortcoming by supporting mulfi-process stream fracing in
Windows environment

» As a future plan, we're designing a malicious code analyzing system using
multi-stream PT decoder

U
O
K Y
N

O

N

.

\

