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Introduction

• Increasing attention to the direct identification of malicious 
activity over network connections

• The boom of the machine learning (ML) industry led to the 
increasing usage of ML technologies for network intrusion 
detection 
– To employ ML techniques, datasets are pivotal with the label 

information to construct learning models 
– However, there exists a shortage of publicly available, relevant 

datasets to researchers in the network intrusion detection 
community. 

• We introduce a method to construct labeled flow data by 
combining the packet meta-information with IDS logs to 
promote intrusion detection research 
– Resulted datasets are NetFlow-compatible including the label 

information



Intrusion Detection Approaches

• Misuse detection
– Based on signatures 

(textual patterns)
– Accurate to detect 

known attacks
– Limited  due to:

• Encryption of  
packets

• Legal issue 
concerning privacy

• Anomaly detection
– Based on profiling of normal 

and/or anomalous behaviors
– Statistical information is 

used for profiling
• e.g., duration, number of  

packets/connection, etc

– Gained greater attention 
with ML technologies

– Data availability is key to 
succeed!



Challenges for ML-based Anomaly 
Detection
• Many challenges including the volume of traffic getting 

heavier than ever (scalability issue)
• Lack of available datasets (containing the associated 

labels) is another big challenge to employ ML 
algorithms

• KDDCup 1999 connection dataset has been widely 
employed but too old! 
– Labels were created by experts with domain knowledge 

(laborious!)
• We analyze MAWILab traces that provides IDS logs with 

the packet meta-data to generate labeled flow data.



Data Generation from MAWILab
Traces

• Two steps in the generation process:
– Step 1: Extracting flow information from the 

packet trace file (pcap)
• Using SiLK (https://tools.netsa.cert.org/silk/)

– Step 2: Combining the IDS log data with the flow 
data constructed in the first step using the four-
tuple of flow information
• Four-tuple: source/destination IP addresses and port 

numbers



Step 1: generating flow data

• An example trace of “201807011400.pcap” (1426.45 
MB for the compressed one) 

• Output flow file: “20180701_result.data” 



Step 1: generating flow data (cont’d)

• Attributes of flows:
– Four-tuple: sIP, dIP, sPort, dPort
– Protocol, pkts, bytes, flags, sTime, duration, 

eTime, sensor, in, out, nhIP
– Class, type, icmpTypeCode, initialFlags,  

sessionFlags, attributes, application

• Reference: 
https://tools.netsa.cert.org/silk/rwcut.html

https://tools.netsa.cert.org/silk/rwcut.html


Step 2: combining flow data with IDS
logs

MAWILab IDS log attributes



Step 2: combining flow data with IDS
logs

MAWILab IDS log attributes

Combine with flow data 
based on four tuples!



Step 2: combining flow data with IDS
logs – Algorithm 
Input: flow_file F, IDS_log R

For each entry Fi in F:
Search R with 4-tuple in Fi
If there is a single match with Rj:

Combine Fi and Rj
label = anomaly

If there are multiple matches with S = {Rj, Rk , ..}:
Handle multiple match (next slide)
label = anomaly

Else:
label = normal



Step 2: combining flow data with IDS
logs – Handling multiple matches 

• A log entry may contain null values for certain 
attributes in 4-tuple

• Define L as the number of flow attributes 
available in 4-tuple (i.e., not null)

• Case 1: R1:(sip=A, sport=B, dip=C, dport=D) 
and R2:(sip=A, sport=null, dip=C, dport=null)
– L(R1)=4 > L(R2)=2
– F1:(sip=A, sport=B, dip=C, dport=D)
– F1 is combined with R1 by the precedence rule



Step 2: combining flow data with IDS
logs – Handling multiple matches 
• Case 2: F2:(sip=P, sport=Q, dip=R, dport=S), 

R3:(sip=P, dip=R), and R4:(dip=R, dport=S)
– L(R3) == L(R4)

• Heuristic:
1) Give a higher weight to victim than source (i.e., 

destination > source)
2) Give a higher weight to host than service (i.e., IP 

address > port number), and hence (dip > sip > dport
> sport) for any identical L

• By this rule, F2 is combined with R3 instead of R4



Step 2: combining flow data with IDS
logs – Precedent rule 

Priority # matches sIP sPort dIP dPort
Highest 4 match match match match

3 match null match match
3 match match match null
3 null match match match
3 match match null match
2 match null match null
2 null null match match
2 null match match null
2 match null null match
2 match match null null
2 null match null match
1 null null match null
1 match null null null
1 null null null match

Lowest 1 null match null null

Label=
anomaly

Label=
unsure

• Too many matches for L=1 log entries => Label the flows as “unsure”
• Example: sport=443 (for secure web browser communication) matches 

with 23.5% of the flows in total



Example: 12/30/2018 Trace

• Total number of flows: 37M
• Number of anomalous flows: 7.4M (20.1%)
– Number of bytes for anomalies: 39.4% of the total 

bytes

• Anomaly classes:
– Multipoints-class anomalies (57.5%)
– Network scanning (38.1%)
– …



Created Data Format



Implementation

• Implemented using Python
• flowlabeling.py takes a flow data file 

(resulted in step 1) and an IDS log file, and 
produces a set of combined flows

• flowsplitter.py breaks the outputs into 
multiple files with designated time windows. 
– For example, it splits a 15-minute flow data into 180 

sub-files under the assumption of 5-second time 
window. 

• Available from GitHub repository: 
https://github.com/dcstamuc/FlowDataGen

https://github.com/dcstamuc/FlowDataGen


Summary

• Introduced a method combining  the packet meta-information with 
the IDS logs to infer labels containing intrusion information for 
individual network flows. 
– Utilized the SiLK tool to extract the flow data from the TCP 

dump file
– Implemented a Python program to combine the flow data with 

the IDS log. 
• The generated flow data contains associated label information for 

intrusion detection research and is NetFlow compatible. 
• The introduced method would assist researchers in network 

intrusion detection to access recent network flow datasets with 
associated labels. 

• Currently working on the analysis of the constructed data using ML 
tools For the temporal traffic analysis against the constructed data



THANK YOU!
Questions?

Jinoh.Kim@tamuc.edu


