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We are investigating dimension reduction 
and sampling techniques

Problem: data from simulations and experiments is high 
dimensional (i.e. many features)
Querying the features can help in understanding the data
— but, searching in a high-dimensional space is difficult

May want to cluster similar objects for efficient access
—but, clustering is expensive in high dimensions

May want to analyze data
—a representation in fewer dimensions would help

Solution: use dimension reduction techniques
But, dimension reduction techniques can be expensive if 
have many data items
Solution: use sampling to appropriately reduce the 
number of data items 
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Our work on dimension reduction will 
help both data management and mining

Reducing the dimensions will improve
—searching (LBNL)
—clustering (ORNL)

Dimension reduction can also help in data mining and 
scientific discovery focus of this talk
Our initial focus is on climate data 
—complements work at ORNL on climate

Our techniques are also applicable to other data 
—high-energy-physics data LBNL on HEP

We only discuss the .8 FTE work funded under SciDAC; 
however, our data mining research is more extensive. See 
www.llnl.gov/casc/sapphire
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There are two different ways in which we 
can view dimension reduction

Reduce the number of features representing a data 
item

Reduce the number of basis vectors used to describe 
the data: if some of the       are small, they can be 
ignored
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Dimension reduction can find a reduced representation  



5CASC

Our work on climate data focuses on 
reducing the number of basis vectors

Atmospheric scientists are interested in understanding  
changes in global temperatures
Simulated and observed data include effects of volcano 
eruptions, El Niño and Southern Oscillation (ENSO), etc.
We need to remove effects that are not shared by the 
different models to
—make meaningful comparisons
—understand effects of man-made contributions for 

global warming
Domain expert Dr. Benjamin Santer (PCMDI, LLNL)
—MacArthur award for research supporting the finding 

that human activity contributes to global warming

Dimension reduction supporting scientific discovery  
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Isolating the effects of different sources is 
a difficult problem

Separation is difficult as El Chichón and Mt. Pinatubo 
volcano eruptions coincided with ENSO events
Traditional methods such as principal components (PCA) 
on the global mean series have not been successful
Current approaches don’t always work
Need better understanding of the
—interaction between signals 
—conditions under which methods work, and why

Global
temperature

Time T: Volcano eruption

How much of the cooling after time T is volcano induced?

Active area of research in climate
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Current techniques for separating volcano 
and ENSO signals use parametric models

Best current approach  
—create parametric models for volcano and ENSO 

signals
—estimate and remove ENSO effect
—estimate and remove volcano effect
—iterate 
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To complement the parametric models, we 
investigate automated techniques

Parametric approach [1] has many drawbacks
—different estimation techniques lead to different 

parameter estimates
—it is sensitive to parameter values: slightly different 

parameters lead to different results
—what if signals do not follow the proposed models?

Can automated techniques help?
—use the data itself to drive the separation of signals
—explore independent component analysis (ICA)

Can zonal signals give better results than global 
signals?

[1] B.D. Santer et al. Accounting for the effects of volcanoes and ENSO 
in comparisons of modeled and observed temperature trends. J. 
Geophys. Res. 106, D22, Nov. 27, p. 28,033--28,059, 2001.
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ICA assumes that the observations are 
linear mixtures of unobservable variables

• Simplest ICA model

Given n realizations of x, estimate A and s
Connection to PCA [6]
— for Gaussian variables, ICA = PCA
—PCs are uncorrelated, while ICs are independent  

ICA is very active research area, new developments, 
extensions to more complicated models are currently 
under investigation [2,3,4,5]

Linear mixing matrix:
unknown

(Non-Gaussian)
Independent component variables:

unobservable
Observations

11 ××× = ppkk sAx
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ICA seeks independent components by 
optimizing measures of independence 

E.g. minimize the mutual information 

for the uncorrelated                       with joint probability 
density function         , where

is the negentropy:    
is the entropy:                                    

and          is Gaussian s.t.
Various approximations and computational tricks

where                  , and         is a suitable non-quadratic 
function, such as    
fastICA software from http://www.cis.hut.fi/~aapo
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ICA separates individual signals from 
mikes that record simultaneous speakers

The cocktail party problem: many online demos 
— http://www.mns.brain.riken.go.jp/~shiro/blindsep.html

— http://www.cnl.salk.edu/~tewon/Blind/blind_audio.html

— http://www-sigproc.eng.cam.ac.uk/oldusers/dcbc1/research/diagram.html

(i) 3 sources (ii) 3 observations

(iii) 3 estimated sources from (ii) after ICA
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ICA has also been successfully applied in 
other source separation problems

Removing artifacts from EEG/MEG brain data
—Measure brain activity on the scalp by removing un-

related artifacts, such as eye-blinks
Removing train signals from seismograms
—Study earthquake activity by isolating train noise  

from seismograms 
Economic time series, telecommunications, …, [2,3,4,5]
The similarities with our climate problem prompted us 
to investigate ICA in our context

To our knowledge, ours is the first attempt to consider 
ICA in the atmospheric sciences
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The raw data: 264 monthly temperatures on 
a 144x73 spatial grid on 17 vertical levels

ICA

Volcano

El Niño

Other effects

January 1979 raw temperatures (Kelvin) on the 144x73 latitude by longitude grid
at 1000hPa pressure level.  Data from NCEP. 
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Climate scientists typically work with 
global monthly means data

Time series of global monthly mean anomalies, Jan 1979 - Dec 2000

17 vertical levels

level 1: 1000hPa,
lowest altitude

level 17: 10hPa,
highest altitude 
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IC estimates (denoised) based on global 
temperatures from the four lowest levels 

Volcano signal?

???

???

???

Difficult to interpret the estimates: use synthetic data  



16CASC

We experimented with synthetic data to 
understand the behavior of ICA

The fastICA algorithm estimates correctly 
the shapes of the two independent 
components (ICs), but not their respective 
amplitudes.  

ICA

(iii) Sources estimated from (ii):     and1̂S 2Ŝ

(i) Two IC sources: sine and volcano1S 2S (ii) Two mixed signals: and 1X 2X
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With proper post-processing, we can also 
estimate accurately the IC amplitudes 

The mixed signals in terms of the estimated independent components
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Since most scientific data is noisy, we 
explored the robustness of ICA to noise

Mix    X=AS

ICA

3 mixed signals:

321 ,, XXX

sine:
volcano:
noise:

2S
1S

3S

3 IC sources:

3 IC estimates:

sine:
volcano:
noise:

2Ŝ
1Ŝ

3Ŝ

ICA can separate noise used as an extra component
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ICA, combined with wavelet denoising, is 
fairly robust to noise added after mixing

(iv) Sources estimated from (ii)

ICA

Mix, then

add noise

Denoise, then ICA

(iii) Sources estimated from (ii) by 
first denoising it, then using ICA

(ii) Two mixed signals + noise: and 1Y 2Y
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(i) Two IC sources: sine and volcano1S 2S
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We also explored the robustness of ICA 
to the independence assumption

(iii) Sources estimated from (ii)

ICA

Mix 

X=AS

The simple ICA model cannot separate 
non-independent sources. 

(i) Three sources: sine , volcano , 
and their interaction 

1S 2S
213 SSS =

(ii) Three mixed signals: ,      and 1X 2X 3X

Ben Santer: 
“negative result is valuable”
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A more realistic model: three mixed signals 
= volcano + noise + El Niño (instead of sine)

Mix    X=AS

ICA

3 mixed signals:

321 ,, XXX

El Nino:
volcano:
noise:

2S
1S

3S

3 IC sources:

3 IC estimates:

El Nino:
volcano:
noise:

2Ŝ
1Ŝ

3Ŝ

Cooling in the mixed global signals after the arrow is in fact a combination of an El Nino warming and a 
volcano cooling. Without the volcano eruption, the global temperatures would be higher in this model.
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red:
red dashed: 1X̂
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The IC estimates are in excellent 
agreement with the known sources 

Continuous lines represent the true decompositions, 
while dashed ones the ICA estimates
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Ben Santer suggested ICA on zonal data to 
search for spatial source signatures

Monthly means for 73 zones on 17 vertical levels: Jan 
1979 – Dec 2000 
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Zonal monthly mean anomaly data  

Monthly mean anomalies for 73 zones on 17 vertical 
levels: Jan 1979  
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Anomaly: departure from
mean over 1979-2000.
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Example ICs for the zonal anomaly data

Not clear how to 
interpret the 
estimates. They are 
independent, but do 
not correspond to 
known physical 
phenomena. 
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Example PCs (cov matrix) for the zonal 
anomaly data

Cumulative
#PC %Variation

--------------------------
1 .15
5 .46

10 .66 
25 .88
50 .96

252 1

Interpretation much 
more straightforward. 
Ben Santer was very 
pleased when we 
showed him our 
results, and 
suggested further 
analyses. 
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Summary

ICA separates linearly mixed signals in 
—synthetic data
—synthetic data with noise added

ICA runs into problems with
—non-linear mixing of  synthetic data 
—real global means data => real data likely to be a non-

linear mix of volcano and ENSO signals 
ICA results difficult to interpret if use zonal means 
instead of global means, but PCA appears promising
Results presented at the Joint Statistical Meetings, Aug 
2002, NYC

Ben Santer: our work is helping him understand a new 
technique and its limitations in analyzing climate data
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Our work on climate data focuses on 
separating volcano and El Niño signals

Atmospheric scientists are interested in understanding  
changes in global temperatures
Simulated and observed data include effects of volcano 
eruptions, El Niño and Southern Oscillation (ENSO), etc.
We need to remove effects that are not shared by the 
different models to
—make meaningful comparisons
—understand effects of man-made contributions for 

global warming
Domain expert Dr. Benjamin Santer (PCMDI, LLNL)

Dimension reduction supporting scientific discovery  



31CASC

The raw data: 264 monthly temperatures on 
a 144x73 spatial grid on 17 vertical levels

ICA

Volcano

El Niño

Other effects

January 1979 raw temperatures (Kelvin) on the 144x73 latitude by longitude grid
at 1000hPa pressure level.  Data from NCEP. 
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Summary of work so far

ICA separates linearly mixed signals in 
—synthetic data
—synthetic data with noise added

ICA runs into problems with
—non-linear mixing of  synthetic data 
—real global means data => real data likely to be a non-

linear mix of volcano and ENSO signals 
ICA results difficult to interpret if use zonal means 
instead of global means, but PCA appears promising
Results presented at the Joint Statistical Meetings, Aug 
2002, NYC

Ben Santer: our work is helping him understand a new 
technique and its limitations in analyzing climate data
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A more realistic model: three mixed signals 
= volcano + noise + El Niño (instead of sine)

Mix    X=AS

ICA

3 mixed signals:

321 ,, XXX

El Nino:
volcano:
noise:

2S
1S

3S

3 IC sources:

3 IC estimates:

El Nino:
volcano:
noise:

2Ŝ
1Ŝ

3Ŝ

Cooling in the mixed global signals after the arrow is in fact a combination of an El Nino warming and a 
volcano cooling. Without the volcano eruption, the global temperatures would be higher in this model.
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Example ICs for the zonal anomaly data

Not clear how to 
interpret the 
estimates. They are 
independent, but do 
not correspond to 
known physical 
phenomena. 
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Example PCs (cov matrix) for the zonal 
anomaly data

Cumulative
#PC %Variation

--------------------------
1 .15
5 .46

10 .66 
25 .88
50 .96

252 1

Interpretation much 
more straightforward. 
Ben Santer was very 
pleased when we 
showed him our 
results, and 
suggested further 
analyses. 
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Future plans

What do you expect to achieve by Feb. 2003? What 
are your goals?
What are your plans for achieving these goals?
Why are these goals important? To whom?
Which scientific domain and who are you working 
with as your token application scientist?
Why is your work significant? Who will use it?
How does your work compare with or differ from 
similar work by others? Why not simply adopt other 
people’s work in you domain?
What is your vision at the end of three years? Do you 
believe you can achieve that? Why?
Do you think there will be unsolved problems in your 
domain at the end of three years? What would you 
plan to propose?



37CASC

What do you expect to achieve by Feb. 
2003? What are your goals?

Follow up on our discussion with Ben Santer
— look at the PCA time series for covariance and 

correlation matrices for zonal means
— incorporate post-processing suggested by Ben 
—correlate with ENSO, volcano signals, and other 

time series
— investigate alternative ICA implementations
—summarize in a report

See if possible to incorporate constraints in the ICA 
to separate non-linearly mixed signals: risky
Complete a design of the ICA implementation in C++, 
incorporating our enhancements

Goal: help to improve the climate scientist’s   
understanding of how the signals can be separated
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What do you expect to achieve by Feb. 
2003? What are your goals? (contd.)

Several aspects of our scientific discovery work are 
high risk
—poor understanding among climate scientists on 

how the various signals interact
—not always easy to interpret the output from ICA
—existing techniques not always well understood 
— techniques work in some cases but not in others

We may not be able to solve the entire problem
—but, any progress is valued by Ben Santer 
—even a negative result!
—still an important problem that generates great 

interest
The techniques are very specific to this problem

Scientific discovery is hard! 
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What are your plans for achieving these 
goals?

Understand and implement the post-processing 
needed for the PCs
Convert the PCA “images” into time series
Implement the correlation between the PCs and the 
various signals to see if we can determine which PC 
represents what
Investigate new ICA implementations that give more 
“meaningful” ICs
ICA with constraints (risky)
— literature search 
—software implementation in Matlab
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Why are these goals important? To 
whom?

They help us to better understand the behavior of the 
earth’s temperature when naturally occurring 
phenomena are removed
— identify the contributions of man-made sources
—understand global warming
—make better comparisons of climate models

A better understanding of how the signals interact and 
can be removed is of interest to climate scientists such 
as Ben Santer
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Which scientific domain, and who is your 
application scientist?

Climate 
Ben Santer, Program for Climate Model Diagnosis and 
Intercomparison (PCMDI)
—MacArthur fellowship for research supporting the 

finding that human activity contributes to global 
warming

Future (beyond this domain): HEP, working with LBNL
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Why is your work significant? Who will 
use it?

Our work helps in better understanding of the separation 
of sources contributing to the temperature
For our work so far, we expect that our findings will 
contribute to a better understanding of climate models 
and global warming
The results will be used by climate scientists
Future (beyond Feb’03):
— investigate other dimension reduction techniques for 

this problem
—use the dimension reduction techniques in 

conjunction with sampling to improve indexing and 
clustering in HEP data 
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How does your work compare with others? 
Why not simply adopt their work?

To the best of our knowledge, no one else is looking at 
techniques such as ICA for the separation of mixed 
signals in climate data
The existing techniques for this problem are simplistic 
and  involve knowing something about the kinds of 
signals that are mixed
Our approach tries to find the signals in the mix 
without knowing what kinds of signals they are
Future (beyond this problem)
—No one else is looking at effective sampling to 

improve the efficiency of dimension reduction
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What is your vision at the end of three 
years? Do you believe you can achieve it?

Scientific discovery
— Investigate more complex mixing models
—understand how much PCA, ICA, and related 

techniques can contribute to the separation of the 
signals

— issue: to determine when we have reached the point 
of diminishing returns

Software tools
— for PCA, ICA, and related techniques
—with sophisticated sampling for large data sets

A better understanding of how these techniques apply 
to real datasets in climate and high energy physics
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Will there be unsolved problems at the 
end of 3 years? What will you propose?

Definitely!
Climate, high energy physics and other applications 
are replete with data analysis problems
—application of dimension reduction techniques
—analysis of time series data
—analysis of HEP data


