Similarity-based Compression with Multidimensional Pattern Matching

Olivia Del Guercio¹, Rafael Orozco² Alex Sim³, K John Wu³

 Scripps College
Bucknell University
Scientific Data Management Research Group Computational Research Division
Lawrence Berkeley National Laboratory

Locally Exchangeable Measures – New Perspective on Data Compression

- Question: random-looking sequence of values are hard to compress, can we do something about it?
- Answer: IDEALEM (Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures) @ SSDBM2016, 2017, BigData2018, DCC2019
- Dictionary compression with alternative measures² of distance
 - Based on Kolmogorov-Smirnov test (KS test)
 - Distributional distance/similarity of two random variables

2

IDEALEM Achieves High Compression Ratio and High Reconstruction Quality on Power Grid Data

IDEALEM Extension – **Non-Stationary Data**

- Early IDEALEM was not so effective for non-stationary data such as phase angle of electricity data
- **IDEALEM** now offers two methods for transforming nonstationary data into locally stationary block to promote exchangeability/similarity
 - **Residual transformation**
 - Delta transformation
- These methods allow local variations to be compared through **KS** test residual transformation delta transformation

New IDEALEM Extension – Multidimensional Data

- Original IDEALEM algorithm only supports one dimensional data with K-S test.
- This paper is about extending the algorithm to support 2D and n-dimensional data with multidimensional similarity measures

Common measure between two time series

 From many alternative similarity measures, we selected Dynamic Time Warp (DTW) and Minimum Jump Cost (MJC)

- DTW performs nonlinear "warping" on the sequences where differences in time are not penalized
 - For time series of length n, it is necessary to do n² computations (through Dynamic Programming)

$$d_{\text{DTW}}(\mathbf{x}, \mathbf{y}) = D_{M,N}$$

$$D_{i,j} = d_{\text{Euc}}(x_i, y_i) + \min\{D_{i,j-1}, D_{i-1,j}, D_{i-1,j-1}\}$$

 MJC works by accumulating the cost of jumping forward from one time series data point to the nearest data point in the other time series

$$d_{\text{MJC}} = \sum_{i} c_{\min}^{(i)}$$
$$c_{\min}^{(i)} = \min\{c_{t_x}^{t_y}, c_{t_x}^{t_y+1}, c_{t_x}^{t_y+2}, \ldots\}$$

- Instead of calculating all n² distance values of between x and y, only the distance between points of index greater than the recursive starting point are calculated
- Expected to reduce runtime

Minimum Jump Cost (MJC)

Minimum Jump Cost (MJC)

$$d_{ ext{MJC}} = \sum_{i} c_{ ext{min}}^{(i)}$$
 $c_{ ext{min}}^{(i)} = \min\{c_{t_x}^{t_y}, c_{t_x}^{t_y+1}, c_{t_x}^{t_y+2}, \ldots\}$

Summary of Compression Performance

- Mean Squared Error (MSE) $MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$
- Peak Signal to Noise Ratio (PSNR) $PSNR = 10 \cdot \log_{10} \left(\frac{MAX_x^2}{MSE} \right)$

Similarity Measure	Mean Squared Error (lower is better)	Execution Time (seconds)	
Minimum Jump Cost	0.344	0.255 sec	
Dynamic Time Warp	0.388	0.578 sec	

Dictionary size comparison for CR = 100

	Dictionary Size		PSNR	Runtime	MSE	
	2	DTW	32.4	0.214	0.281	
		MJC	32.6	0.183	0.262	
	20	DTW	34.4	0.624	0.215	•
		MJC	34.3	0.336	0.217	
	100	DTW	35.5	1.339	0.0580	
		MJC	35.4	0.629	0.0586	•
	255	DTW	34.8	1.318	0.0580	
		MJC	35.4	0.686	0.0586	
1JC larg	has lower error a er dictionary size	t		DTV	W takes 2x the used by MJC	e time
וו חם	201		SNITA'10 Jupo 25	2010		

Ν

Results

Power Grid dataset on 3 dimensional input data

Distributed Acoustic Sensing dataset with 100 dimensions

SDM, CRD, LBNL

Results – image compression

 ORIGINAL PHOTO (2560 x 1440 = 3,686,400 pixels) Each pixel has three dimensions of color (RGB) (image courtesy by Nina Fox)

CR = 7.71

CR = 19.61

Results – video compression

SNTA'19, June 25, 2019

Comparison to SZ

- State of art compression technique developed by Cappello and colleagues from Argonne National Lab
- Work based on predictions made by nearby points
 - 1D version was notable for incorporating multiple curve fitting
 - Multidimensional version uses a "layer" of points for prediction
- CR vs. PSNR (left) and Runtime (right) for SZ (red) and MJC (blue)

SZ vs. MJC Reconstruction Results for Power Grid Data

- SZ relies on nearby points to perform reconstruction, leading to inaccurate decompression in highly variable data
- IDEALEM: Better PSNR at the cost of compute time

18

IDEALEM: Similarity-based Compression with Multidimensional Pattern Matching

- An promising alternative to leading lossy compression algorithms
- In addition to K-S test, MJC and DTW are used for multidimensional data
- Applied to photos and videos, in additional to scientific multidimensional floating point data

Future work

- Understand MSE behavior
- Study additional test statistics as a similarity measure
- Study run-time optimization

IDEALEM HTTPS://SDM.LBL.GOV/IDEALEM/ PAPERS: HTTPS://SDM.LBL.GOV/MANA/

Contact E-Mail

K. John Wu <KWu@lbl.gov>