
Parallel I/O: Impr oving Parallel Access from Cluster s

Rob Ross and Bill Gropp Alok Choudhary and Wei-Keng Liao
Mathematics and Computer Department of Electrical and

Science Division Computer Engineering
Argonne National Laboratory Northwestern University

Outline

� Parallel I/O on Clusters via PVFS

– Overview of PVFS

– Peak performance

� Example Application: FLASH

– Application characteristics

– Initial performance problems

– Current performance comparison

� Areas of Development

– Data distribution

– Metadata storage

– I/O interfaces

Parallel Vir tual File System (PVFS)

...

0

1

2

nCN

CN

CN

CN

t
w
o
r

e
N

k
...

ION

ION

ION

ION

0

1

n

2

...

� File System – allows users to store and retrieve data using common
file access methods (open, close, read, write)

� Parallel – stripes data across multiple nodes with separate network
connections and avoids bottlenecks in data path

� Virtual – exists only as a set of user-space daemons

PVFS Components

� “Portable” core file system implementation

– UNIX daemons store data and metadata using local file systems

– Data is transferred using TCP

– Library of function calls implement API

– All usable without root access or kernel hooks

� Kernel-specific client module

– Allows for “mounting” of PVFS file systems

– Provides transparent access through kernel

– Currently implemented for Linux 2.2/2.4

PVFS Core Architecture

Two server (daemon) types:
� mgr – file manager, handles

metadata for files
� iods – I/O servers, store and

retrieve file data

Client-side library:
� libpvfs – UNIX-like API

...

...

...

mgr

iod

iod

iod

libpvfs

libpvfs

libpvfs

libpvfs

� Hides details of data transfer from application tasks

� Can be linked to directly or used by higher-level APIs

Chiba City – The Argonne Scalability Testbed

Software
� Linux 2.4 SMP
� PVFS 1.5.1
� MPICH 1.2.1

256 Compute Nodes
� 2x500 MHz Pentium IIIs
� 512 Mbytes RAM
� Myrinet (Rev. 3)
� 9 Gbyte SCSI disk

8 Storage Nodes
� 1x500 MHz Pentium III
� 512 MBytes RAM
� Myrinet (Rev. 3)
� IBM EXP-15 SCSI Enclosure

Concurrent Write Performance Through libpvfs

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

by
te

s/
se

c)

�

Number of Compute Nodes

PVFS Cached Write Performance

128 ION
64 ION
48 ION
32 ION
16 ION

� Using compute nodes for storage in these tests

� Peak at around 30-35 MBytes/sec per I/O server

PVFS and MPI-IO

� MPI-IO interface to PVFS files is provided via ROMIO

� ROMIO MPI-IO implementation performs all I/O through an abstract
device interface (ADIO)

– One ADIO implementation hooks ROMIO to PVFS through libpvfs

– Provides user-space access to PVFS files

– MPI hints can be used to set some physical distribution parameters

� ROMIO will be covered in more detail in next talk

ASCI FLASH and the FLASH I/O Benc hmark

� Adaptive-mesh code used to simulate astrophysical
thermonuclear flashes

� Scales to thousands of processors, won Gordon Bell
award in 2000

� Interesting from the I/O standpoint:

– Runs last for days – 0.5 Tbytes of data created

– Includes both checkpoint and visualization data

– HDF5 is used for portable storage of output

� FLASH I/O Benchmark extracts the I/O pattern from the FLASH code

� Examining the performance of this benchmark

Software Components for FLASH I/O

� HDF5 and ROMIO MPI-IO have abstraction layers to
allow the use of multiple underlying interfaces

� HDF5 abstraction layer interfaces to MPI-IO
� ROMIO abstraction layer interfaces to PVFS

FLASH
HDF5
MPI-IO
PVFS

� HDF5 stores its metadata in the same file as the data

Hints:

� FLASH passes hints through HDF5 property lists

� Hints can include physical distribution info such as “chunking”

� HDF5 propagates hints to MPI through Info parameters

FLASH Checkpoint Performance Problems

HDF5 Input Datatype
Processing

HDF5 File Datatype
Processing

File
Write

� Visualization performed using Jumpshot

� Input datatype processing took over 60 times as long as write!

� Can avoid input datatype processing via packing in app. code

FLASH Checkpoint Performance Comparison

� Chiba storage nodes used as PVFS I/O nodes for these tests

� With packing, reach 23% of peak throughput at 256 processes

� The file datatype processing (internal to HDF5) still present

of Procs Size (MB) Chiba City ASCI Red LLNL Frost
32 243.1 26.0 MB/sec — —
64 486.2 41.7 MB/sec 0.91 MB/sec 40.8 MB/sec
128 972.4 44.4 MB/sec — —
256 1945.1 57.4 MB/sec 0.99 MB/sec 129.1 MB/sec

Lessons from FLASH I/O Experience

� Well-defined interfaces are mandatory for vertical integration of com-
ponents

� Cross-component visualization is useful for identifying problem spots

� Datatype processing overhead can kill performance in I/O systems too

� Storage of metadata in the data file can perturb data alignment

– Need to store this metadata outside the data stream

Development Focus: Data Distrib utions

� Algorithmic mappings describe data distribution in a concise way

� PVFS implements the row-major mapping of file locations to storage

� Row-major assignment results in poor spatial locality in most cases

� Other orderings result in better spatial locality in the average case

� Need hints from application to help us choose!

Row-Major Mapping Hilbert Curve Mapping
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

0 1 14 15
3 2 13 12
4 7 8 11
5 6 9 10

Development Focus: Metadata Stora ge

� Scientific applications and high-level interfaces create both data and
metadata

� In some cases the appropriate location for this metadata is in a database
or some other external storage

� Other times (e.g. HDF5 metadata) storage as extended attributes,
alongside the file, might be more appropriate

� Tradeoff between ease of search and speed of access

� We are investigating schemas and interfaces for capturing metadata
and accessing it within the context of PVFS

Development Focus: I/O Interfaces

� Standards are great, but they aren’t necessarily the end-all

� The use of derived datatypes in MPI-IO allows for much richer descrip-
tions of I/O patterns

� More flexible file system interfaces can better utilize these descriptions
than POSIX interfaces (e.g. write(), writev())

� Implementing PVFS support for noncontiguous access, both in mem-
ory and file

� Integrating this support back into ROMIO

