Generating Labeled Flow Data from MAWILab
Traces for Network Intrusion Detection

SNTA2019 Workshop
June 25, 2019

Jinoh Kim, Ph.D.
Computer Science Department
Texas A&M University
Commerce, TX 75428

Introduction

* Increasing attention to the direct identification of malicious
activity over network connections

 The boom of the machine learning (ML) industry led to the
increasing usage of ML technologies for network intrusion
detection
— To employ ML techniques, datasets are pivotal with the label
information to construct learning models

— However, there exists a shortage of publicly available, relevant
datasets to researchers in the network intrusion detection
community.

 We introduce a method to construct labeled flow data by
combining the packet meta-information with IDS logs to
promote intrusion detection research

— Resulted datasets are NetFlow-compatible including the label
information

Intrusion Detection Approaches

* Misuse detection * Anomaly detection
— Based on signatures — Based on profiling of normal
(textual patterns) and/or anomalous behaviors
— Accurate to detect — Statistical information is
known attacks used for profiling
— Limited due to: * e.g., duration, number of

« Encryption of packets/connection, etc

packets — Gained greater attention

* Legal issue with ML technologies

concerning privacy — Data availability is key to

succeed!

Challenges for ML-based Anomaly

%
o

 Many challenges including the volume of traffic getting
heavier than ever (scalability issue)

e Lack of available datasets (containing the associated
labels) is another big challenge to employ ML
algorithms

 KDDCup 1999 connection dataset has been widely
employed but too old!

— Labels were created by experts with domain knowledge
(laborious!)

* We analyze MAWILab traces that provides IDS logs with
the packet meta-data to generate labeled flow data.

Data Generation from MAWILab

%
o

X 9
o RED T)
[races b

* Two steps in the generation process:

— Step 1: Extracting flow information from the
packet trace file (pcap)

* Using SiLK (https://tools.netsa.cert.org/silk/)
— Step 2: Combining the IDS log data with the flow

data constructed in the first step using the four-
tuple of flow information

* Four-tuple: source/destination IP addresses and port
numbers

Step 1: generating flow data

 An example trace of “201807011400.pcap” (1426.45
MB for the compressed one)

* Qutput flow file: “20180701 result.data”

> rwptoflow 201807011400.pcap --flow-out=20180701.rw
> rwcut 20180701.rw
--fields=1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,20,21,25,26,27,28,29
--output-path=20180701_result.data

Step 1: generating flow data (cont’d) Y
e Attributes of flows:

— Four-tuple: sIP, dIP, sPort, dPort

— Protocol, pkts, bytes, flags, sTime, duration,
eTime, sensor, in, out, nhIP

— Class, type, icmpTypeCode, initialFlags,
sessionFlags, attributes, application

e Reference:
https://tools.netsa.cert.org/silk/rwcut.html

https://tools.netsa.cert.org/silk/rwcut.html

Step 2: combining flow data with IDS /77

logs S
MAWILab IDS log attributes
Column Description
SIp Source IP address
dip Destination IP address
sport source port
dport destination port
taxonomy Category of anomalies (e.g., Port scan, DoS, etc)
heuristic Code assigned to anomalies
using the internal heuristic
distance D, — Dg,
D,=distance to normal traffic,
D ,=distance to anomalous traffic
nbDetectors Number of detectors reported this anomaly
label {anomalous, suspicious, notice}

Step 2: combining flow data with IDS /77

Combine with flow data
based on four tuples!

logs
MAWILab IDS log attributes
Column Description
(sip Source IP address)
dip Destination IP address
sport source port
_dport destination port y
taxonomy Category of anomalies (e.g., Port scan, DoS, etc)
heuristic Code assigned to anomalies
using the internal heuristic
distance D, — Dg,
D,=distance to normal traffic,
D ,=distance to anomalous traffic
nbDetectors Number of detectors reported this anomaly
label {anomalous, suspicious, notice}

Step 2: combining flow data with IDS
logs — Algorithm

Input: flow_file F, IDS_log R

For each entry F;in F:

Search R with 4-tuple in F,

If there is a single match with R;:
Combine F; and R,
label = anomaly

If there are multiple matches with S ={R, R, ..}:
Handle multiple match (next slide)
label = anomaly

Else:
label = normal

Step 2: combining flow data with IDS /777
logs — Handling multiple matches

* Alog entry may contain null values for certain
attributes in 4-tuple

* Define L as the number of flow attributes
available in 4-tuple (i.e., not null)

e Case 1: R1:(sip=A, sport=B, dip=C, dport=D)
and R2:(sip=A, sport=null, dip=C, dport=null)
— L(R1)=4 > L(R2)=2
— F1:(sip=A, sport=B, dip=C, dport=D)

— F1 is combined with R1 by the precedence rule

Step 2: combining flow data with IDS /77
logs — Handling multiple matches

e Case 2: F2:(sip=P, sport=Q, dip=R, dport=S),
R3:(sip=P, dip=R), and R4:(dip=R, dport=S)
— L(R3) == L(R4)

* Heuristic:

1) Give a higher weight to victim than source (i.e.,
destination > source)

2) Give a higher weight to host than service (i.e., IP
address > port number), and hence (dip > sip > dport
> sport) for any identical L

* By thisrule, F2 is combined with R3 instead of R4

Step 2: combining flow data with IDS /77

logs — Precedent rule
Priority # matches sIP sPort diP dPort _
Highest 4 match match match match
3 match null match match
3 match match match null
3 null match match match
3 match match null match Label=
2 match null match null ™~ anomaly
2 null null match match
2 null match match null
2 match null null match
2 match match null null
2 null match null match _
1 null null match null =
1 match null null null Label=
1 null null null match ™ unsure
Lowest 1 null match null null

* Too many matches for L=1 log entries => Label the flows as “unsure”
* Example: sport=443 (for secure web browser communication) matches
with 23.5% of the flows in total

Example: 12/30/2018 Trace

e Total number of flows: 37M

* Number of anomalous flows: 7.4M (20.1%)

— Number of bytes for anomalies: 39.4% of the total
bytes

 Anomaly classes:
— Multipoints-class anomalies (57.5%)

— Network scanning (38.1%)

Created Data Format

Feature NetFlow v9 field Description

sIP IPV4 SRC_ADDR Source IP address

dip IPV4 DST ADDR Dest IP address

sPort L4 SRC_PORT Source port

dPort L4 DST PORT Dest port

proto PROTOCOL IP protocol

packets IN BYTES Packet count

bytes IN_PKTS Byte count

flags TCP_FLAGS Bit-wise or of TCP flags over all packets

sTime UNIX_Seconds Starting time of flow (in sec)

durat Duration of flow (in sec)

eTime End time of flow (in sec)

sen FLOW_SAMPLER ID Name or ID of the sensor

in SRC VLAN Router SNMP input interface

out DST VLAN Router SNMP output interface

nhIP IPV4 NEXT HOP Router next hop ID

senClass Class of sensor that collected flow (SiLK-specific)

typeFlow Type of flow for this sensor class (SiLK-specific)

iType ICMP_TYPE ICMP type value for ICMP flows

iCode ICMP code value

initialF TCP flags on first packet in flow

sessionF Bit-wise OR of TCP flags over all packets except the first in the flow
attribut Flow attributes set by the flow generator

appli Guess as to the content of the flow

class {normal, anomaly, unsure} for anomaly detection

taxonomy Category of anomalies (e.g., Port scan, DoS, etc)

label {normal, anomalous, suspicious, notice} (MAWILab-specific)
heuristic Code assigned to anomalies (MAWILab-specific)

distance Dy, — Dg (MAWILab-specific)

nbDetectors Number of detectors reported this anomaly (MAWILab-specific)

&M UNg

& T
€

®
S

R S
A

S
AorLyons®

TEX
£ slu“l%

CEASELESg

9,/ 1889
¢ gy O

Ony ME®

2

Implementation

%
o

xS
O rvERS

* Implemented using Python

 flowlabeling.py takes a flow data file
(resulted in step 1) and an IDS log file, and
produces a set of combined flows

 flowsplitter.py breaks the outputs into
multiple files with desighated time windows.
— For example, it splits a 15-minute flow data into 180

sub-files under the assumption of 5-second time
window.

* Available from GitHub repository:
https://github.com/dcstamuc/FlowDataGen

https://github.com/dcstamuc/FlowDataGen

Summary

Introduced a method combining the packet meta-information with
the IDS logs to infer labels containing intrusion information for
individual network flows.

— Utilized the SiLK tool to extract the flow data from the TCP
dump file

— Implemented a Python program to combine the flow data with
the IDS log.

The generated flow data contains associated label information for
intrusion detection research and is NetFlow compatible.

The introduced method would assist researchers in network
intrusion detection to access recent network flow datasets with
associated labels.

Currently working on the analysis of the constructed data using ML
tools For the temporal traffic analysis against the constructed data

THANK YOU!

Questions?

Jinoh.Kim@tamuc.edu

