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What	are	Anomalies?

• Anomaly	is	a	pattern	in	the	data	that	does	not	
conform	to	the	expected	behaviour
– Outliers,	exceptions,	peculiarities,	etc.

• Real	world	anomalies
– Cyber	intrusions
– Credit	card	fraud



What	is	Machine	Learning?
• A	branch	of	artificial	intelligence,	concerned	with	the	

design	and	development	of	algorithms	that	allow	
computers	to	evolve	behaviors	based	on	empirical	data.
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Supervised	vs.	unsupervised

• Supervised	learning
– Provision	of	the	associated	“label”
– Trying	to	“predict”	a	specific	quantity
– Example:	neural	networks,	decision	trees,	etc

• Unsupervised	learning
– No	assumption	of	the	provision	of	labels
– Trying	to	“understand”	the	data
– Example:	clustering



Supervised	vs.	unsupervised

Image	from	https://towardsdatascience.com/unsupervised-learning-with-python-173c51dc7f03



Cyber	Intrusion	Detection
• Evolution	of	cyber-attacks

– Growing	cyber-attack	surface
– Greater	scale	&	impacts
– Increasingly	difficult	to	identify	

• Incidents
– WannaCry affected	10,000	

organizations	in	150+	countries	
in	May	2017

– DDoS	caused	Twitter,	Spotify,	
etc to	close	down	in	Oct.	2016

– New	type	of	DOS	attacks	utilize	
IoT devices	(2016)

• Need	more	Intelligent	tools	to	
identify	network	anomalies

https://www.workiva.com/blog/improve-your-cybersecurity-
risk-managemet



Intrusion	Detection	Approaches

• Misuse	detection
– Based	on	rules	(or	

signatures)
– Accurate	with	well-

known	text	patterns
– Limited		due	to:

• Encryption	of		packets
• Legal	issue	concerning	
privacy

• Anomaly	detection
– Based	on	profiling	of	normal	

and/or	anomalous	behaviors
– Statistical	information	is	widely	

used	
• e.g.,	duration,	number	of		
packets/connection,	etc

– Less	accurate	than	signature-
based	detection	(in	general)

– Gained	greater	attention	with	
significantly	improving	machine	
learning	technologies



Shallow	vs.	Deep	ML
• The	"deep"	in	"deep	learning"	refers	to	the	number	of	layers	through	

which	the	data	is	transformed.	(from	Wikipedia)
• Shallow	learning	is	one	other	than	deep	learning
• Shallow	learning	works	well	for	relatively	simple	questions	(Fig.	a	and	b)
• However,	shallow	learning	cannot	deal	with	a	question	like	Fig.	c	
• Deep	learning	works	better	to	deal	with	more	complicated	data

Image	from	https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-
know-9a88cc053448
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Learning-based	Anomaly	Detection

• Lots	of	studies	for	network	anomaly	detection	with	its	
advantages
– However,	using	conventional	shallowML	techniques	is	limited	in	

accuracy	to	identify	(<	83%	accuracy)
– E.g.,	SVM,	random	forest,	Adaboosting,	etc.

(Identification	accuracy	against	NSL-KDD	datasets)



Non-linear	Property
• Why	not	good	enough	with	shallow	ML	techniques?

– Network	data	sets	often	have	non-linear	property
• t-SNE	(t-Distributed	Stochastic	Neighbor	Embedding)

– Dimension	reduction	tool	widely	employed	
• t-SNE	results	show	normal	and	attack	data	points	share	the	same	feature	

space
– Hard	to	classify	well	using	a	shallow	learning	method	due	to	non-linearity

=	Normal	Traffic
=	Attack	Traffic

t-SNE	result	against	NSL-KDD t-SNE	result	against	Kyoto-Honeypot

Deep	learning	is	known	as	good	at	dealing	with	high	dimensional	data	with	the	
non-linearity	property



Earlier	and	current	work
• In	our	earlier	work:

– We	set	up	a	set	of	deep	learning	models	for	network	anomaly	detection
• Based	on	Fully	Connected	Neural	Network	(FCN),	Variational AutoEncoder (VAE),	and	

Seq2Seq	structure	(Seq2Seq)
– We	evaluated	the	deep	learning	models	with	two	data	sets	with	different	

characteristics	wrt the	population	of	normal	and	attack	records
• NSL-KDD	is	balanced,	while	Kyoto	University	Honeypot	data	is	highly	skewed	with	a	lot	of	

attack	records	
– Malaiya,	Ritesh K.,	et	al.	"An	Empirical	Evaluation	of	Deep	Learning	for	

Network	Anomaly	Detection." 2018	International	Conference	on	Computing,	
Networking	and	Communications	(ICNC).	IEEE,	2018.

• We	are	currently	evaluating	CNN	models	for	network	anomaly	detection
– Tested	CNN	models	taking	the	input	as	one-dimensional	vector
– But	observed	not	that	interesting	results		
– Currently,	we	are	studying	on	making	two-dimensional	input	data	to	better	

use	CNN	models



In the earlier work …

Fully Connected Network (FCN) Variational Autoencoder (VAE)LSTM-Seq2Seq

Normal

Anomaly



Evaluation	Result:	NSL-KDD

• Seq2Seq	models	show	moderate	training	complexities	(conducted	on	
Google	cloud)

• Seq2Seq	models	much	outperform	the	others	wrt anomaly	detection	
performance
– Deep-LSTM	yields	99%	of	accuracy	to	identify	for	all	combinations	of	training	

and	testing	data	sets
• Seq2Seq	models	also	work	great	against	other	network	traces	(Kyoto	

Honeypot	data	and	MAWILab data)



What about CNN models?

CNN 
applicability to 

network anomaly 
detection?



In this presentation …
• This is very initial work to see the following 

questions:
– Can we simply feed in a1D vector to CNN for network 

anomaly detection?
– Can detection accuracy be improved once the CNN 

model gets deeper?

Shallow CNN Moderate CNN Deep CNN



Evaluation	Data	Sets
• NSL-KDD	data
– Modified	version	of	KDDCup 1999	connection	data
– Consists	of	41	features	with	the	labels
– http://www.unb.ca/cic/datasets/nsl.html

• Kyoto-Honeypot	data
– Collected	from	honeypots,	and	thus	the	vast	majority	of	
records	are	for	attacks	(97%	of	data	points)

– http://www.takakura.com/Kyoto_data/
• MAWILab data
– Collected	from	the	backbone	network	in	Japan,	with	the	
labels	indicating	traffic	anomalies

– http://www.fukuda-lab.org/mawilab/



NSL-KDD	Data
• Modified	version	of	KDDCup 1999	connection	data
• Consists	of	41	features	with	the	associate	label

– Extended	122	features	using	one-hot	encoding
• Four	files	in	the	dataset:	2	for	training	and	2	for	testing



• Collected	from	honeypots,	and	thus	the	vast	majority	of	
records	are	for	attacks	(97%	of	data	points)

• Number	of	features	is	24	(14	basic	and	10	extended	features)
– Excluded	six	minor	features	related	to	the	host	and	port	information	in	

our	experiments.	
– Extended	to	47	features	by	one-hot	encoding	including	labels

• Kyoto-Honeypot	is	severely	imbalanced	
– F-measure	can	mislead	to	the	failure	of	the	interpretation	
of	results

– MCC	(Mattew Correlation	Coefficient)	estimates	the	quality	of	binary	
classification:	-1.0	(poor),	0.0	(random),	and	1.0	(good)

Kyoto-Honeypot	Data



• Converted	the	traffic	data	to	NetFlow format	data
• 5	features	out	of	29	features	are	extracted:	
– pro,	packets,	bytes,	durat,	and	status	plus	label
– Categorical	features:	one-hot	encoded

MAWILab Data



CNN framework

• Designed three CNN models
– Shallow, moderate, and deep
– Takes 1D vector as input
– Evaluated with three different data sets (NSL-KDD, Kyoto 

Honeypot, MAWILab)



Feature Maps

1. Pre-processed input data are given to 
convolutional 1D layer(s).
• Shallow: 1 Conv1D Layer
• Moderate: 2 Conv1D Layers
• Deep: 3 Conv1D Layers

2. Filters
• Shallow: 64 filters with size 3*1
• Moderate: 64 and 128 filters with 

size 3*1
• Deep: 64, 128, and 256 filters with 

size 3*1
3. Stride: 2
4. Padding: Same



Feature Maps
• Pre-processed input data are given to 

convolutional 1D layer(s).
o Shallow: 1 Conv1D Layer
o Moderate: 2 Conv1D Layers
o Deep: 3 Conv1D Layers

• Filter: size 3*1
• Batch size

o Shallow: 64
o Moderate: 64 and 128 
o Deep: 64, 128, and 256 

• Stride: 2
• Padding: set to “same” to make 

outputs of the convolutional layer 
same as inputs.



Feature Map Calculation

1. With ReLu non-linear activation

2. With tanh non-linear activation

– No significant difference observed in our 
evaluation

where hk denotes the kth feature map at a given layer, i is the index in the feature map, 
xi indicates the input, and wk denotes the weights.



Pooling Methods
• Pooling Layer 1. Average Pooling

– 𝑓"#$ 𝑥 = 	 (
)
∑ 𝑥+)
+,(

2. Max Pooling
– 𝑓-". 𝑥 = max(𝑥+)

where x denotes a vector of input data
with activation values and N indicates
a local pooling region.

• Max Pooling is widely
employed

Input for next layer

Max Avg

Feature maps



Pooling Layers
1. Shallow CNN

o 1 max pooling layer in the Conv1D layer
o Flatten: 3904 for NSL-KDD, 1408 for Kyoto, and 192 for 

MAWILab
2. Moderate CNN

o 1 max pooling layer in the 2nd Conv1D layer
o Flatten: 7808 for NSL-KDD, 2816 for Kyoto, and 384 for 

MAWILab
3. Deep CNN

o 2 max pooling layers in the 2nd and 3rd Conv1D layer
o Flatten: 7680 for NSL-KDD, 2816 for Kyoto, and 512 for 

MAWILab



Fully Connected Network Layer

• Fully Connected Network 1. Hidden layers
– Shallow: 1 hidden layer with 64 

neurons
– Moderate: 2 hidden layers with 

64 and 32 neurons
– Deep: 3 hidden layers with 64, 

32, and 16  neurons
2. Other parameters

– Batch normalization
– Dropout = 0.5
– Loss: binary cross entropy
– Epochs: 10 and 20
– Learning rate: 1e-3



Experimental Results: NSL-KDD

• Shows less than 80% F-measure score
• Using more layers does not improve the performance

F-
sc
or
e



Comparison with other DL models

• CNN model does not work better than other DL models

F-
sc
or
e



Experimental Results: Kyoto 
Honeypot

• MCC measures the quality of binary classification: -1.0 (poor), 0 (random), 1.0 (good)
• Training: January 1, 2014
• Testing: December 1 (#1), 15 (#2), 31 (#3), 2015
• Result sensitive to testing data sets

M
CC



Experimental Results: MAWILab

• F-score ranges between 56% - 68%, which are not that 
satisfactory

Model Flow 001 / Flow 002 Flow 001 / Flow 003 Flow 001 / Flow 003
Shallow CNN 65.44% 59.27% 61.33%

Moderate CNN 65.41% 67.66% 59.76%
Deep CNN 65.45% 67.86% 56.76%

Flow # data points # normal # anomaly % anomaly
Flow 001 407,807 291,488 116,319 28.5%
Flow 002 472,654 327,413 145,241 30.7%
Flow 003 423,984 261,426 162,558 38.3%
Flow 004 425,994 300,759 125,235 29.4%



Summary



Future Direction

– Converting	is	based	on	binning	and	one-hot	encoding

– Li,	Zhipeng,	et	al.	"Intrusion	Detection	Using	Convolutional	Neural	
Networks	for	Representation	Learning." International	Conference	on	
Neural	Information	Processing.	Springer,	Cham,	2017



Questions?

Contact:	Jinoh.kim@tamuc.edu


