Constructing Workflows by Integrating Interactive Information Sources

> Amarnath Gupta Ilkay Altintas Bertram Ludäscher Reagan W. Moore San Diego Supercomputer Center, UCSD

Related Projects

- Integration of Neuroscience Information for things like:
 - Mouse models of human disease
 - Protein localization
 - Comparative gene expression over embryonic development
- Integrative construction and analysis of Yeast Gene Regulatory Network for sporulation/meiosis

A Neuroscientist's Information Integration Problem

protein localization (NCMIR) sequence info (CaPROT)

morphometry (SYNAPSE)

neurotransmission (SENSELAB) But this work looks at a *different* information integration problem

Let's first see a Demo of the Application Scenario Was that good enough? Why can't we just use Discovery Links from IBM to do this?

An Equivalent Query for the Task

Assumin Find all human transcription factors that bind to promoter regions of those genes that hybridize well (top 3) with my sample cDNA or its 3 closest homologues. Report the genes, the homologues and the transcription factors

juage

selectgene g, homol, t_factor tffromclusfavor C, genebank G, sample S,
ncbi NC, transfac T, matinspector Mwhereg in top(3, C.rank_by_CV(S)) and
gs is G.sequence(g) and
homol in top(3, NC.blast_search(gs, ...)) and
prom is extend_limits(homol) and
tf in M.get_tfs(prom, core_sim, matrix_sim,
'vertebrate_matrix') and

'human' in T.species of(tf)

The evaluation plan for this query would be very close to our "workflow"

Why not take a "pure" mediation approach to the problem?

- Some essential facts about a mediator system
 - A traditional mediator can execute a single query plan
 - A mediator with an adaptive query plan generator can perform *mid-stream plan corrections* based on properties like
 - source availability
 - data rate
 - size of intermediate results
 - Semantic dependencies between data from multiple sources are handled statically at the time of view definition but not during query execution
- Mapping that to our problem ... is very difficult ... here is why

Modeling an Interactive Source for Integration

- Modeling the clicking/form-filling mechanics
 Single page
 - Queries with binding patterns
 - Multi-page
 - Correlated queries with implicit joins or passing of fixed parameters between them
 - Management of intermediate variables
 - A source is *wrappable* if all the operations on it can be expressed as parameterized PSJ queries over the set of pages

Modeling an Interactive Source for Integration

- Modeling Interaction Semantics
 - How are the *query parameters* **constrained by** the attributes of the input *data objects*?
 - How does the *parameter adjustment process* depend on the properties of the *intermediate data*?
 - How do we know when an iteration **terminates**?
 - When can we exit a source to go to the next one?
 - When do we need to **return** to the current source?
 - Which variables does the system need to keep for
 - interacting with the next source?
 - returning to the same source?
- What in this *can* be automated?

Control-Extensibility in Mediators

query fragment ... gs is *G.sequence*(g) and homol in top(3, NC.blast_search(gs, ...)) and prom is extend_limits(homol) and ...

- Rule 1: if gs is a complete known gene sequence then convert gs into equivalent protein and then perform protein_blast else perform a nucleotide_blast
- Technique 2: repeat{

```
results:=blast_search(...);

if(test_quality(top(3, results))= ok) {

report homol:= top(3, results)

exit_local;

}

until test_converge(results);

Rule 3: case species(homol) of{

bakers_yeast: extension = 1000;

c_elegans: extension = 3000;

drosophila: extension = eval(wrapper(homol, <u>http://www.drosopila.org/</u>, ...);
```

Conclusions (for now)

- The problem requirements do not fit
 - Current query decomposition/rewrite models
 - Traditional workflow models
- Next Tasks
 - Get a *BETTER FUNCTIONAL SPEC*
 - Formal Extension of Query Capabilities with Interaction Semantics
 - Develop an operational API for interaction specification
 - Create a query rewriting method partial executioncontrol fragments, possibly by plugging-in user-defined control structures
- A Not-so-far-term task
 - Connect this to the Storage Resource Broker and the Teragrid facilities