

Scientific Data Services Framework for Exascale Infrastructure

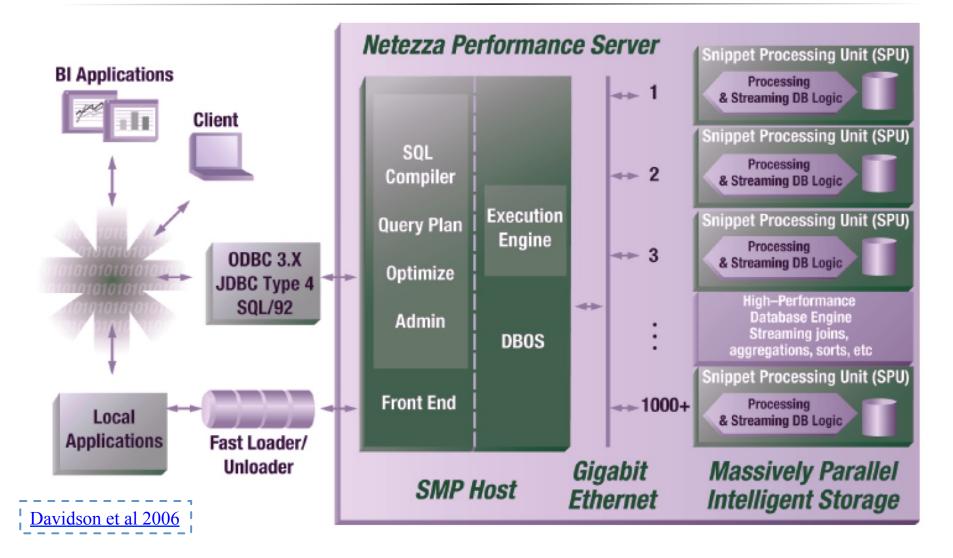
John Wu Lawrence Berkeley National Laboratory

http://crd.lbl.gov/sdm/

What do you think of when you hear Big Data?

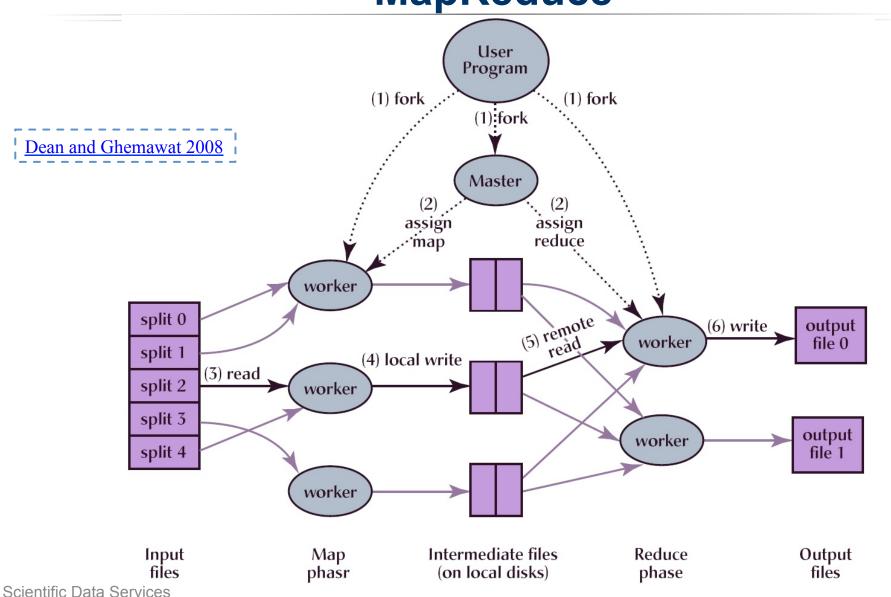
Scientific Computing also Uses Many CPUs

Big Data System -- Parallel Database Systems



BERKELEY LAE

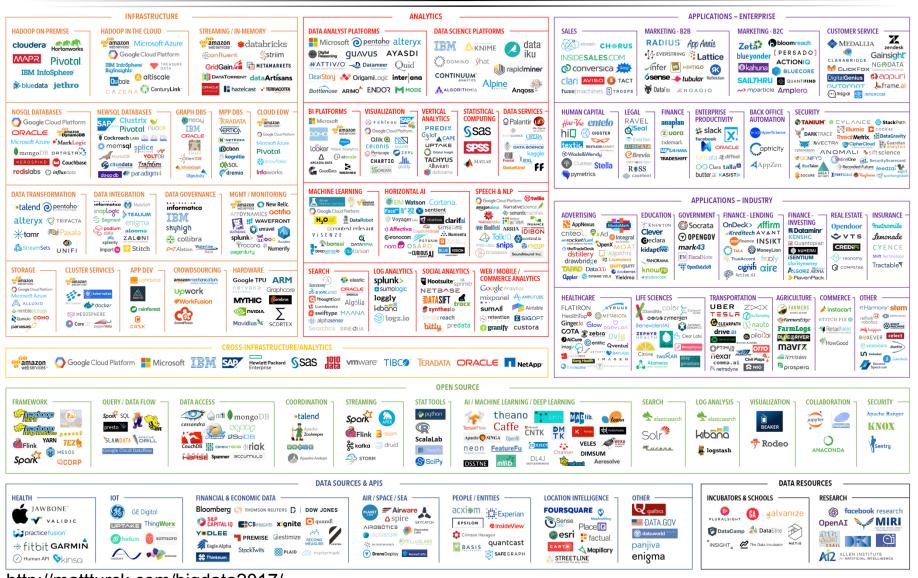
Big Data System -- MapReduce



BERKELEY LAB

Big Data Has a Vibrant Software Ecosystem

.....



http://mattturck.com/bigdata2017/

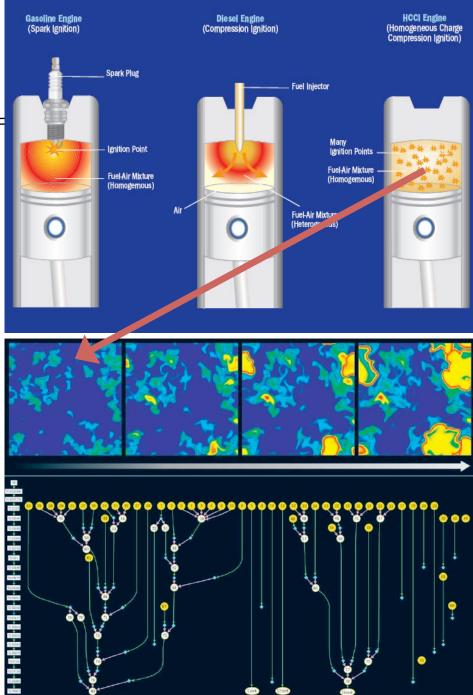
Can scientific data analyses make effective uses of Big Data software?

Let's take a look at some examples of scientific data analyses...

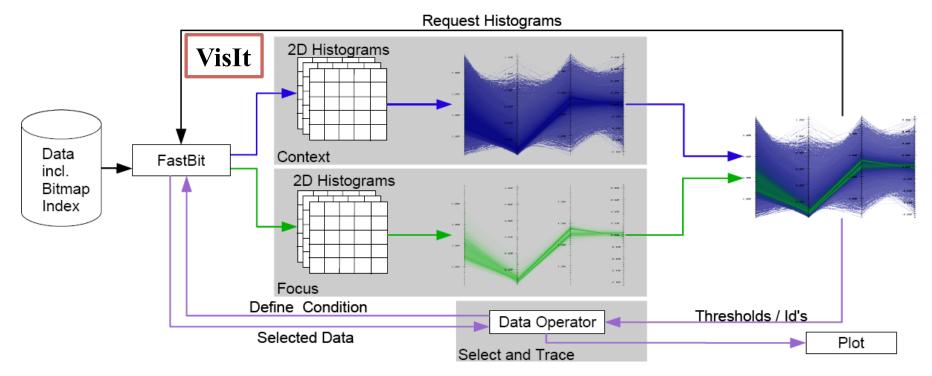
Example 1: Combustion Ignition Kernels

- Simulation of Homogeneous Charge Compressed Ignition engine
- 1000x1000x1000 cube mesh
- 10000s time steps
- Hundreds of variables per mesh point to describe realistic diesel-air mixture
- Example data analysis task: tracking the ignition over time

Wu, Koegler, Chen, Shoshani 2005



Example 2: Particles in Accelerator Modeling



Billions of particles produced from modeling of Laser Wakefield Particle Accelerators

□ Sample analysis tasks:

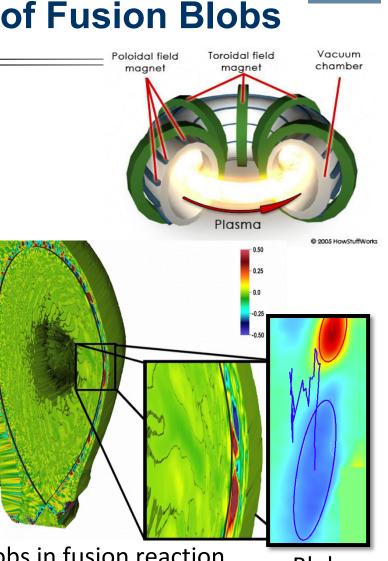
♦Find 1000s most energetic particles

♦Track the progression of the particles

Scientific Data Services

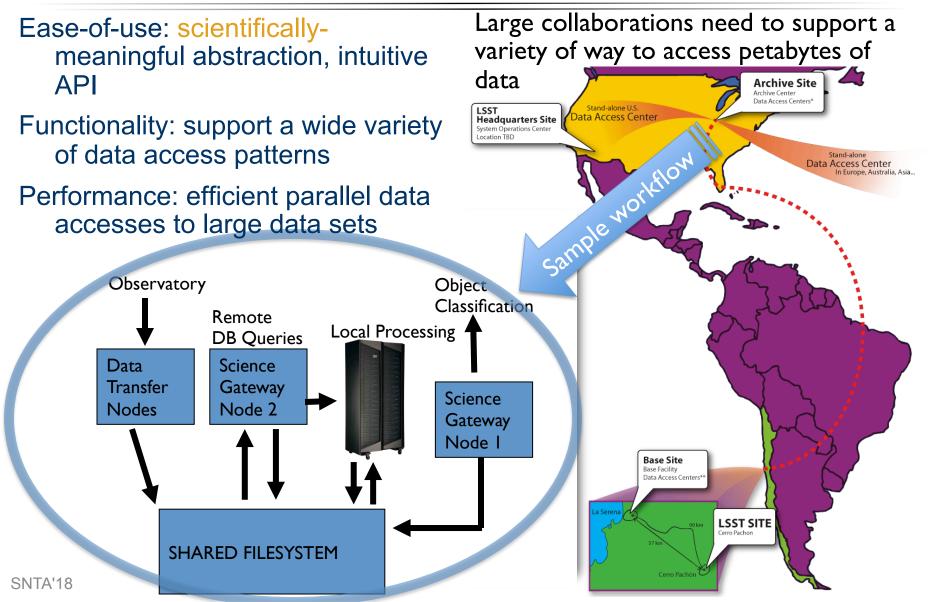
Example 3 Near Real Time Detection of Fusion Blobs

- Plasma blobs
- Lead to the loss of stability and/or confinement of tokamak plasmas
- Cause fast thermal and/or current quench
- Could damage multi-billion tokamak
- The experimental facility may not have enough computing power for the necessary data processing
- Distributed in transient processing
- Make more processing power available
- Allow more scientists to participate in the data analysis operations and monitor the experiment remotely
- Enable scientists to share knowledge and processes
- ✤ <u>Wu, et al. 2016</u>



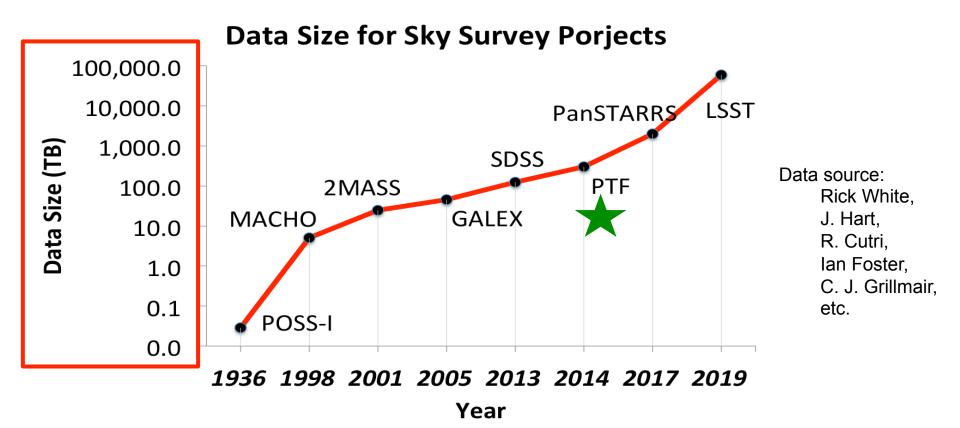
Blobs in fusion reaction (Source: EPSI project)

Example 4 Astronomic Observations



Scientific activities evolve into big data analysis

Example: scientific projects for supernovae, dark matter/energy, etc.



Data Management In Service Of Big Sciences

Background: From <u>ASCR Data Crosscutting Requirements Review</u> (April, 2013)

Finding 1: The challenges associated with scientific data are diverse and often distinct from challenges in other data-intensive domains, such as web analytics and business intelligence.

Finding 2: Research communities across the Office of Science have considerable expertise in the aspects of data science necessary for performing their science. Finding 3: Many Office of Science experimental facilities anticipate rapid growth in data volume, velocity, and complexity. [this applies to simulation data as well]

Finding 4: Currently, many scientific facilities expect users to manage their own data.

Finding 5: There is an urgent need for standards and community application programming interfaces (APIs) for storing, annotating, and accessing scientific data.

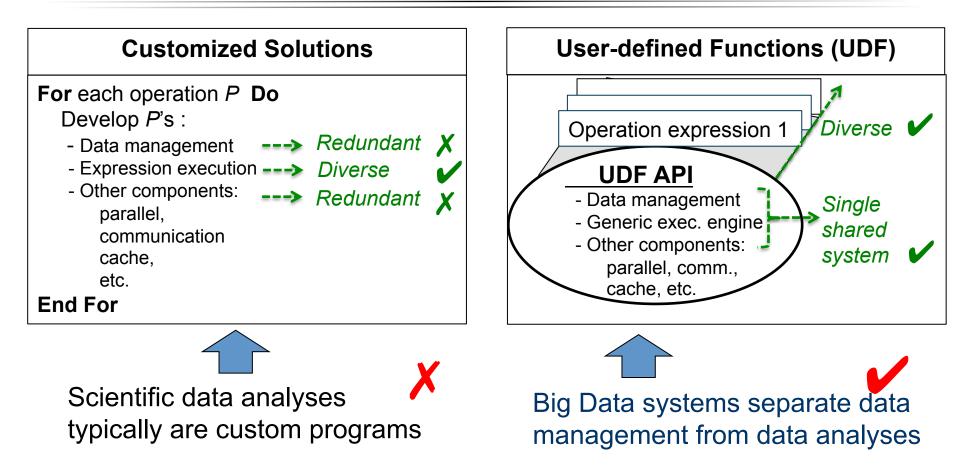
Office of Science

What can scientific data management research learn from Big Data software?

- Separate data management from data analyses
- Develop data model for science
- Support complex data access patterns

Lesson 1

Separate Data Management from Data Analyses



Key: UDF needs a well-defined data model, e.g., key-value pairs in MapReduce, and tuples in Database systems

What can scientific data analyses learn from Big Data software?

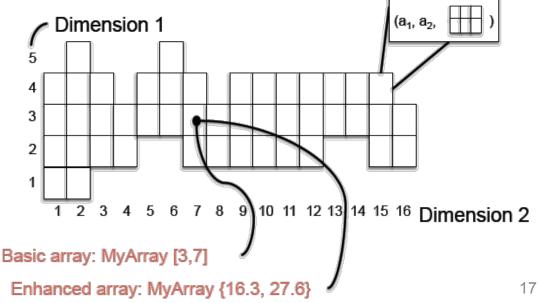
- Separate data management from data analyses
- Develop data model for science
- Support complex data access patterns

Scientific Data is Stored in Arrays

Cell

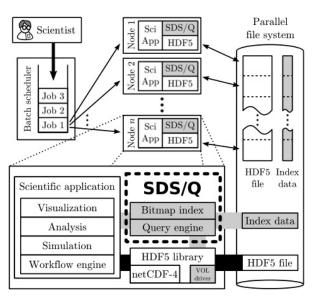
Approach 1: a database system for scientific applications, e.g., SciDB

- SciDB features:
- Array-oriented data model
- Append-only storage
- First-class support for user-defined functions
- Massively parallel computations Basic 2D Ragged Array

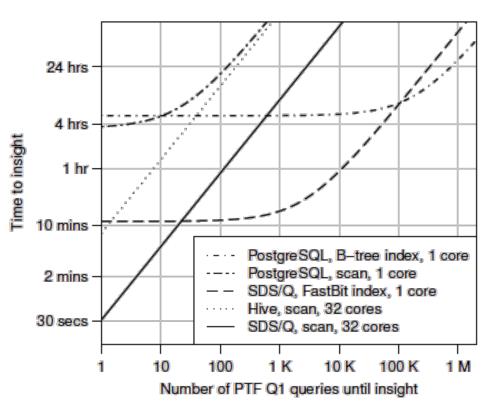


Approach 2

- Relational parallel query processing directly on scientific file formats
- Using database technology requires costly loading of data and converting results



Overview of SDS/Q, the querying component of the Scientific Data Services framework.



Time to insight for a PTF query: 150X faster than PostgreSQL and 10X faster than Hive

S. Blanas, K. Wu, S. Byna, D. Bin, A. Shoshani, SIGMOD 2014

What can scientific data analyses learn from Big Data software?

- Separate data management from data analyses
- Develop data model for science
- Support complex data access patterns
 - Accessing neighbors
 - Selective special records

MapReduce Not Optimal for Scientific Data Analyses

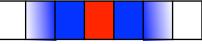
Reason 1: most scientific data are multi-dimensional arrays Converting array to (key, value) is expensive Reason 2: most scientific data analysis operations need to access neighbors

Structure locality:

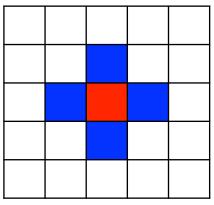
The analysis operation on a single cell accesses its neighborhood cells

- Map deals with a single element at a time
- Reduce requires to duplicate each cell for all neighborhood cells

Reduce only happens after expensive shuffle



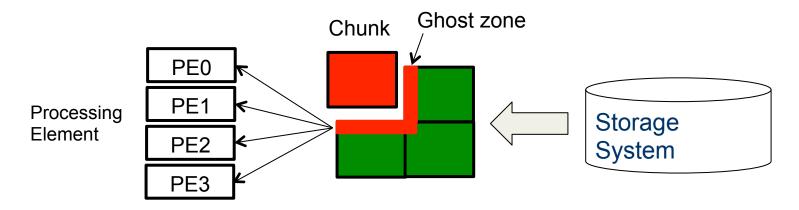
2D Poisson Equation Solver (Discrete)



ArrayUDF: user-defined scientific data analysister on arrays

- Stencil-based user-defined function
 Structural locality aware array operations
- Native multidimensional array data model
 In-situ data processing in scientific data formats, e.g., HDF5
- Optimal and automatic chunking and ghost zone handling method

Fast large array processing in parallel & out-of-core manner



Stencil-based UDF

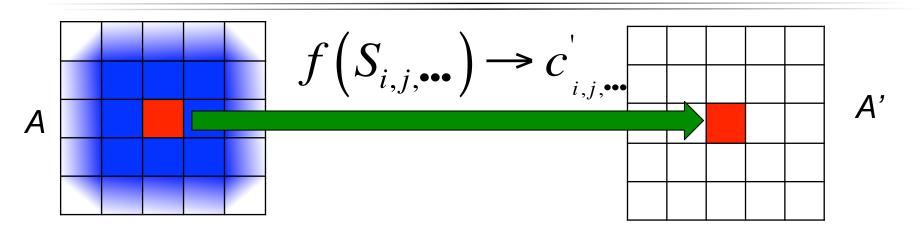
- Stencil is a set (S) of neighborhood cells
 - The S has a center where computing happens
 - The size of |S| is not fixed
 - Notations for set member $S_{\delta 1,\delta 1,\bullet\bullet\bullet}$ stands for the cell at offset $\delta_1,\delta_2,\bullet\bullet\bullet$ from center point $i, j,\bullet\bullet\bullet$

2D Example:

<i>S</i> _{-1,-1}	<i>S</i> _{-1,0}	<i>S</i> _{-1,1}	
<i>S</i> _{0,-1}	<i>S</i> _{0,0}	<i>S</i> _{0,1}	
<i>S</i> _{1,-1}	<i>S</i> _{1,0}	<i>S</i> _{1,1}	

- Materialized structure locality
- Flexible UDF expression by manipulating each neighborhood cell independently

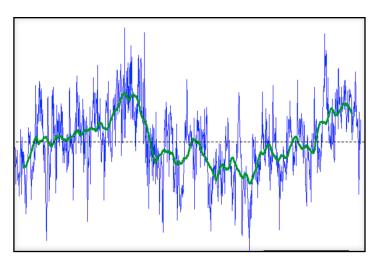
Stencil-based UDF(continued)



- f is arbitrary user-defined function
- Input S is Stencil representing set of neighborhood cells
 - -|S| = 1, user-defined function of a single celli.e., map in MapReduce
 - -|S| > 1, user-defined aggregation of a set of cells,
 i.e., reduce in MapReduce

Examples of using ArrayUDF

Example 1: moving average in time series data



Global temperature trend filtered by moving average at 60 years' interval from 1908 to 2008 Three steps by using ArrayUDF:

Step 1: Initialize data

Array *T*("data location pointer")

Step 2: Define operation on Stencil

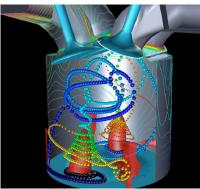
Tem_avg(Stencil *t*): return (*t*(-30)+ ... *t*(30))/60

Step 3: Run & get result T'

T.Apply(Tem_avg, T')

Examples of using ArrayUDF (Continued)

Example 2: vorticity computation in fluid flow



Combustion engines

Modeling renewable energy

Pictures credit to: LANL, Frank Fritz Michael Milthaler, etc.

Three steps by using ArrayUDF :

Step 1: Initialize data (2D example)

Array *V_X*("data location pointer") Array *V_y*("data location pointer")

Step 2: Define operation on Stencil

VC_X(Stencil u): return u(0,1)- u(0, -1) VC_Y(Stencil v): return v(1,0)- u(-1, 0)

Step 3: Run & get result

*V*_*X*.Apply(VC_X, *V*_*X'*) *V*_*Y*.Apply(VC_Y, *V*_*Y'*) *V*_*X'*+*V*_*Y'* as vorticity

Evaluations

- Hardware:
 - -Edison, a Cray XC30 supercomputer at NERSC
 - -5576 computing nodes, 24 cores/node, 64GB DDR3 Memory
- Software
 - ArrayUDF
 - Spark 1.5.0
 - SciDB 16.9

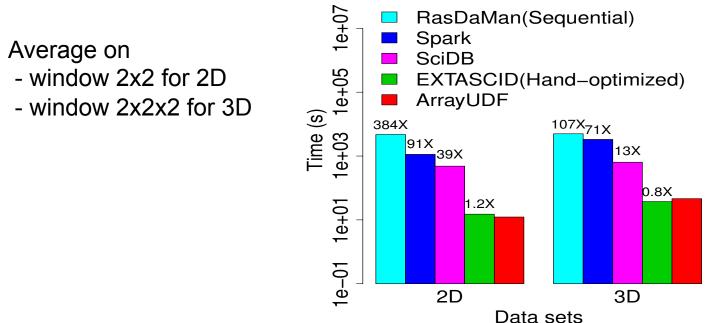
- RasDaMan 9.5 (sequential version)
- EXTASCID(hand-optimized version)
- Hand-optimized C/C++ code

- Workloads
 - -Two synthetic data sets (i.e., 2D and 3D) for micro benchmarks
 - Window operators, chunking strategy, trail-run, etc.
 - -Four real scientific data sets (i.e., S3D, MSI , VPIC , CoRTAD)
 - Overall performance tests /w generic UDF interface

Comparison with peer systems with standard "window" operators

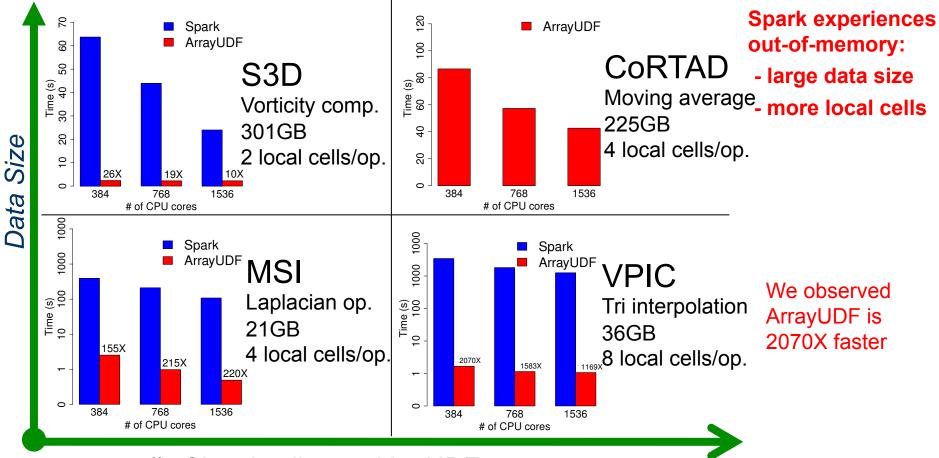
RERKELEV

• "window" comes from SciDB and RasDaMan, where a operator is applied to all window members uniformly



- ArrayUDF has close performance to hand-optimized code
- ArrayUDF is as much as 384X faster than peer systems

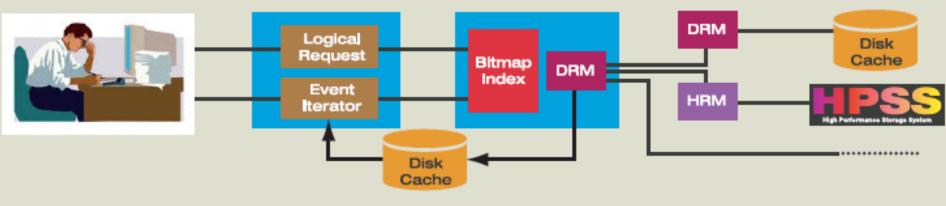
Comparison with Spark in real scientific data analysis with generic UDF interface



of local cells used by UDF

What can scientific data analyses learn from Big Data software?

- Separate data management from data analyses
- Develop data model for science
- Support complex data access patterns
 - Accessing neighbors
 - Selective special records



Analysis Framework

Grid Collector Servers

Remote Storage Systems

High-Energy Experiment STAR was to search for Quark Gluon Plasma (QGP)

A small number (~hundreds) of collision events may contain the clearest evidence of QGP

Using high-level summary data, one found 80 special events

Have track distributions that may indicate presence of QGP

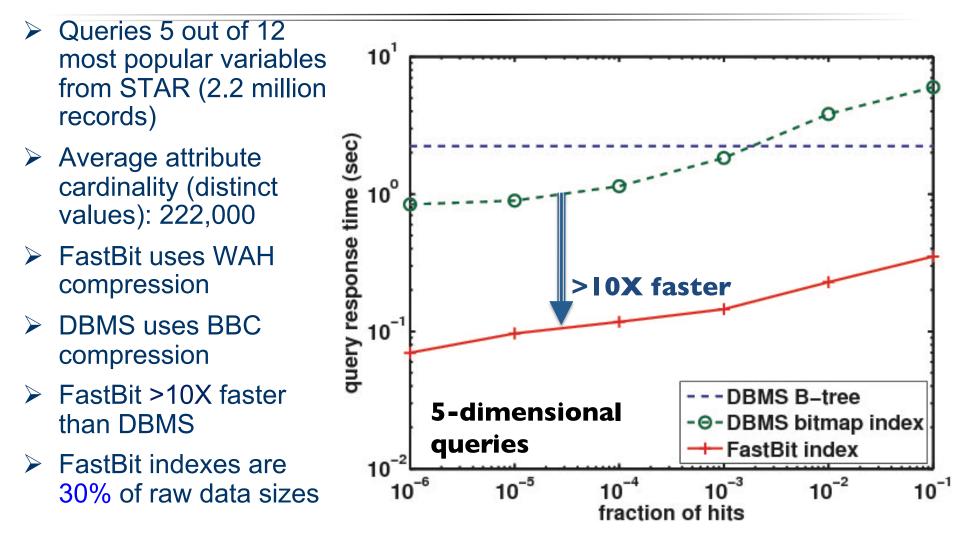
Further analysis needs to access more detailed data

- Detailed data are large (terabytes) and reside on tape archive
- May take many weeks to manually migrate to disk

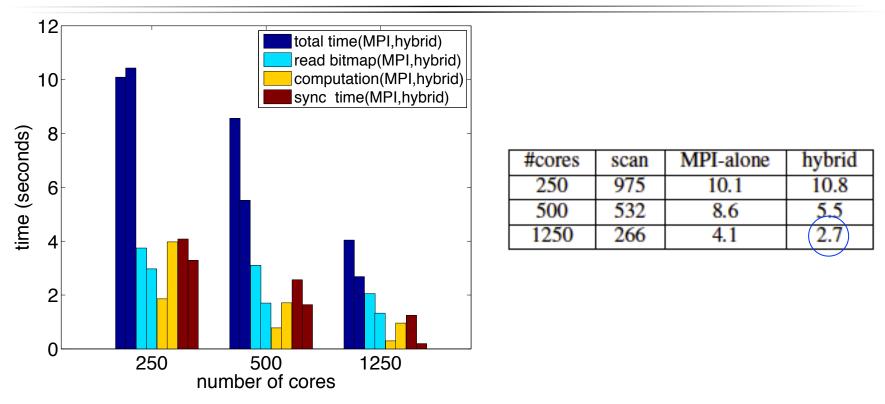
Grid Collector retrieved the 80 events in 15 minutes (2005)

Key technology in Grid Collector: indexing

Multi-Dimensional Query with FastBit



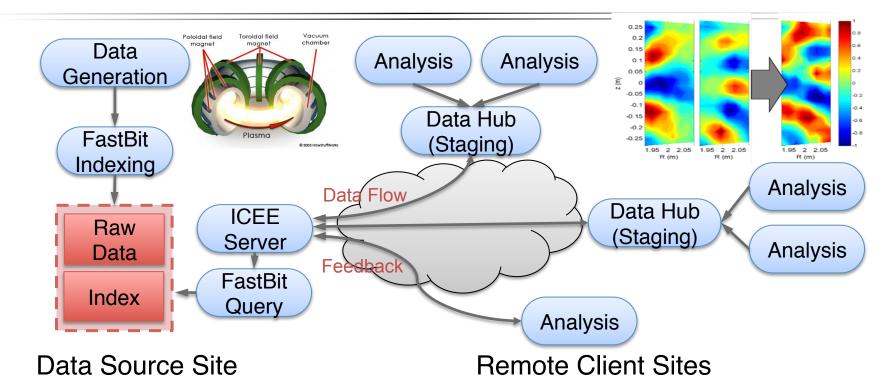
Performance of Querying with Hybrid Parallelism



- Queried for particles where 'Energy > 1.3' from the trillionparticle dataset
- Took less than three seconds to sift through 1 trillion particles
- Better than MPI-only

Indexing in a Distributed Analysis Framework

BERKELEY LA



ICEE in situ analysis system

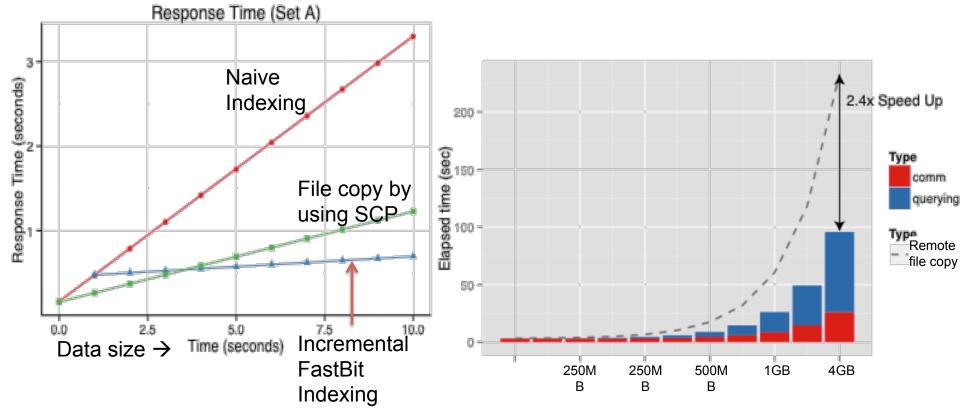
- ADIOS provides an overlay network to share data and give feedbacks
- Stream data processing supports stream-based IO to process pulse data
- In transit processing provides remote memory-to-memory mapping between data source (data generator) and client (data consumer)
- Indexing and querying with FastBit technology

SNTA'18

Index-and-Query Reduces Execution Time

Remote file copy VS. index-and-query

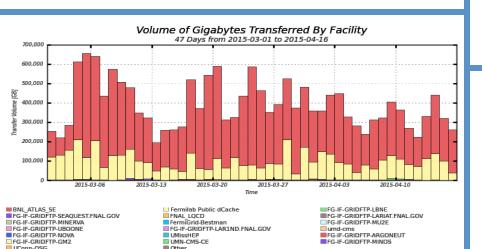
- Measured between LBL and ORNL to simulate KSTAR-LBL-ORNL connection
- Indexed by FastBit. Observed a linear performance (i.e., indexing cost increased by data size) → Expensive indexing cost
- · However, once we have index built, index-and-query can be a better choice over remote file copy



Unifying Distributed Storage Systems

Storage Resource Manager (SRM)

- Unify API for accessing storage systems
- Supports multiple transfer protocols and load balancing for multiple transfer servers
- Implements Storage Resource Management (SRM) interface v2.2, and compatible and interoperable with other 4 SRM implementations in WLCG



Maximum: 195,691 GB, Minimum: 195,095 GB, Average: 389,741 GB, Current: 260,850 GB Daily data transfer volume in OSG from 3/1/2015 to 4/15/2015. BeStMan is used to transfer <u>100s TB/day in OSG.</u> SNTA'18

Accomplishments

- Open source under BSD license, distributed with OSG software
- Scalable performance on many file systems and storages, such as Xrootd and Hadoop
- Organized an international standard through OFG GFD.129, 2008
- Co-scheduling of network resource provisioning and host-to-host bandwidth reservation on high-performance network and storage systems

Impacts

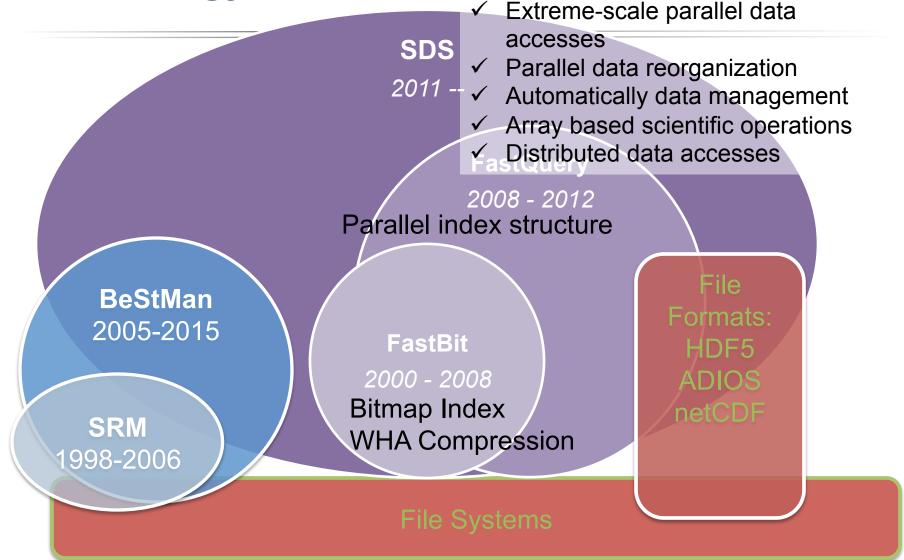
- Improve user productivity with a unified API for many storage systems
- <u>43</u> BeStMan deployments worldwide and 5 backend deployments for CERN EOS system, as of 2015
- Being used in scientific collaborations such as ESGF, OSG, and WLCG

SDS Framework Summary

- Extracting information from large data sets is the key to scientific discoveries, e.g., finding supernova from astronomical observations and Higgs boson from particle collisions.
- Database systems (DBMS) support some versions of such analysis tasks, but, are often ineffective for complex scientific analyses.
- Furthermore, most scientific data sets are in formatted data files (HDF5, NetCDF, ADIOS BP, FITS, etc.) stored in parallel file system, not in DBMS.
- Scientific Data Services (SDS) framework is designed to extract information directly on formatted data files, without a DBMS.

Use Case	DBMS	SDS
Astronomy Palomar Transient Factory (PTF): finding supernova candidates	~ 200s (PostgreSQL, Hive)	~ 5s (new join algorithm)
Biology Gene Context Analysis (GCA): determine gene function from similarity of neighborhoods	> 15 minutes (commercial DBMS)	< 10s (new index)
Plasma – VPIC Data Analysis: Extracting accelerated particles near X-line of magnetic reconnection	> 16 minutes (SciDB)	~ 10s (data reorganization)

Technology Behind Scientific Data Services



6 Staff,

2 Postdoc

Scientific Data Management

Core capability for simulation and experiments

	Application	Approach	Size	Speed
	VPIC Plasmas	Block Index	100x	5x
	Cosmology	Block Index	100x	5x
	AMR	AMR-Index		500x
	Brain EEG	Statistical Similarity	106x	
XX XX	Power Grid	Statistical Similarity	198x	
	Mass Spec	Multilayout		90x

Application

Exascale Parallel System (Linux Cluster)

Compute
Node

Compute
Compute
Compute
Compute
Compute
SDS API / MPI-IO

SDS API / MPI-IO

Feature
SDS System
Access
Optimization
Service
Data
Mover
Data Indexing
Service
Other Data
Service
Other Data
Service
Other Data
Service
Other Data
Compute
C

Parallel algorithms for data layout, access, management have huge science impact

Algorithms delivered in Scientific Data Service

Future: Automated algorithm selection, higher level abstraction, "elevators" for increased hierarchy

Data management is key in simulation and analysis for speed, memory and storage efficiency

- Capability: Premier group in algorithms and data structures, for data management, I/O and storage
- Impact: Improve applications performance, enable new science problems, more productive science
- Stakeholders: Application scientists and facilities; all SC, EERE, Health, and more

05/24/2018

Acknowledgments

 Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, support for the SDS project and a DOE Career award under contract number DE-AC02-05CH11231

National Energy Research Scientific Computing Center

Questions?

Contact information:

John Wu John.Wu@nersc.gov SDM group http://crd.lbl.gov/sdm/

