

An Empirical Study on Network Anomaly Detection using Convolutional Neural Networks

July 2, 2018 (Presented at SNTA 2018)

Jinoh Kim Computer Science Department Texas A&M University, Commerce, TX 75429, USA

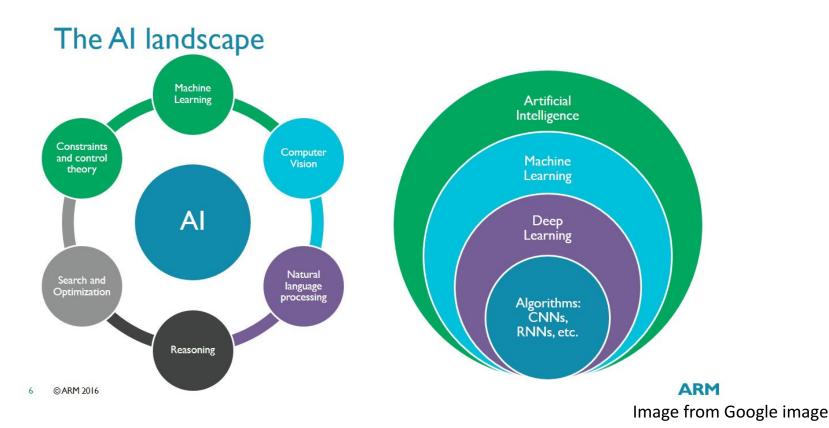
What are Anomalies?

- Anomaly is a pattern in the data that does not conform to the expected behaviour

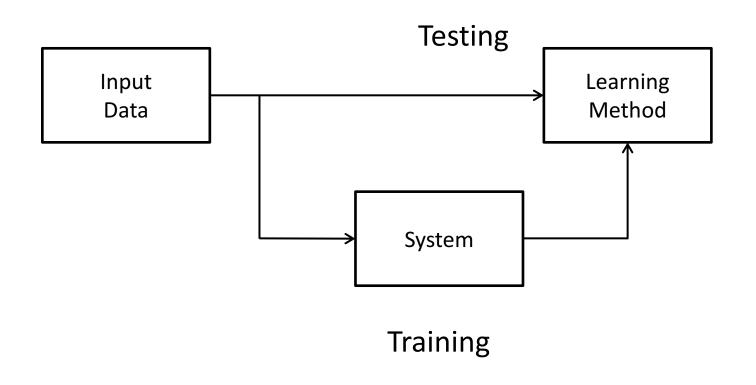
 Outliers, exceptions, peculiarities, etc.
- Real world anomalies
 - Cyber intrusions
 - Credit card fraud

What is Machine Learning?

 A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.



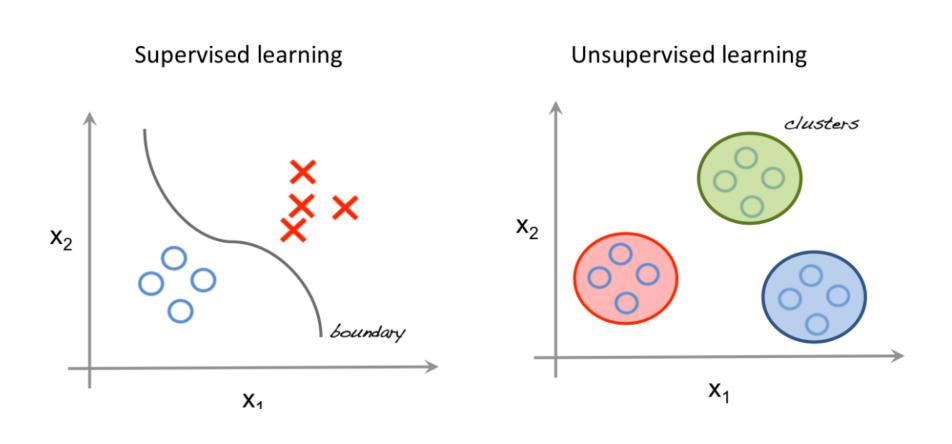
Learning System Model



Supervised vs. unsupervised

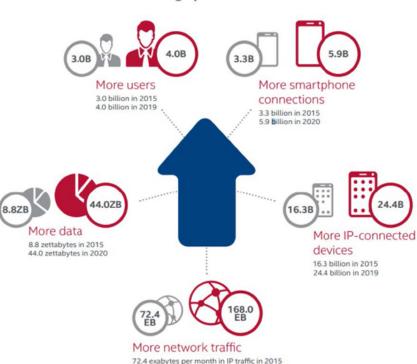
- Supervised learning
 - Provision of the associated "label"
 - Trying to "predict" a specific quantity
 - Example: neural networks, decision trees, etc
- Unsupervised learning
 - No assumption of the provision of labels
 - Trying to "understand" the data
 - Example: clustering

Supervised vs. unsupervised



Cyber Intrusion Detection

- Evolution of cyber-attacks
 - Growing cyber-attack surface
 - Greater scale & impacts
 - Increasingly difficult to identify
- Incidents
 - WannaCry affected 10,000 organizations in 150+ countries in May 2017
 - DDoS caused Twitter, Spotify, etc to close down in Oct. 2016
 - New type of DOS attacks utilize IoT devices (2016)
- Need more Intelligent tools to identify network anomalies



168.0 exabytes per month in IP traffic in 2019

The Growing Cyberattack Surface

Source: McAfee Labs, 2015.

TEXAS A&N

COMMERC

UNIVERS

https://www.workiva.com/blog/improve-your-cybersecurity-risk-managemet

Intrusion Detection Approaches

- Misuse detection
 - Based on rules (or signatures)
 - Accurate with wellknown text patterns
 - Limited due to:
 - Encryption of packets
 - Legal issue concerning privacy

- Anomaly detection
 - Based on profiling of normal and/or anomalous behaviors
 - Statistical information is widely used
 - e.g., duration, number of packets/connection, etc
 - Less accurate than signaturebased detection (in general)
 - Gained greater attention with significantly improving machine learning technologies

Shallow vs. Deep ML

- The "deep" in "deep learning" refers to the number of layers through which the data is transformed. (from Wikipedia)
- Shallow learning is one other than deep learning
- Shallow learning works well for relatively simple questions (Fig. a and b)
- However, shallow learning cannot deal with a question like Fig. c
- Deep learning works better to deal with more complicated data

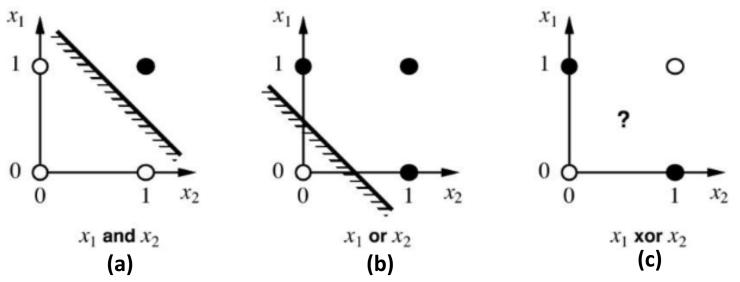


Image from https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-know-9a88cc053448

Learning-based Anomaly Detection

- Lots of studies for network anomaly detection with its advantages
 - However, using conventional *shallow* ML techniques is limited in accuracy to identify (< 83% accuracy)
 - E.g., SVM, random forest, Adaboosting, etc.

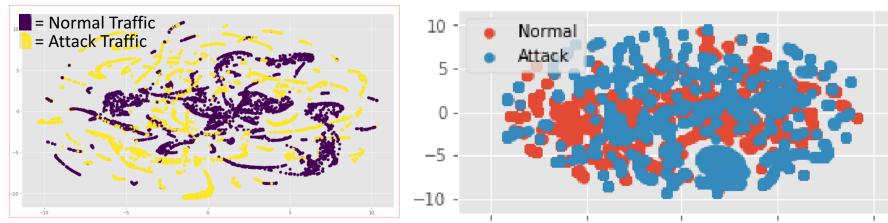
Training	Testing	Adaboosting	SVM	Random Forest
Train-	Test+	82.5%	79.6%	78.3%
Train-	Test-	65.5%	56.5%	53.4%
Train+	Test+	80.5%	79.1%	76.1%
Train+	Test-	58.7%	56.4%	50.3%

(Identification accuracy against NSL-KDD datasets)

Non-linear Property

- Why not good enough with shallow ML techniques?
 - Network data sets often have non-linear property
- t-SNE (t-Distributed Stochastic Neighbor Embedding)
 - Dimension reduction tool widely employed
- t-SNE results show normal and attack data points share the same feature space
 - Hard to classify well using a shallow learning method due to non-linearity

t-SNE result against NSL-KDD



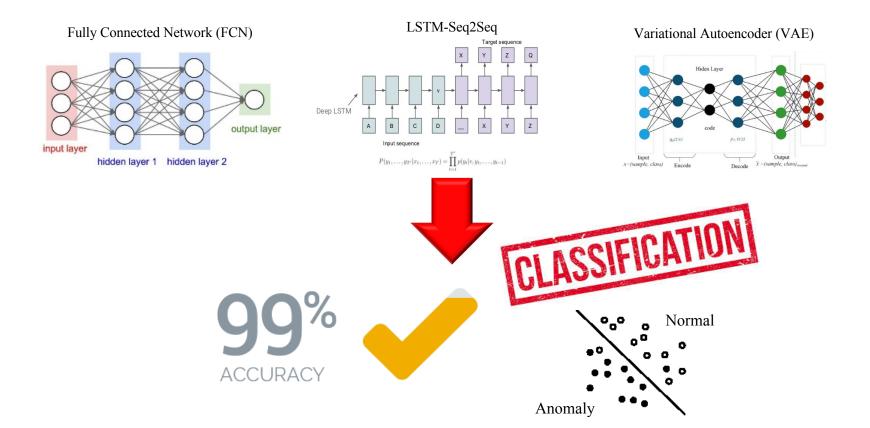
Deep learning is known as good at dealing with high dimensional data with the non-linearity property

t-SNE result against Kyoto-Honeypot

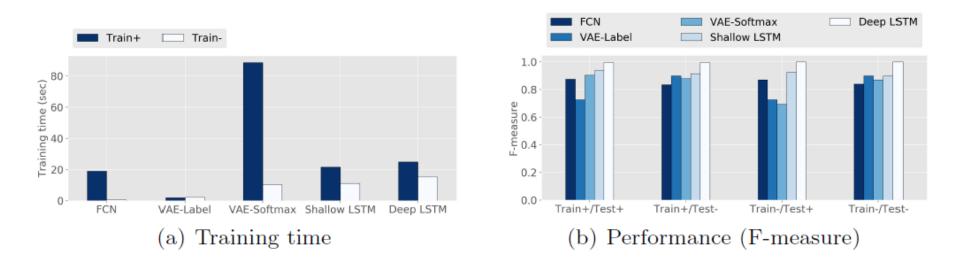
Earlier and current work

- In our earlier work:
 - We set up a set of deep learning models for network anomaly detection
 - Based on Fully Connected Neural Network (FCN), Variational AutoEncoder (VAE), and Seq2Seq structure (Seq2Seq)
 - We evaluated the deep learning models with two data sets with different characteristics wrt the population of normal and attack records
 - NSL-KDD is balanced, while Kyoto University Honeypot data is highly skewed with a lot of attack records
 - Malaiya, Ritesh K., et al. "An Empirical Evaluation of Deep Learning for Network Anomaly Detection." 2018 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2018.
- We are currently evaluating CNN models for network anomaly detection
 - Tested CNN models taking the input as one-dimensional vector
 - But observed not that interesting results
 - Currently, we are studying on making two-dimensional input data to better use CNN models

In the earlier work ...

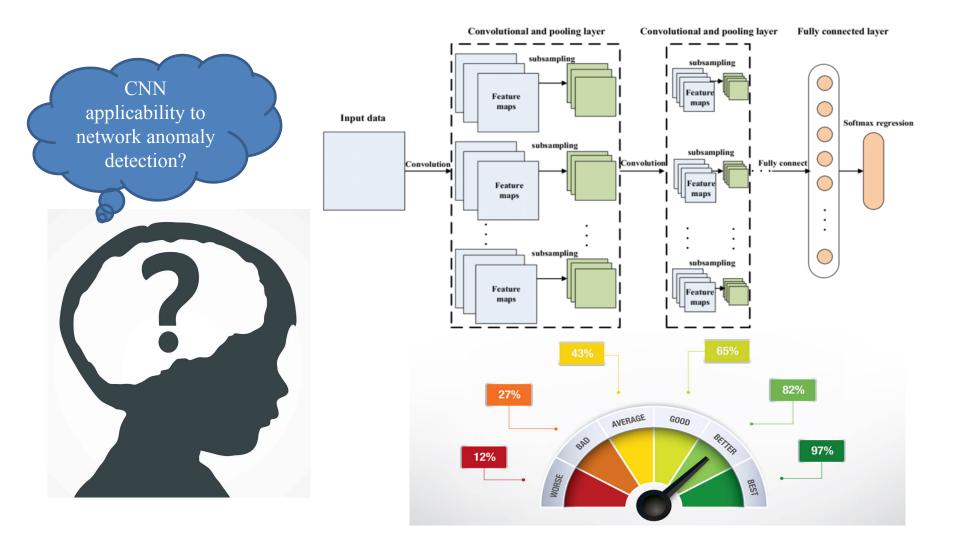


Evaluation Result: NSL-KDD



- Seq2Seq models show moderate training complexities (conducted on Google cloud)
- Seq2Seq models much outperform the others wrt anomaly detection performance
 - Deep-LSTM yields 99% of accuracy to identify for all combinations of training and testing data sets
- Seq2Seq models also work great against other network traces (Kyoto Honeypot data and MAWILab data)

What about CNN models?

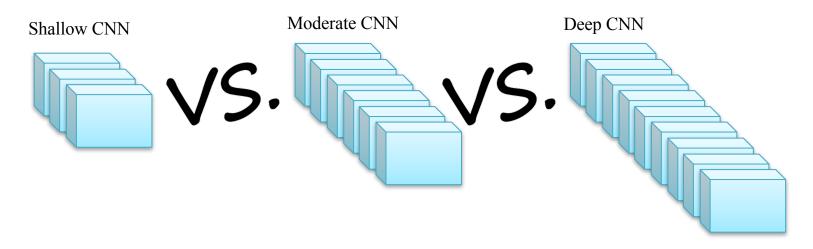


TEXAS A&M

COMMERCE

In this presentation ...

- This is very initial work to see the following questions:
 - Can we simply feed in a1D vector to CNN for network anomaly detection?
 - Can detection accuracy be improved once the CNN model gets deeper?



Evaluation Data Sets

- NSL-KDD data
 - Modified version of KDDCup 1999 connection data
 - Consists of 41 features with the labels
 - <u>http://www.unb.ca/cic/datasets/nsl.html</u>
- Kyoto-Honeypot data
 - Collected from honeypots, and thus the vast majority of records are for attacks (97% of data points)
 - <u>http://www.takakura.com/Kyoto_data/</u>
- MAWILab data
 - Collected from the backbone network in Japan, with the labels indicating traffic anomalies
 - <u>http://www.fukuda-lab.org/mawilab/</u>

NSL-KDD Data

- Modified version of KDDCup 1999 connection data
- Consists of 41 features with the associate label
 - Extended 122 features using one-hot encoding
- Four files in the dataset: 2 for training and 2 for testing

File	Description	# data points	# normal	% anomaly
Train+	Full NSL-KDD Training set	125,973	67,343	46.5%
Train20	A 20% of subset of the NSL-KDD training set	25,192	13,449	46.5%
Test+	Full NSL-KDD testing set	22,544	9,711	57%
Test-	A subset of NSL-KDD testing set	11,850	2,152	81.9%

Kyoto-Honeypot Data

- Collected from honeypots, and thus the vast majority of records are for attacks (97% of data points)
- Number of features is 24 (14 basic and 10 extended features)
 - Excluded six minor features related to the host and port information in our experiments.
 - Extended to 47 features by one-hot encoding including labels
- Kyoto-Honeypot is severely imbalanced
 - F-measure can mislead to the failure of the interpretation of results
 - MCC (Mattew Correlation Coefficient) estimates the quality of binary classification: -1.0 (poor), 0.0 (random), and 1.0 (good)

File	Dates	# records / day
Training	January 1-7, 2014	268K
Testing	December 1-31, 2015	236K

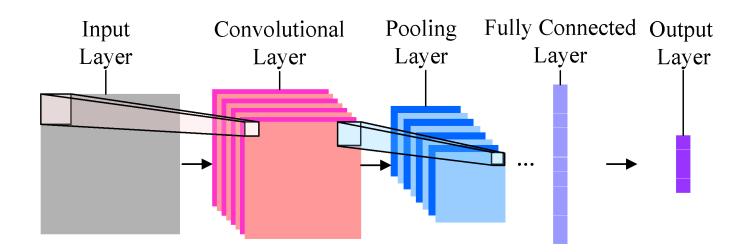
MAWILab Data

- Converted the traffic data to NetFlow format data
- 5 features out of 29 features are extracted:
 - pro, packets, bytes, durat, and status plus label
 - Categorical features: one-hot encoded

TABLE IIIMAWILAB DATASET ON AUGUST 27, 2017

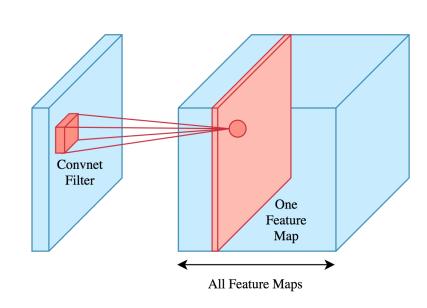
Flow	# data points	# normal	# anomaly	% anomaly
Flow 001	407,807	291,488	116,319	28.5%
Flow 002	472,654	327,413	145,241	30.7%
Flow 003	423,984	261,426	162,558	38.3%
Flow 004	425,994	300,759	125,235	29.4%

CNN framework



- Designed three CNN models
 - Shallow, moderate, and deep
 - Takes 1D vector as input
 - Evaluated with three different data sets (NSL-KDD, Kyoto Honeypot, MAWILab)

Feature Maps



1. Pre-processed input data are given to convolutional 1D layer(s).

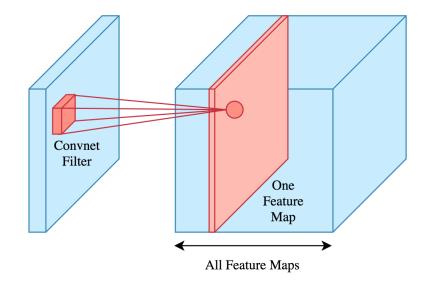
- Shallow: 1 Conv1D Layer
- Moderate: 2 Conv1D Layers
- Deep: 3 Conv1D Layers

2. Filters

- Shallow: 64 filters with size 3*1
- Moderate: 64 and 128 filters with size 3*1
- Deep: 64, 128, and 256 filters with size 3*1
- 3. Stride: 2
- 4. Padding: Same

Feature Maps

- Pre-processed input data are given to convolutional 1D layer(s).
 - Shallow: 1 Conv1D Layer
 - Moderate: 2 Conv1D Layers
 - Deep: 3 Conv1D Layers
- Filter: size 3*1
- Batch size
 - Shallow: 64
 - Moderate: 64 and 128
 - Deep: 64, 128, and 256
- Stride: 2
- Padding: set to "same" to make outputs of the convolutional layer same as inputs.



Feature Map Calculation

1. With ReLu non-linear activation

$$h_i^k = max(w^k x_i, 0)$$

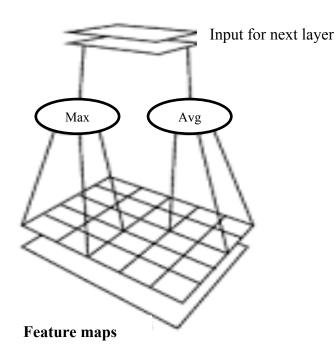
2. With t $h_i^k = tanh(w^k x_i)$

where h^k denotes the *k*th feature map at a given layer, *i* is the index in the feature map, x_i indicates the input, and w^k denotes the weights.

No significant difference observed in our evaluation

Pooling Methods

• Pooling Layer



1. Average Pooling

$$-f_{avg}(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

2. Max Pooling

$$- f_{max}(x) = \max(x_i)$$

where *x* denotes a vector of input data with activation values and *N* indicates a local pooling region.

• Max Pooling is widely employed

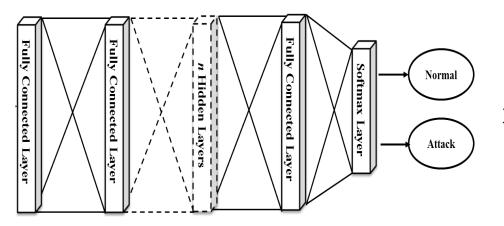
Pooling Layers

- 1. Shallow CNN
 - 1 max pooling layer in the Conv1D layer
 - Flatten: 3904 for NSL-KDD, 1408 for Kyoto, and 192 for MAWILab
- 2. Moderate CNN
 - $\circ~1$ max pooling layer in the 2nd Conv1D layer
 - Flatten: 7808 for NSL-KDD, 2816 for Kyoto, and 384 for MAWILab
- 3. Deep CNN
 - $\circ~2$ max pooling layers in the 2^{nd} and 3^{rd} Conv1D layer
 - Flatten: 7680 for NSL-KDD, 2816 for Kyoto, and 512 for MAWILab

Fully Connected Network Layer

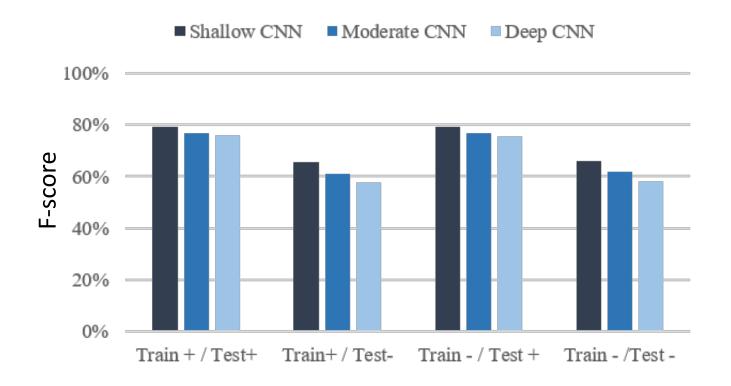
• Fully Connected Network

Fully Connected Network Model



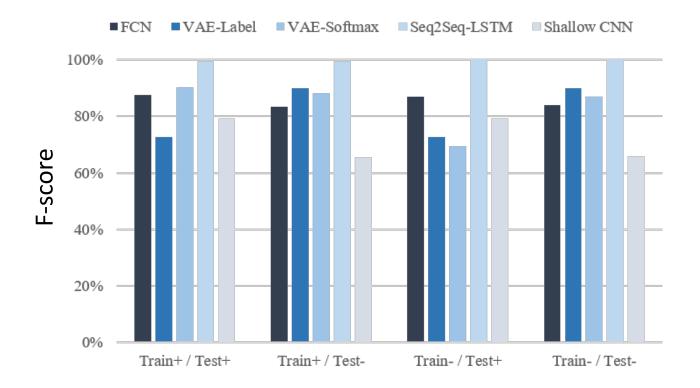
- 1. Hidden layers
 - Shallow: 1 hidden layer with 64 neurons
 - Moderate: 2 hidden layers with 64 and 32 neurons
 - Deep: 3 hidden layers with 64, 32, and 16 neurons
- 2. Other parameters
 - Batch normalization
 - Dropout = 0.5
 - Loss: binary cross entropy
 - Epochs: 10 and 20
 - Learning rate: 1e-3

Experimental Results: NSL-KDD



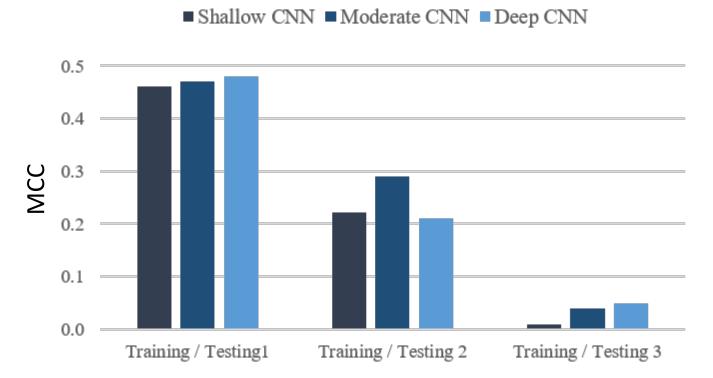
- Shows less than 80% F-measure score
- Using more layers does not improve the performance

Comparison with other DL models



• CNN model does not work better than other DL models

Experimental Results: Kyoto Honeypot



TEXAS A&I

ERC

ОММ

- MCC measures the quality of binary classification: -1.0 (poor), 0 (random), 1.0 (good)
- Training: January 1, 2014
- Testing: December 1 (#1), 15 (#2), 31 (#3), 2015
- Result sensitive to testing data sets

Experimental Results: MAWILab

Flow	# data points	# normal	# anomaly	% anomaly
Flow 001	407,807	291,488	116,319	28.5%
Flow 002	472,654	327,413	145,241	30.7%
Flow 003	423,984	261,426	162,558	38.3%
Flow 004	425,994	300,759	125,235	29.4%

Model	Flow 001 / Flow 002	Flow 001 / Flow 003	Flow 001 / Flow 003
Shallow CNN	65.44%	59.27%	61.33%
Moderate CNN	65.41%	67.66%	59.76%
Deep CNN	65.45%	67.86%	56.76%

• F-score ranges between 56% - 68%, which are not that satisfactory

Summary

- Deep learning is essential for network anomaly detection in considering the characteristics of network traffic data with a high degree of non-linearity
- Evaluated three simple CNN models taking a 1D vector as input with different internal depths
- The CNN models with 1D vector as input does not work better than other deep learning structures
- Also simply adding more layers would not be helpful to improve the detection performance

Future Direction

- Plan to develop a 2D construction method for the input data format from network data
- Previous work converted a NSL-KDD record into a 8x8x1 grayscale image
 - Converting is based on binning and one-hot encoding
 - Reported ~90% accuracy with existing CNN models (ResNet and GoogLeNet)
 - Li, Zhipeng, et al. "Intrusion Detection Using Convolutional Neural Networks for Representation Learning." *International Conference on Neural Information Processing*. Springer, Cham, 2017
- Need to design of CNN models taking 2D matrix as input, optimized for network anomaly detection

Questions?

Contact: Jinoh.kim@tamuc.edu