
John Wu 
Lawrence Berkeley National Laboratory 

 
http://crd.lbl.gov/sdm/  

Scientific Data Services Framework 
for Exascale Infrastructure 



What do you think of 
when you hear Big Data? 

Millions of connected CPUs 



Scientific Computing also Uses Many 
CPUs 

Could scientific data analysis use 
Big Data software systems? 



Big Data System 
-- Parallel Database Systems 

Scientific Data Services 4 

Davidson et al 2006 



Big Data System 
-- MapReduce 

5 

Dean and Ghemawat 2008 

Scientific Data Services 



Big Data Has a Vibrant Software Ecosystem  

http://mattturck.com/bigdata2017/ 



Can scientific data analyses make 
effective uses of Big Data software? 

Let’s take a look at some examples of scientific data analyses… 



Example 1: 
Combustion Ignition 

Kernels 
Simulation of Homogeneous 

Charge Compressed Ignition 
engine 

1000x1000x1000 cube mesh 

10000s time steps 

Hundreds of variables per mesh 
point to describe realistic 
diesel-air mixture 

Example data analysis task: 
tracking the ignition over time 

Wu, Koegler, Chen, Shoshani 2005 



Example 2: Particles in Accelerator Modeling 

q Billions of particles produced from modeling of Laser 
Wakefield Particle Accelerators 

q Sample analysis tasks: 
² Find 1000s most energetic particles 
² Track the progression of the particles 

VisIt 

Ruebel et al SC08 
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Example 3 
Near Real Time Detection of Fusion Blobs 

v  Plasma blobs 
•  Lead to the loss of stability and/or 

confinement of tokamak plasmas 
•  Cause fast thermal and/or current quench 
•  Could damage multi-billion tokamak  
v  The experimental facility may not have 

enough computing power for the 
necessary data processing 

v  Distributed in transient processing 
•  Make more processing power available 
•  Allow more scientists to participate in the 

data analysis operations and monitor the 
experiment remotely 

•  Enable scientists to share knowledge and 
processes 

v  Wu, et al. 2016 
Blobs	in	fusion	reaction	
(Source:	EPSI	project)	

Blob	
trajectory	
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Example 4 
Astronomic Observations 

SHARED FILESYSTEM

Data
Transfer
Nodes

Science
Gateway
Node 2

Science
Gateway
Node 1

Observatory Object 
ClassificationRemote

DB Queries Local Processing

Large collaborations need to support a 
variety of way to access petabytes of 
data

Ease-of-use: scientifically-
meaningful abstraction, intuitive 
API 

Functionality: support a wide variety 
of data access patterns 

Performance: efficient parallel data 
accesses to large data sets 
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Scientific activities evolve into big data analysis 

Example: scientific projects for supernovae，dark matter/energy, etc.  

             Data source:  
                     Rick White,  
                     J. Hart,  
                     R. Cutri,  
                     Ian Foster,  
                     C. J. Grillmair, 
                     etc. 



Data Management In Service Of Big Sciences 
-- A Reflection on Needs of Exascale Program 

Background: From ASCR Data Crosscutting Requirements Review (April, 
2013) 

Finding 1:  The challenges 
associated with scientific data are 
diverse and often distinct from 
challenges in other data-intensive 
domains, such as web analytics 
and business intelligence.  

Finding 2: Research communities 
across the Office of Science have 
considerable expertise in the 
aspects of data science necessary 
for performing their science.  

Finding 3: Many Office of Science 
experimental facilities anticipate 
rapid growth in data volume, 
velocity, and complexity. 
[this applies to simulation data as 
well] 

Finding 4: Currently, many scientific 
facilities expect users to manage 
their own data.  

Finding 5:  There is an urgent need 
for standards and community 
application programming interfaces 
(APIs) for storing, annotating, and 
accessing scientific data.  
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What can scientific data management 
research learn from Big Data software? 

•  Separate data management from data analyses 
•  Develop data model for science 
•  Support complex data access patterns 



Lesson 1 
Separate Data Management from Data Analyses 

For each operation P  Do 
    Develop P’s : 
     - Data management 
      - Expression execution 
      - Other components: 
            parallel,  
            communication 
            cache, 
            etc.  
End For 

Redundant 
Diverse 

Customized Solutions 

✔
✗ 

✗ Redundant 

Scientific data analyses 
typically are custom programs 

✗ 

     UDF API                       
  - Data management 
  - Generic exec. engine 
  - Other components:  
        parallel, comm.,  
        cache, etc.  

Diverse 

Single 
shared 
system 

✔

✔

Operation expression 1 

User-defined Functions (UDF) 

Big Data systems separate data 
management from data analyses 

✔

Key: UDF needs a well-defined data model, e.g., key-value 
pairs in MapReduce, and tuples in Database systems 



What can scientific data analyses learn 
from Big Data software? 

•  Separate data management from data analyses 
•  Develop data model for science 
•  Support complex data access patterns 



Scientific Data is Stored in Arrays 

Approach 1: a database system for scientific applications, 
e.g., SciDB 

SciDB features: 
–  Array-oriented data model 
–  Append-only storage 
–  First-class support for user-defined functions 
–  Massively parallel computations 

Scientific Data Services 17 

Cudre-Mauroux et al 2009 



Approach 2 
• Relational parallel query 

processing directly on scientific 
file formats 

• Using database technology 
requires costly loading of data 
and converting results 

S. Blanas, K. Wu, S. Byna, D. Bin, A. Shoshani, SIGMOD 2014 

IMD Scientific	Data	is	Stored	in	Files	

Time to insight for a PTF query: 150X faster than 
PostgreSQL and 10X faster than Hive 

Overview of SDS/Q, the querying component 
of the Scientific Data Services framework. 



What can scientific data analyses learn 
from Big Data software? 

•  Separate data management from data analyses 
•  Develop data model for science 
•  Support complex data access patterns 

•  Accessing neighbors 
•  Selective special records 



MapReduce Not Optimal for Scientific Data 
Analyses 

Reason 1: most scientific data are multi-dimensional arrays 
  
Reason 2: most scientific data analysis operations need to 

 access neighbors 

Structure locality: 
   The analysis operation on a single cell  
    accesses its neighborhood cells 

Map deals with a single element at a time 

Moving Average 

2D Poisson Equation 
Solver (Discrete) 

Reduce requires to duplicate each cell 
for all neighborhood cells 

Reduce only happens after expensive shuffle  

 Converting array to (key, value) is expensive  



ArrayUDF: user-defined scientific data analysis 
on arrays  

•  Stencil-based user-defined function   
     Structural locality aware array operations 

•  Native multidimensional array data model 
     In-situ data processing in scientific data formats, e.g., HDF5 

•  Optimal and automatic chunking and ghost zone 
handling method 

            Fast large array processing in parallel & out-of-core manner     

Processing 
Element 

Chunk Ghost zone 

Storage 
System 

PE0 

PE1 

PE2 

PE3 



-  The S has a center where computing happens 
-  The size of |S| is not fixed 
-  Notations for set member 
                stands for the cell at offset           
   from center point   

•  Stencil is a set (S) of neighborhood cells  

Stencil-based UDF 

δ1,δ2,•••sδ1,δ1,•••

s 0,0 s0,1
s1,0s1,−1

s0,−1

s−1,−1 s−1,0 s−1,1

s1,1Materialized structure locality  

Flexible UDF expression by manipulating 
each neighborhood cell independently 

2D Example: 

i, j,•••



Stencil-based UDF(continued)   

•      is arbitrary user-defined function  
•  Input S is Stencil representing set of neighborhood cells 
- |S| = 1, user-defined function of a single cell 
            i.e., map in MapReduce 
- |S| > 1, user-defined aggregation of a set of cells, 
            i.e., reduce in MapReduce  

f Si, j,•••( )→ c'
i, j ,•••

A’ A 

f



Examples of using ArrayUDF 

Tem_avg(Stencil t): 
    return (t(-30)+ … t(30))/60 

Three steps by using ArrayUDF:  

Example 1: moving average in time series data 

Global temperature trend filtered by 
moving average at 60 years’ interval  
from 1908 to 2008 

T.Apply(Tem_avg, T’) 

Array T(“data location pointer”) 
Step 1: Initialize data 

Step 2: Define operation on Stencil 

Step 3: Run & get result T’ 



Examples of using ArrayUDF (Continued) 

Example 2: vorticity computation in fluid flow    

VC_X(Stencil u): 
    return u(0,1)- u(0, -1) 
VC_Y(Stencil v): 
    return v(1,0)- u(-1, 0) 

V_X.Apply(VC_X,  V_X’) 
V_Y.Apply(VC_Y , V_Y’) 
V_X’+V_Y’ as vorticity  

Modeling renewable energy 

Combustion engines 

Pictures credit to:  LANL, Frank Fritz Michael Milthaler, etc.   

Array V_X(“data location pointer”) 
Array V_y(“data location pointer”) 

Step 1: Initialize data (2D example) 

Step 2: Define operation on Stencil 

Step 3: Run & get result 

Three steps by using  ArrayUDF :  



Evaluations 

•  Hardware: 
- Edison, a Cray XC30 supercomputer at NERSC 
- 5576 computing nodes,  24 cores/node, 64GB DDR3 Memory 

•  Software 
-  ArrayUDF                     - RasDaMan 9.5 (sequential version) 
-  Spark 1.5.0                   - EXTASCID(hand-optimized version)  
-  SciDB 16.9                   - Hand-optimized C/C++ code 

•  Workloads 
- Two synthetic data sets (i.e., 2D and 3D) for micro benchmarks 

§  Window operators, chunking strategy, trail-run, etc. 
- Four real scientific data sets (i.e., S3D, MSI , VPIC , CoRTAD)  

§  Overall performance tests /w generic UDF interface 



Comparison with peer systems with 
standard “window” operators 

•  “window” comes from SciDB and RasDaMan, where a 
operator is applied to all window members uniformly  

2D 3D
Data sets
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Average on 
 - window 2x2 for 2D 
 - window 2x2x2 for 3D 

•  ArrayUDF has close performance to hand-optimized code 
•  ArrayUDF is as much as 384X faster than peer systems 



Comparison with Spark in real scientific 
data analysis with generic UDF interface 

Spark experiences 
out-of-memory:  
 - large data size      
 - more local cells 
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S3D 
Vorticity comp. 
301GB 
2 local cells/op. 

MSI 
Laplacian op. 
21GB 
4 local cells/op. 

VPIC 
Tri interpolation 
36GB 
8 local cells/op. 

CoRTAD 
Moving average 
225GB 
4 local cells/op. 

D
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S
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e 

# of local cells used by UDF  

We observed 
ArrayUDF is 
2070X faster 



What can scientific data analyses learn 
from Big Data software? 

•  Separate data management from data analyses 
•  Develop data model for science 
•  Support complex data access patterns 

•  Accessing neighbors 
•  Selective special records 



Selective Access Example: Grid Collector 

High-Energy Experiment STAR was to search for Quark Gluon Plasma (QGP) 
A small number (~hundreds) of collision events may contain the clearest evidence 

of QGP 
Using high-level summary data, one found 80 special events 

–  Have track distributions that may indicate presence of QGP 

Further analysis needs to access more detailed data 
–  Detailed data are large (terabytes) and reside on tape archive 
–  May take many weeks to manually migrate to disk 

Grid Collector retrieved the 80 events in 15 minutes (2005) 
Key technology in Grid Collector: indexing 
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Multi-Dimensional Query with FastBit 

Ø  Queries 5 out of 12 
most popular variables 
from STAR (2.2 million 
records) 

Ø  Average attribute 
cardinality (distinct 
values): 222,000 

Ø  FastBit uses WAH 
compression 

Ø  DBMS uses BBC 
compression 

Ø  FastBit >10X faster 
than DBMS 

Ø  FastBit indexes are 
30% of raw data sizes 

5-dimensional
queries

>10X faster

[Wu, Otoo and Shoshani 2002]
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Performance of Querying with Hybrid Parallelism 

o  Queried for particles where ‘Energy > 1.3’ from the trillion-
particle dataset 

o  Took less than three seconds to sift through 1 trillion particles 
o  Better than MPI-only 
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ICEE in situ analysis system 
•  ADIOS provides an overlay network to share data and give feedbacks 
•  Stream data processing – supports stream-based IO to process pulse data 
•  In transit processing – provides remote memory-to-memory mapping between data 

source (data generator) and client (data consumer) 
•  Indexing and querying with FastBit technology 

Indexing in a Distributed Analysis 
Framework 

Wide Area Network  
(WAN) 

Data  
Generation

FastBit
Indexing

ICEE
ServerRaw 

Data

Index

Analysis

Analysis
FastBit
Query

Data Hub
(Staging)

Data Source Site Remote Client Sites

Analysis Analysis

Data Hub
(Staging)

Analysis

Data Flow 

Feedback 
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Remote file copy VS. index-and-query 
•  Measured between LBL and ORNL to simulate KSTAR-LBL-ORNL connection 
•  Indexed by FastBit. Observed a linear performance (i.e., indexing cost increased by data size) è 

Expensive indexing cost 
•  However, once we have index built, index-and-query can be a better choice over remote file copy 

Index-and-Query Reduces Execution Time 

4GB 1GB 500M
B 

250M
B 

250M
B 

Remote 
file copy 

Naive 
Indexing 

File copy by 
using SCP 

Incremental 
FastBit  
Indexing 

Data size à 
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Storage Resource Manager (SRM)
•  Unify API for accessing storage systems
•  Supports multiple transfer protocols and 

load balancing for multiple transfer 
servers

•  Implements Storage Resource 
Management (SRM) interface v2.2, and 
compatible and interoperable with other 
4 SRM implementations in WLCG

Accomplishments
•  Open source under BSD license, 

distributed with OSG software
•  Scalable performance on many file systems 

and storages, such as Xrootd and Hadoop
•  Organized an international standard 

through OFG - GFD.129, 2008
•  Co-scheduling of network resource 

provisioning and host-to-host bandwidth 
reservation on high-performance network 
and storage systems

Impacts
•  Improve user productivity with a 

unified API for many storage systems
•  43 BeStMan deployments worldwide 

and 5 backend deployments for CERN 
EOS system, as of 2015

•  Being used in scientific collaborations 
such as ESGF, OSG, and WLCG

Daily data transfer volume in OSG from 
3/1/2015 to 4/15/2015. BeStMan is used to 
transfer 100s TB/day in OSG.

Unifying Distributed Storage Systems 
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SDS Framework Summary 

Ø  Extracting information from large data sets is the key to scientific 
discoveries, e.g., finding supernova from astronomical observations and 
Higgs boson from particle collisions. 

Ø  Database systems (DBMS) support some versions of such analysis tasks, 
but, are often ineffective for complex scientific analyses. 

Ø  Furthermore, most scientific data sets are in formatted data files (HDF5, 
NetCDF, ADIOS BP, FITS, etc.) stored in parallel file system, not in DBMS. 

Ø  Scientific Data Services (SDS) framework is designed to extract information 
directly on formatted data files, without a DBMS. 

Use Case DBMS SDS 
Astronomy -- Palomar Transient Factory (PTF): 
finding supernova candidates 

~ 200s (PostgreSQL, 
Hive ) 

~ 5s (new join algorithm) 

Biology -- Gene Context Analysis (GCA): 
determine gene function from similarity of 
neighborhoods 

> 15 minutes 
(commercial DBMS) 

< 10s (new index) 

Plasma – VPIC Data Analysis: Extracting 
accelerated particles near X-line of magnetic 
reconnection 

> 16 minutes 
(SciDB) 

~ 10s (data 
reorganization) 
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File Systems 

SDS 
2011 -- 

FastQuery 
2008 - 2012 

FastBit 
2000 - 2008 

Bitmap Index 
WHA Compression 

Parallel index structure 
 

ü  Extreme-scale parallel data 
accesses 

ü  Parallel data reorganization 
ü  Automatically data management  
ü  Array based scientific operations 
ü  Distributed data accesses 

BeStMan 
2005-2015 

SRM 
1998-2006 

File 
Formats: 

HDF5 
ADIOS 
netCDF 

Technology Behind Scientific Data Services 
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