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Kilonova - GW170817 

● Merger of  two neutron stars 
● It occurred in a galaxy 130 million light-years 

from Earth in the southern constellation of 
Hydra.LIGO and Virgo detectors detected the  
gravitational wave signal 

● The data from this initial observation had to 
be processed in a timely manner and sent to 
astronomers around the world so that they 
could aim their instruments to the right 
section of the sky to image the source of the 
signal. 
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Zwicky Transient Facility (ZTF)

An abstracted version of the Zwicky Transient Facility (ZTF) workflow

● ZTF is capable of finding transients and variable 
stars an order of magnitude faster than the 
previous generation of synoptic surveys

● It generates approximately 1.3~GB 
uncompressed data every 45~sec 

● This data is processed through multiple pipelines 
potentially at different networked HPC nodes to 
generate alerts 

● Alerts must be generated within a deadline so 
that additional observations can be quickly 
scheduled during the same observation night 
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SuperFacility Model

Borrowed from Kathy Yelick’s slide deck on SuperFacility Model for Data Intensive Science

1. Movement  of large and 
complex data sets

2. Many applications must 
meet deadline (Real-time 
MRI) 

3. Computational facilities 
need to adapt

4. The network with  
increased traffic - need to 
run network at high 
utilization 5



Abstraction

● Sources (S) and Destination (D)  
nodes interconnected by 
Software Defined Switches and 
Routers

● Both data for science workflows 
and background traffic is present

● Background traffic can be 
metered at the ingress router 

● Data Transfer Nodes (DTN)
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Network and System Telemetry
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Networking  Protocols

● Current transport protocols are based on the end-to-end principle
○ Network is a simple and very fast packet routing and forwarding engine
○ Intelligent and adaptable end-system

● Very minimal explicit feedback from the network 
● Transport protocol make measurements to estimate network state and 

accordingly adapt their sending rate
● Super-successful model particularly under low to moderate network 

utilization 
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New Challenges for Science Workflows (1)

● In order to  meet the traffic demands of science workflows it is essential to 
run the network at high utilization
○ Upwards of 90 percent utilization

● Deadline driven workflows
○ Deadline driven transfers of large data sets
○ Co-scheduling of network transfers with storage and compute 

resources
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New Challenges for Science Workflows (2)

● Predictability
○ Small changes in requests or the network state should not result in 

large changes in the schedule
○ Lack of predictability will impact the utilization of the compute and 

storage resources
● Security 

○ Denial of Service (DoS) and Distributed DoS
○ Data exfiltration and corruption through insider attack
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Enabling Networking Technologies 

● SDN enabled softwarized networks
○ Decoupling of  the control and data plane 
○ Centralizing network control functions
○ Ability to program switches/routers to implement policies based on the state of the 

network
● Ability to pace traffic at high data rate

○ Ability to precisely control how data is injected into the network. Two broad categories: 1) 
Host pacing and 2) Edge pacing

○ With regards to TCP, host pacing refers to the ability to spread  the transmission of the 
data corresponding to the allowed window  over the RTT

○ Edge pacing is done at the ingress to the network 
○ It is now possible to do host pacing at 40 Gbps  
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Enabling Technologies 

● Network and System Telemetry
○ Ability to monitor  and record the network state very precisely

■ Monitor queue lengths, packet delays at the network switches and routers
○ Ability to monitor and record the state of the end-system very precisely

■ Monitor the number of context switches and interrupts system  wide and at per-core 
level 

● Machine Learning
○ Traffic engineering (capacity allocation, routing) 
○ Resources allocation 
○ Anomaly detection

12



Scheduling Deadline-Aware Flows

13



Problem Definition

A two-level autonomous control system  
consisting of 
1) A Network Controller for  

Predictable Completion Time of 
Deadline-aware Flows

2) A Model Predictive Control based 
Approach for Pacing Deadline 
Flows

Background traffic can be metered at 
the ingress router since the switches  
are SDN enabled
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A Network Controller for Deadline-driven 
Flows

❖ A complex task of determining 
❖ if a request should be accepted, 
❖ how to pace different flows, 
❖ how to route different flows, 
❖ how to manage the background flows

❖ Simpler version of the problem (single resource bottleneck)  has been 
studied as scheduling malleable jobs with deadline

❖ ML based approach will be adopted
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Goals

1. Can we design a Reinforcement Learning Agent that can schedule and 
pace flows such that the deadlines are met and  network utilization is 
maximized? 
a. For individual flows and workflows

2. Can we design a Reinforcement Learning Agent that can meter traffic at 
the network ingress such that the network transfers are predictable while 
achieving high network utilization?

3. Can we design a Reinforcement Learning Agent that can jointly optimize 
routing and flow scheduling? 
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Model
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Preliminary Network

● The links from the sources to router R1 and 
router R2 to destination have infinite 
capacities (20 Gbps)

● The link between R1 and R2 is the bottleneck 
link (10 Gbps)

● There are only deadline driven flows
● Flows can be paced at specified integer rates 

(0 is allowed) 
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Timing

● Scheduling Interval: A fixed time interval when 
scheduling decisions are made

● Flow Update Interval: Each scheduling interval is 
divided into a fixed number flow-update interval 
when flow attributes are updated

● Episode:  This corresponds to a number of 
scheduling intervals when the current set of 
transfers complete

● Notes: 
○ A Request may finish anytime within an interval
○ The  length of the episodes will be different since 

the file sizes in the requests are different
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Workload (1) 

● A request is a transfer of a file of size s drawn from Unif (smin, smax) 
within a given deadline d also drawn from Unif (dmin, dmax)

● Given a size s and a deadline d,  we can define R_min (= s/d)
● If at each scheduling interval  the flow is assigned R_min it will meet the 

deadline
● No interference is modeled in this preliminary study
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Workload (2)

1. At the start of the episode, 3 requests are generated with 
a. A random filesize s =  Unif (smin, smax) 
b. A random R_min = Unif (1,  R_min-High) 
c. The deadline is then determined to be d = s/R_min

2. Example 1:  If R_min_High is 3 then it should be possible to meet all the 
deadlines

3. Example 2: If R_min_High is 8  then in cases when the aggregate R_mins 
is greater than 10,  then it will not be possible to meet all the deadlines
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Heuristic Scheduling Algorithms
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TCP - Equal Partition

1. If the sum of the rates allocated to  the flows on a given link is greater than 
the link capacity, then flow gets a share of the capacity that  is proportional 
to the RTT

2. In the preliminary study RTTs are assumed to be the same hence the 
capacity is “equally” partitioned
a. For 3 active flows, 10 Gbps is divided into 4, 3, 3
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Earliest Deadline First (EDF) 

● Allocate all the capacity to the flow that has the earliest deadline
○ For single machine systems, EDF has been proved be the optimal policy (David Karger, Cliff Stein, and 

Joel Wein. Scheduling algorithms. CRC Handbook of Computer Science, 1997)
○ EDF has also been studied for packet scheduling in multihop networks with hard deadlines.  For a single 

hop system, EDF has the same performance as the optimal offline algorithm when the system is 
underloaded

○ For tree-based multihop networks, EDF algorithm achieves the same performance as the optimal offline 
algorithm (Zhoujia Mao, Can Emre Koksal, and Ness B Shroff. Optimal online scheduling with arbitrary 
hard deadlines in multihop communication networks. IEEE/ACM Transactions on Networking (TON), 
24(1):177– 189, 2016.)

● Since we consider a network with a single bottleneck link, we use EDF as 
the benchmark for the best achievable performance
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RANDOM 

● In this scheme the bottleneck capacity is randomly partitioned among the 
number of active flows

● This is baseline case for comparison only
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Reinforcement Learning
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Reinforcement Learning (1) 

● Policy: mapping of the perceived states 
of the environment to actions to be taken 
when in those states

● Reward Function: maps each state  of the 
environment to a single number that 
indicates the desirability of the state

● Value Function: specifies what is good in 
the long run

● Model: The “physics” of the environment. 
Given the state and action it can predict 
the next state
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Reinforcement Learning (2)

● Learning by interacting with the environment
● It is different from supervised learning

○ In interactive problems it is often impractical to obtain examples of desired behavior of all 
situations that the agent has to act on

● Trade-off between exploration and exploitation 
○ To increase reward  the agent may prefer actions that it has tried in the past but it needs to 

explore in order to find better action selections in the future
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Application of RL in Resource Management 

● Decisions are often highly repetitive (such as the periodic ZTF data)
○ Consequently, there is an abundance of training data 

● RL can model complex systems and decision-making policies using deep 
neural networks 

● RL agent can be trained for objectives that are hard-to-optimize directly 
since the model becomes very complex

○ Modeling 

● The RL agent can operate  under varying load conditions
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Related Work

● Resource Management with Deep Reinforcement Learning, Hongzi Mao, Mohammad Alizadeh,  
Ishai Menachey, Srikanth Kandula, Massachusetts Institute of Technology & Microsoft Research, 
HOTNet 2016 

● DeepRM is a multi-resource cluster scheduler operates in an online setting where jobs arrive 
dynamically and cannot be preempted once scheduled

● DeepRM learns to optimize various objectives such as minimizing average job slowdown or 
completion time

● DeepRM employs a standard policy gradient reinforcement learning algorithm
● DeepRM performs comparably or better  than standard heuristics such as Shortest-Job-First 

(SJF) and a packing scheme based on Tetris
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Actions

● Actions are setting the pacing rates of the flows
● We assume a discretized set  of pacing rates  R = {r1, r2, …., rn}  from which 

the agent can choose the pacing rates of each flows
● For example, if the link capacity is 10Gbps, then R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10}
● We assume that flows can be assigned rates (even stopped for  an interval 

and restarted) without any penalty
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State

● The state consists of the following elements 
a. n: number of active flows
b. b: A vector of the current R_min for each of the active flow (rounded up to nearest integer)
c. u: utilization of the link discretized into 10 different bins { u1: 0-0.1, u2: 0.1-0.2, …., u10: > 

1.0}

● Notes: 
a. In  the current implementation u is always 1 since the entire bottleneck capacity is 

allocated
b. A better state will be number of remaining bytes and time until deadline. This is captured in 

one metric - the current R_min 

33



Reward Function

1. Scheduling Interval Reward (A sample)
○ Rmin is the minimum rate that is required for the flow to meet the 

deadline (filesize/deadline). At each time interval for each flow
■ a (small +1) positive reward if the rate achieved in the time slot is greater than Rmin 
■ a (small -1) negative reward if the rate achieved in the time slot is less than Rmin

○ The total reward for the state action pair is the sum of the flow rewards

2. Flow Completion Reward
○ When a flow finishes within the given deadline a (large) positive rewards is applied with a 

discount factor to all the states-action pairs that helped achieve the deadline
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Results

3 nodes with bottleneck link capacity of 10 
Gbps 

5 nodes with bottleneck link capacity of 20 
Gbps 35



It is Really Learning? 

● The red line shows how the 
exploration probability is 
changed

● The orange line  shows success 
ratio when the new state action 
policy follows the Random policy 

● The blue line shows the success 
ratio when the new state action 
policy follows the EDF policy
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Security
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Data Transfer Node (DTN)

● An important network entity in Science DMZ (E. 
Dart, L. Rotman, B. Tierney, M. Hester, and J. 
Zurawski, “The science dmz: A network design 
pattern for data-intensive science,” Scientific 
Programming, vol. 22, no. 2, pp. 173–185, 
2014)

● Interface between networks of different 
capacities

● Interface between the HPC  nodes and the 
network 

● A performance tuned node
38



A Preliminary and Simple Threat Model

● External attacks
○ Denial of Service (DoS)

■ TCP SYN flood attack
■ Port Scanning attacks

● Insider attacks
○ Data exfiltration
○ Compromise data integrity
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Security Challenges

● DTNs are highly performance tuned 
○ Protecting the performance of such networks is an important security concern

● Science DMZs avoid typical firewalls to maximize network transfer 
efficiency, instead relying on various detection systems and Access 
Control Lists (ACLs)  

● Network intrusion detection systems (NIDS), such as Bro or Snort  tend to 
rely solely on network metrics to identify abnormal traffic or attacks

● System performance metrics can also reveal the type of traffic being 
received, including malicious traffic
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End-System Performance-Based Anomaly 
Detection (Preliminary Results)

● Evaluated the effectiveness of system performance data in detecting 
TCP-SYN flood attacks on a DTN 

● Hierarchical Temporal Memory (HTM) used in detection system 
● System interrupts can be used to successfully detect TCP-SYN flood 

○ An attack traditionally detected by network activity
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Summary

● Importance of precision network and system telemetry
● Importance of Machine Learning 

○ Traffic  Engineering
○ Resource Allocation 
○ Anomaly Detection
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