
Generating Labeled Flow Data from MAWILab
Traces for Network Intrusion Detection

SNTA2019 Workshop

June 25, 2019

Jinoh Kim, Ph.D.
Computer Science Department

Texas A&M University
Commerce, TX 75428

Introduction

• Increasing attention to the direct identification of malicious
activity over network connections

• The boom of the machine learning (ML) industry led to the
increasing usage of ML technologies for network intrusion
detection
– To employ ML techniques, datasets are pivotal with the label

information to construct learning models
– However, there exists a shortage of publicly available, relevant

datasets to researchers in the network intrusion detection
community.

• We introduce a method to construct labeled flow data by
combining the packet meta-information with IDS logs to
promote intrusion detection research
– Resulted datasets are NetFlow-compatible including the label

information

Intrusion Detection Approaches

• Misuse detection
– Based on signatures

(textual patterns)
– Accurate to detect

known attacks
– Limited due to:

• Encryption of
packets

• Legal issue
concerning privacy

• Anomaly detection
– Based on profiling of normal

and/or anomalous behaviors
– Statistical information is

used for profiling
• e.g., duration, number of

packets/connection, etc

– Gained greater attention
with ML technologies

– Data availability is key to
succeed!

Challenges for ML-based Anomaly
Detection
• Many challenges including the volume of traffic getting

heavier than ever (scalability issue)
• Lack of available datasets (containing the associated

labels) is another big challenge to employ ML
algorithms

• KDDCup 1999 connection dataset has been widely
employed but too old!
– Labels were created by experts with domain knowledge

(laborious!)
• We analyze MAWILab traces that provides IDS logs with

the packet meta-data to generate labeled flow data.

Data Generation from MAWILab
Traces

• Two steps in the generation process:
– Step 1: Extracting flow information from the

packet trace file (pcap)
• Using SiLK (https://tools.netsa.cert.org/silk/)

– Step 2: Combining the IDS log data with the flow
data constructed in the first step using the four-
tuple of flow information
• Four-tuple: source/destination IP addresses and port

numbers

Step 1: generating flow data

• An example trace of “201807011400.pcap” (1426.45
MB for the compressed one)

• Output flow file: “20180701_result.data”

Step 1: generating flow data (cont’d)

• Attributes of flows:
– Four-tuple: sIP, dIP, sPort, dPort
– Protocol, pkts, bytes, flags, sTime, duration,

eTime, sensor, in, out, nhIP
– Class, type, icmpTypeCode, initialFlags,

sessionFlags, attributes, application

• Reference:
https://tools.netsa.cert.org/silk/rwcut.html

https://tools.netsa.cert.org/silk/rwcut.html

Step 2: combining flow data with IDS
logs

MAWILab IDS log attributes

Step 2: combining flow data with IDS
logs

MAWILab IDS log attributes

Combine with flow data
based on four tuples!

Step 2: combining flow data with IDS
logs – Algorithm
Input: flow_file F, IDS_log R

For each entry Fi in F:
Search R with 4-tuple in Fi
If there is a single match with Rj:

Combine Fi and Rj
label = anomaly

If there are multiple matches with S = {Rj, Rk , ..}:
Handle multiple match (next slide)
label = anomaly

Else:
label = normal

Step 2: combining flow data with IDS
logs – Handling multiple matches

• A log entry may contain null values for certain
attributes in 4-tuple

• Define L as the number of flow attributes
available in 4-tuple (i.e., not null)

• Case 1: R1:(sip=A, sport=B, dip=C, dport=D)
and R2:(sip=A, sport=null, dip=C, dport=null)
– L(R1)=4 > L(R2)=2
– F1:(sip=A, sport=B, dip=C, dport=D)
– F1 is combined with R1 by the precedence rule

Step 2: combining flow data with IDS
logs – Handling multiple matches
• Case 2: F2:(sip=P, sport=Q, dip=R, dport=S),

R3:(sip=P, dip=R), and R4:(dip=R, dport=S)
– L(R3) == L(R4)

• Heuristic:
1) Give a higher weight to victim than source (i.e.,

destination > source)
2) Give a higher weight to host than service (i.e., IP

address > port number), and hence (dip > sip > dport
> sport) for any identical L

• By this rule, F2 is combined with R3 instead of R4

Step 2: combining flow data with IDS
logs – Precedent rule

Priority # matches sIP sPort dIP dPort
Highest 4 match match match match

3 match null match match
3 match match match null
3 null match match match
3 match match null match
2 match null match null
2 null null match match
2 null match match null
2 match null null match
2 match match null null
2 null match null match
1 null null match null
1 match null null null
1 null null null match

Lowest 1 null match null null

Label=
anomaly

Label=
unsure

• Too many matches for L=1 log entries => Label the flows as “unsure”
• Example: sport=443 (for secure web browser communication) matches

with 23.5% of the flows in total

Example: 12/30/2018 Trace

• Total number of flows: 37M
• Number of anomalous flows: 7.4M (20.1%)
– Number of bytes for anomalies: 39.4% of the total

bytes

• Anomaly classes:
– Multipoints-class anomalies (57.5%)
– Network scanning (38.1%)
– …

Created Data Format

Implementation

• Implemented using Python
• flowlabeling.py takes a flow data file

(resulted in step 1) and an IDS log file, and
produces a set of combined flows

• flowsplitter.py breaks the outputs into
multiple files with designated time windows.
– For example, it splits a 15-minute flow data into 180

sub-files under the assumption of 5-second time
window.

• Available from GitHub repository:
https://github.com/dcstamuc/FlowDataGen

https://github.com/dcstamuc/FlowDataGen

Summary

• Introduced a method combining the packet meta-information with
the IDS logs to infer labels containing intrusion information for
individual network flows.
– Utilized the SiLK tool to extract the flow data from the TCP

dump file
– Implemented a Python program to combine the flow data with

the IDS log.
• The generated flow data contains associated label information for

intrusion detection research and is NetFlow compatible.
• The introduced method would assist researchers in network

intrusion detection to access recent network flow datasets with
associated labels.

• Currently working on the analysis of the constructed data using ML
tools For the temporal traffic analysis against the constructed data

THANK YOU!
Questions?

Jinoh.Kim@tamuc.edu

