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Abstract—Since 10 performance on HPC machines strongly
depends on machine characteristics and configuration, it is
important to carefully tune IO libraries and make good use
of appropriate library APIs. For instance, on current petascale
machines, independent IO tends to outperform collective 10, in
part due to bottlenecks at the metadata server. The problem
is exacerbated by scaling issues, since each IO library scales
differently on each machine, and typically, operates efficiently to
different levels of scaling on different machines. With scientific
codes being run on a variety of HPC resources, efficient code
execution requires us to address three important issues: (1) end
users should be able to select the most efficient 10 methods
for their codes, with minimal effort in terms of code updates
or alterations; (2) such performance-driven choices should not
prevent data from being stored in the desired file formats, since
those are crucial for later data analysis; and (3) it is important
to have efficient ways of identifying and selecting certain data for
analysis, to help end users cope with the flood of data produced
by high end codes. This paper employs ADIOS, the ADaptable
IO System, as an 10 API to address (1)-(3) above. Concerning (1),
ADIOS makes it possible to independently select the IO methods
being used by each grouping of data in an application, so that end
users can use those I0 methods that exhibit best performance
based on both I0 patterns and the underlying hardware. In
this paper, we also use this facility of ADIOS to experimentally
evaluate on petascale machines alternative methods for high
performance I10. Specific examples studied include methods that
use strong file consistency vs. delayed parallel data consistency,
as that provided by MPI-IO or POSIX I0O. Concerning (2), to
avoid linking IO methods to specific file formats and attain high
10 performance, ADIOS introduces an efficient intermediate file
format, termed BP, which can be converted, at small cost, to the
standard file formats used by analysis tools, such as NetCDF and
HDF-5. Concerning (3), associated with BP are efficient methods
for data characterization, which compute attributes that can be
used to identify data sets without having to inspect or analyze
the entire data contents of large files.

I. INTRODUCTION

File formats like HDF and NetCDF are popular in part
due to the rich tool chains available for the scientific data
stored using these formats. Both HDF and NetCDF, however,
were initially designed for serial access, limiting scalability
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when used in massively parallel codes. In response, the
broader community has developed parallel versions of their
APIs [1], [2], with good results demonstrated in the terascale
environment compared to their serial counterparts. However,
there remain serious scalability issues for petascale machines
and beyond, a simple example explained in this paper being the
inability of HDF-5 to scale to 8192 processes for benchmarks
conducted with the Chimera supernova code. Here, with every
performance option enabled for parallel HDF-5 enabled, we
measure 1400 seconds to write a 7 GB restart file to the
Lustre system on the Jaguar machine at Oak Ridge National
Laboratories (ORNL), whereas the use of our ADaptable 10
System (ADIOS) and its IO API with underlying POSIX 10
reduces that time to 1.4 seconds! ADIOS with MPI-IO and
collective MPI-IO yields performance of 10 and 14 seconds,
respectively. BP conversion to HDF-5 performed serially on a
single login node on Jaguar requires 117 seconds.

IO performance depends on many factors, including the file
format used, the implementation and tuning of the associated
API, the file system employed, and the architecture of the
HPC resource being used for production runs. Our analysis
of the paralle]l HDF-5 implementation on Jaguar, for instance,
reveals a large number of MPI_Bcast calls, which are used to
guarantee that all processes writing the collective values are
writing consistent data to the file and that all IO processes
maintain a coordinated march through the data elements for
each collective output. We conclude from facts like these that
ADIOS should provide end users easy access to multiple 10
methods. On Jaguar, for instance, given the severe performance
impact of validating the parallel consistency of data output,
end users might use HDF-5 and Lustre during testing, but then
disable consistency checking during large-scale production
runs. Unfortunately, the parallel HDF-5 and parallel NetCDF
APIs do not offer this capability, since both the HDF-5 and
NetCDF file formats are designed to provide a single view
of the entire data in the file. The laudable idea is that file
contents should not change with say, 30,000 processes all



writing the same HDF-5 file in parallel vs. that file being
written serially by a single process. The unfortunate outcome,
however, is that the API then forces the user to validate file
consistency each time the file is written, no matter if it is
serial or parallel output. In response, ADIOS introduces the
notion of an intermediate file format that does not require
immediate file consistency, termed BP. By using BP, we avoid
the runtime costs of consistency checking, but can still obtain
the data in a format that integrates with the tools currently used
in the science work flow. This is done after the simulation has
written the data, by using a converter to validate consistency
and create the desired HDF-5 or NetCDF formats.

We term ADIOS an adaptable IO system because using it
makes it easy for end users to use the IO methods that offer the
levels of support they require. In the Chimera/Jaguar example,
for instance, it is appropriate to use parallel HDF-5 during
debugging and/or in small runs to validate that the output is
being generated correctly. Once the code has been validated,
other methods can be used. With ADIOS, such changes do not
necessitate changes to science codes but only involve changing
a single entry in an external XML configuration file. For the
Chimera/Jaguar production runs, the outcome is an up to 3
orders of magnitude improvement in IO performance. Further,
with its use of the intermediate BP file format, ADIOS does
not prescribe whether or when the output is converted to HDF-
5 or NetCDF formats. Such conversions can be done (i) ‘in
line’ as part of the 10 operation through an I0 Graph [3], to
ensure that only one format of the data will ever be stored
on disk, (ii) offline using constructs termed metabots [4] that
inspect disk-resident data and perform conversions whenever
possible and outside the IO fast path, (iii) as part of a larger,
more complex workflow using Kepler [5], Pegasus [6], or
DAGMan [7], or (iv) via a stand-alone file format converter.
In all of these cases, such conversions can be done efficiently,
with our initial results reported with a standalone converter
running on a single processor on a login node of the ORNL
Jaguar machine resulting in a 117 second conversion time for
a 7 GB output file (i.e., in contrast to the total 1400 sec. 10
time for Chimera quoted above for parallel HDF-5).

ADIOS and its BP intermediate file format not only support
the flexible conversion to standard file formats, but they also
facilitate the summary inspection of the data to determine
if it contains features of interest to end users. One way to
provide such functionality is to fully index the data, as done
by multiple projects that have developed content indices for
HDF-5 files [8], [9], [10], [11]. To achieve a similar goal,
but with less overhead in space and time, ADIOS supports
the notion of data characteristics using which one can collect
local, simple statistical and/or analytical data during the output
operation (or later) for use in identifying desired data sets.
Simple characteristics like local process array minimum and
maximum values can be collected nearly ‘for free’ as part
of the IO operation. More complex analytical measures like
standard deviations or specialized measures particular to the
science being performed may require processing that can be
done in a variety of ways, including before or after the data

has been written to disk. In all such cases, the BP format offers
efficient, compact ways of storing these characteristics. When
converting BP files to say, HDF-5 or NetCDF, attributes can
be used to maintain them.

The BP file format’s implementation uses a footer index,
to avoid the known limitation of header-based formats like
NetCDF [12] where any change to the length of file data will
require moving it. Further, by placing version identifier and an
offset to the beginning of the index as the last few bytes of a
BP file, it becomes trivial to find the index information and to
add new and different data to the file without affecting any data
already written. Finally, we incorporate data characteristics
into the index, so that we can separate the index for use as
a table of contents for the file on a tape storage system like
HPSS [13].

To summarize, the ADIOS IO system and its BP file format
are designed to help attain scalable, high performance 10
while at the same time, maintaining compatibility with the rich
tool chains existing for standard file formats like HDF-5 and
NetCDF. By using either parallel HDF-5 or parallel NetCDF
for initial code development and testing, the internal file
consistency and ‘correctness’ of data output can be ensured.
By switching to the BP format and using POSIX, MPI-IO, or
collective MPI-1O methods for large-scale production runs and
employing a converter, the IO time experienced by petascale
codes can be reduced by up to three orders of magnitude, while
still obtaining files with identical format and contents as when
directly using native parallel APIs. The key contributions of
ADIOS are as follows:

1) runtime selection of IO methods to achieve high perfor-

mance for different platforms and IO patterns;

2) an intermediate file format designed for high-
performance parallel IO and for maintaining
compatibility for the file formats necessary for
analysis workflows; and

3) the use of data characteristics and indexing for rapid
data identification and retrieval to enhance scientist
productivity.

The remainder of this paper describes related work, the
architecture of ADIOS and some details of the BP file for-
mat, our evaluation environment and codes and experimental
measurements, and ends with conclusions and a discussion of
future work.

II. RELATED WORK

There has been substantial work to loosen some of the strict
semantics of serial IO systems to enhance performance for
parallel I0. For example, NFS relies on a write-back from a
local cache before changes may be visible on another machine
in the network [14]. The Lightweight File Systems project at
Sandia Labs [15] has sought to strip down the file system
to only its security and access components at the core and
then allows the optional layering of other semantics on an as
needed basis, in part to avoid known issues like the fact that
the single metadata server in Lustre [16] can cause significant
bottlenecks on metadata operations. Other file systems [17],



[18], [19], [20] have successfully addressed this issue, but none
have yet addressed the ‘internal’ file issues raised and solved
by ADIOS, such as selective file consistency.

The file formats used by science applications range from the
most popular HDF-5 and NetCDF to more niche players like
SAF [21], PDS [22], GRIB [23], and HDS [24]. Each of these
has been optimized for a particular style of data arrangement
and annotation. All of these formats share a requirement to
use the same consistency validation during output as what is
required by the on-disk file, necessitating the use of global
consistency checks as part of the IO process (e.g., by using
collectives). The use of an intermediate format like BP in
ADIOS addresses this ‘internal’ file issue, making it possible
to avoid and/or delay consistency validation to improve 10O
performance.

File conversion is commonly used in computer systems.
Simulations frequently use converters as part of code coupling
operations to ‘fix-up’ not just the data format on disk, but also
to do perform actions like changing units, data filtering, or
others. For NetCDF files, NCO [25], the netCDF Operators,
provides a way to extract values from one or more files into
a new file for more convenient use (e.g., used in the climate
community). To provide resilience against file corruption and
avoid the performance penalty of resizing the file header when
writing each new history output, every output set is written to a
new file. NCO is used to construct the view of a single variable
over time by pulling the appropriate pieces from the set of
NetCDF files into a single, new NetCDF file. The combustion
simulation S3D writes each process’s output into a separate file
for performance and then uses another, independent process
to combine all of these outputs into a single new file. This is
similar to a workflow related approach using tools like Kepler,
Pegasus, or DAGMan. We have been investigating alternative
approaches. For example, through the use of an IO Graph,
we have demonstrated the ability to write data in a different
format and/or with different filtering and/or processing without
the intermediate data ever hitting disk [3]. We have also been
investigating the use of near-line converters called metabots
that monitor the file system for new files and automatically
apply their operation to generate the new output. By evaluating
the work required to perform the data manipulation, placement
of the operation either inline as an IO Graph or near-line
as a metabot can be chosen. We have also frequently used
components to convert our data output into images or just strip
out portions relevant to other downstream processing [26] by
using actors in Kepler workflows [27].

Detailed data indexing has been explored in four HDF-5
indexing prototypes. The use of bitmap indices in [8] and [9]
provides an efficient way to find values typically within in
a given range. The use of projection tables [10] takes the
approach of listing values and giving the location(s) at which it
appears. PyTables [11] uses Python to provide more traditional
database-like indexing of data files. All of these have focused
on providing full or a sampling approach data indexing. Our
approach is not to give direct access to all data elements
but rather to aid in the identification of which data sets are

relevant for the desired use. For example, to know which
10 TB file contains the data where the temperature exceeds
106, looking at the maximum values for the temperature is
sufficient. Simple metrics like these can always be collected
and will always be available in ADIOS. Additional information
must be computed in analysis workflows.

Previously published ADIOS work includes a workshop
paper describing excellent initial performance results using
ADIOS [28] including an overview of the programming API
and XML format. A 2008 Cray User’s Group paper [29]
elaborated on the workshop paper. This paper extends this
work by re-evaluating the performance after the development
of a newer, very different BP file format and discusses the
performance numbers in this newer context.

III. ADIOS USE AND SOFTWARE ARCHITECTURE

ADIOS [28], the ADaptable IO System, provides an API
nearly as simple as POSIX IO and an external XML config-
uration file that is parsed once at startup, the latter providing
flexibility in how IO is performed and in what IO occurs.
Metadata is either stored in the XML file, to avoid pollution
of the source code, or as is the case with data characteristics,
it is generated either during or after data storage, and stored
directly in the intermediate output files. ADIOS was developed
in response to our experiences with the IO performed by
full science codes that include GTC (fusion), GTS (fusion),
XGCl1 (fusion), Chimera (supernova), S3D (combustion), and
the Flash 10 benchmark (astrophysics). The key features of
ADIOS are the following:

1) external XML file — for 10 description and configuration;

2) single API for all 10 methods — no matter how IO is
actually performed;

3) runtime selection of potentially different 10 methods —
per grouping of data;

4) BP file format — designed for minimal required coordi-
nation, compact metadata storage, and resilience in cases
of failures; and

5) an initial implementation focus on write performance .

A. External XML file

The complexity of IO methods is often directly reflected in
that of the source code API required for their use. To avoid
exposing such complexity to source codes, the ADIOS XML
format describes the structure of output data, any attributes
attached to items or groups, and the selection of the particular
10 method to employ for this run of the science code. Through
the use of this XML file, ADIOS controls what data is written
and which method is used for each grouping of data in the
code. Since this introduces a consistency requirement between
the XML file and the source code, we have developed a
method for automatically generating nearly all of the code’s
IO commands based on the XML file. This eliminates the
need to maintain a set of calls in the source code and a
set of data descriptions in the external XML file. Using this
feature reduces the API calls in the science code to just an
‘open’, ‘close’, and an include of the generated write or read



statements. By properly setting dependencies in the project
Makefile, it is easy to automatically generate new include files
and properly recompile dependent source files when the XML
file changes. This has shown to be effective for nearly all of
the 10 examples we have encountered in the petascale codes
targeted by our work.

B. Single API for all I0 Methods

Since all descriptive elements of the output operation have
been moved to the XML file, the ADIOS API is nearly as
simple as POSIX IO, and in many cases, even simpler. For
example, even to have a richly annotated HDF-5 file with
many attributes and with hierarchical structure, the user need
only have an ‘open’, ‘“#include’, and ‘close’ statement in the
science code. The ‘#include’ will insert the generated ADIOS
IO calls based on the XML file for use in the science code.
For more complex cases where very fine manipulation of the
10 operations is required, it is still possible to have an ‘open’
followed by a series of ‘read’ or ‘write’ statements, and finally,
a ‘close’ statement. The only additional requirement in this
case is our ‘group_size’ call immediately after the ‘open’ call.
This provides a way for the underlying API to decide if it
should buffer the output for optimal performance, coordinate
with other processes participating in the output to determine
the local offset in the global file for output, and to initialize
any output parameters not set during the ‘open’ call.

C. Runtime Selection of Potentially Different 10 Methods

Our hope is that ADIOS can be used to attain high 10
performance no matter on which platform a code is deployed.
To achieve this, it is necessary to be able to select which
IO method to employ for a science code. This is particularly
important with limited or costly time allocations on petascale
machines, where excessive 10 times can substantially reduce
scientific productivity. The need for selectivity also extends to
individual IO groupings within the code, where for instance,
since diagnostic output is likely small but frequently written,
it makes sense to write it using one approach (e.g., HDF-5),
while restarts that are large and infrequent may need to use
a different approach (e.g., MPI-IO) to gain the performance
benefit of not performing the consistency checks during the
large-scale run.

D. The Intermediate BP File Format

ADIOS uses the BP format as a default since its design is
central to our ability to achieve high performance, compati-
bility with standard formats, and efficient data annotation and
characterization. The basic layout of BP is shown in figure 1.
Briefly, each process writes to its own area independently.
Each of these segments of the file are termed a ‘process
group’. The contents of each of these process groups is indexed
and stored at the end of the file for rapid data selection and
identification. The format is discussed in detail in [30].

This section briefly describes the key features of BP, based
on five goals for a high performance file format, termed
RICCI:

1) Resilient in the presence of a variety of failures;

2) Independent, parallel 10 with sufficient annotation to

validate and enforce consistency later;

3) Convertible to both HDF-5 and NetCDF,;

4) Characterize data for easier data analysis and selection;

and

5) Index the metadata and characterize all of the data for

fast, direct access.

1) Resilient: To avoid the loss of previously written data
during a later 10 operation to the same file(s), BP incorporates
three key features. First, there is a local copy of all relevant
metadata for each process that writes output. Thus, BP does
not rely on a centralized header area for access to local
data elements. Second, since each process writes its output
into the file independently, its failure does not affect other
processes and/or the ability to read other file portions. Third,
the BP file index contains replicated metadata to deal with data
failures. By storing where each process group resides in the
file in the index, the BP format affords proper identification
of undamaged sections of the file by indicating where to start
parsing. This also holds true for variables as we replicate the
location of each in the index as well.

2) Independent: As mentioned in the previous section, BP
stores each process’s output independently. This achieves two
advantages. First, by storing the full output of each process
independently with full annotation, the BP format can delay
consistency checking outside the 10 fast path. This can be
done as a stand-alone operation or as part of converting
to other formats. Second, the lack of coordination among
the processes for each piece of the output eliminates any
intermediate synchronization points during the IO operation.
The BP format only requires one coordination operation at the
start to decide on file offsets to write in parallel and once at
the end to collect index information to process O to append on
the end of the file. This general lack of coordination during the
writing process affords each process writing in larger blocks
with a slow storage node only affecting the output once at the
end by delaying the ultimate completion of the output of the
index. The total IO time becomes the longest time overall for
any individual process rather than the sum of the longest time
for each output element.

3) Convertible: Given our own investment in the use of
tools requiring HDF-5 and/or NetCDF, BP provides all of the
features we have encountered ‘in the wild’ by users of HDF-
5 and NetCDF. There are esoteric features of these standards
we have chosen to not address in the first release of ADIOS
because we have not encountered a science code that required
the feature. As the codes adopting ADIOS increase, the BP
format will evolve to meet these additional needs.

4) Characterized: With simulation sizes growing as the
machines grow, data is growing commensurately. File sizes
today already are in the 10s of GB or larger with multi-TB file
sizes becoming more common as use of petascale machines
increases. ADIOS characterizes the data as it is written to
aid later selection of file(s) for processing. For example, when
trying to figure out which set of data output during a materials
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Fig. 1. BP File Layout

simulation run is the one containing the interesting feature
being investigated, selecting the file where the number of
material pieces grows by more than 10% from the previous
time step would be sufficient. We collect these characteristics
and store them both with the process output and in the index
to preserve resilience and to aid in rapid selection and access.
While this information is not directly convertible to HDF-5 or
NetCDF except as attributes, we feel automatically collecting
this information increases the value of the output and the ease
of selecting the proper potentially multi-TB file to process with
analysis tools.

5) Indexed: The BP format is a collection of independent
process outputs rather than a single organization of data
that originated from 1 or more processes. This is not to
say that there is not a universal view of the file contents
available. Through the index, an HDF-5 or NetCDF-style
header output can be constructed without having to parse each
of the process outputs. This affords the advantage of highly
parallel, independent IO while maintaining a global view of
the file contents. The placement of the index was driven by
performance and resilience requirements. If the index were
at the beginning of the file, if it expands too much, moving
data would be required. This performance impact along with
the potential for file corruption when moving data dictated
that the index be placed at the end of the file. This has the
added benefit of making it easier to make the process group
outputs into file system stripe sized ‘chunks’ for optimal write
performance since it is not necessary to waste potentially 4 MB
of space at the front of the file to store the index information
just to keep stripe-sized ‘chunks’ per process. Since the BP
index is small, on the order of 100 bytes per process output
and 100 bytes per unique variable or attribute written and
generally at most another 50 bytes per instance in the file,
filling a stripe width with the header information is difficult.
The index itself stores for each process group the process ID,
the ADIOS group name written, the offset from the beginning
of the file, and the time-index value for this output, if any. The
variable and attributes are each indexed separately, but contain
essentially the same information. Each index stores a unique
set of variables or attributes across all process groups written
with a list of characteristics for each. These characteristics
include the offset from the beginning for the file for each place
it is written in the file, the array dimensions and minimum
and maximum values if it is an array, and the scalar value if
it is a simple value. This provides direct information of where
each portion of any array is written for any timestep as well
as characterizing the data for direct evaluation of whether or
not the data is likely what the user is interested in analyzing.
These indices can easily be separated from the BP file as a
separate file for use on a tape storage system or portable file

to identify the full contents of the data file it represents. For
rapid retrieval, the last few bytes of the file store a version
identifier and the offset at which the index is stored.

E. Initial focus on write performance

For the classes of science codes we evaluated in the
development of ADIOS, write performance was far more
important that read performance. Keeping that in mind, we
created ADIOS with the ability to read successfully and with
general good performance, but we have not spent any effort in
highly tuning the read performance like we have with the write
performance. For example, the delayed consistency model
relies heavily on the index to achieve good read performance
when performing an MxN read. Our main focus in this area has
been in the converters to HDF-5 and NetCDF. The next release
of ADIOS will focus on providing excellent read performance
while addressing a broader array of science codes.

IV. EVALUATION

To demonstrate the utility of ADIOS, two different, full
scientific codes are used. For the Chimera supernova code,
performance differences and scaling factors are shown for
various run sizes. For the GTC fusion code, the relative
performance of using different IO methods within ADIOS is
evaluated. Full science simulations rather than the common 10
benchmarks are used to give the best possible representation
of how this approach works in a real, production environment.

Evaluations are performed on two different machines. For
all of the Chimera-related tests and for the GTC weak scaling
tests, the Jaguar Cray XT4 system at Oak Ridge National
Laboratory is used. It consists of 7832 compute nodes plus
additional login and IO nodes. Each compute node contains a
quad core AMD 2.1 GHz Opteron with 8 GB of memory. The
login and IO nodes consist of dual core 2.6 GHz Opterons
with 8 GB of memory. The system is running Compute Node
Linux. Various numbers of compute nodes are used to write
to the 600 TB Lustre scratch system. The conversion tests are
simply run on a single Jaguar login node against the same
Lustre scratch system. The GTC strong scaling performance
tests are run on ORNL’s Ewok end-to-end cluster. It is an
Infiniband-based Linux cluster consisting of 81 dual core 3.4
GHz Pentium IVs with 6 GB of memory. It is configured with
a 20 TB Lustre scratch space used in these tests.

A. Chimera Evaluation

The Chimera evaluation has three parts. The first examines
the relative performance of the Chimera code with parallel
HDF-5 compared to various ADIOS-based I0 methods. The
second evaluates parallel HDF-5 performance using indepen-
dent MPI-IO and compares it against ADIOS using indepen-
dent MPI-IO. The third uses a sample BP file generated by
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Chimera to assess the cost of converting it to an HDF-5 file
that is identical to the one previously generated by Chimera.

1) Overall Chimera Evaluation: Chimera output is not
particularly large. In a weak scaling model, each process
outputs approximately 920KB, with the number of processors
varying from 512 to 8192. The simulation is configured to
run for 400 iterations with an output being performed every 50
iterations. The simulation is run 5 times at each size, collecting
the timing for each output, for a total of 40 measurements
per size per IO method. Graphs depict the best performance
measured for each size for each method with an error bar to
show the range of values seen for that size. Best times are
shown in order to minimize the impacts other users of the
machine have on measurements.

Important to note about Graph 2 are the facts that the
vertical axis is exponential and that the performance of parallel
HDF-5 stops scaling linearly at 2048 processors. Graph 3 notes
the bandwidths to the storage system achieved with different
IO methods. Clearly, these results demonstrate performance
issues with HDF-5. We next investigate their principal causes.

2) Principal Causes of Overhead in Parallel HDF-5: Using
a test case of 512 cores running the Chimera supernova code, 5
sets of restart dumps are used to analyze performance causes,
with results appearing in Table I. Detailed profiling reveals the
reasons for inadequate Parallel HDF-5 performance:

1) Expensive MPI_Bcast calls are called frequently. In the
test case, MPI_Bcast is called 314,800 times with a total
wall clock time cost of 12,259 seconds total across all

TABLE I
PARALLEL HDF-5

Parallel HDF-5
Function # of calls | Total Time (sec)
write 144065 33109.67
MPI_Bcast 314800 12259.30
MPI_File_open | 2560 325.17
H5P, H5D, etc. | — 8.71
other - 60

TABLE 1T

ADIOS INDEPENDENT MPI-10

ADIOS Independent MPI-IO
Function # of calls | Total Time (sec)
write 2560 2218.28
MPI_File_open | 2560 95.80
MPI_Recv 2555 24.68
other - 65

512 processes (mean of 23.9 seconds for each process
overall, max of 54 seconds, min of 4.6 seconds).

2) Too many small, individual writes are performed. In-
dividual write operations are performed 144,065 times
with a total wall clock time of 33,109 seconds across all
512 processes (mean of 64.7 seconds for each process
overall, max of 96 seconds per write, min of 46 seconds
per write).

3) MPI_File_open calls take longer than necessary because
it has not been optimized how the MPI_File_open calls
are performed, so that the 2560 calls take a total of 325
seconds across all 512 processes (mean of 0.63 seconds).

3) Performance Analysis of ADIOS with BP format using
Independent 10: For a test case of 512 cores running the
Chimera supernova code, this evaluation uses 5 sets of restart
dumps, with results appearing in Table II. In comparison to
the parallel HDF-5 results shown above, this ADIOS run has
a straightforward outcome:

1) Buffered writes take the longest time, since ADIOS, by
default if memory is available, buffers all writes to the
output file locally and then writes the buffered output
in a single write operation to disk. MPI_File_write is
called 2560 times with a total wall clock time of 2,218
seconds across all 512 processes (mean of 4.3 seconds,
max of 11 seconds per write, min of 0.01 seconds (likely
cache effects)).

2) By coordinating the MPI_File_open calls, the total time
to open the file is reduced. Specifically, rather than have
all processes call MPI_File_open at the same time, a
coordination token is used (in a round robin fashion) to
reduce the load on the metadata server. This reduces
the time for the 2560 MPI_File_open calls to 95.80
seconds (mean 0.19 seconds). Including the time for the
token passing, the total time for the MPI_File_open and
MPI_Recv calls is still only 120.48 seconds across all
512 processes (mean of 0.23 seconds).

4) File Conversion Performance: Since the default imple-
mentation of the ADIOS MPI-IO, POSIX, and collective MPI-
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IO methods use the BP format, the time spent converting this
format into the HDF-5 desired by the Chimera scientists is
extremely relevant. Tests are performed on a single Jaguar
login node reading from the BP file and writing to an HDF-5
file, both stored on the Lustre scratch space.

Five examples are profiled for file conversion performance,
described in Figure 4. The left scale is the total conversion
time for the file. The right scale is the size of the source file
in GB. The bottom scale is the number of processes in the job
generating the output. For the 2048 process case, Chimera
generates a file of approximately 1.8 GB. This conversion
takes about 20 seconds. For a larger example from a run of
8192 cores, the file generated is about 7 GB and is converted
to HDF-5 in 117 seconds. Note that the native Parallel HDF-
5 calls in Chimera take 1400 seconds to write each output
while the MPI-IO independent method takes only 10 seconds.
Thus, even when combined with the 127 second conversion
time, this is a greater than 90% savings in IO time. Also note
that even on a single processor, conversion scales linearly with
size.

Regarding conversion, it is possible to completely ‘hide’ its
costs by automatically performing it either ‘in transit’ or once
data is stored on disks. The evaluation of such approaches is
beyond the scope of this paper.

B. GTC Evaluation

The GTC code has two large output operations that both
occur when restarts are written. The first is the normal state
output to enable a restart. The second is a set of particles
used for analysis. These particles are tracked as they rotate
around the simulation toroid and yield some of the scientific
data important as the output of the run. We configure GTC to
run for 100 iterations with a restart/particles output every 10
iterations. Tests are run 5 times and again, the ‘best’ results
are shown from the 50 outputs. The evaluation is performed
for each of POSIX 10, independent MPI-1O, and collective
MPI-10.

For weak scaling tests, we use the Jaguar machine and run
with OpenMP to communicate among the cores within a single
node (4 cores per node). Strong scaling tests are run on the
Ewok machine, without OpenMP.

GTC evaluations are divided into three parts. The first
evaluates weak scaling with various ADIOS IO routines. The
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second evaluate the performance of GTC with strong scaling
using various ADIOS methods for comparison. We provide
these to demonstrate the applicability of ADIOS to a range of
HPC applications beyond Chimera.

C. GTC Weak Scaling

The GTC configuration outputs particles of the size 11.5
MB per MPI process. Since OpenMP is used, this is the
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aggregate for the four cores on that particular node. For the
restart output, the output of each MPI process is 116.5 MB.

For the particle output, shown in Graphs 5, 6, and 7, the
POSIX output of one file per process is still considerably
faster than the other approaches, the ‘cost’ of that approach
being the large number of resulting files on disk. The more
interesting result is in the bandwidth measurements. Collective
MPI-IO stays about the same margin better than independent
MPI-IO until about 1024 MPI processes. At 2048 processes,
the margin is reduced considerably. At 4096 processes, the
bandwidth is reduced below that of independent MPI-IO.
This further emphasizes the observations in the Chimera runs
that the coordination required for collective-style IO does not
adequately scale.

For the restart output, in Graphs 8 and 9, the performance
of output methods using collective MPI-1O is initially worse
than that of the independent MPI-IO output, and it continues
to degrade with increasing simulation sizes. While the particle
data is relatively small at 11.5 MB per process, the restart
data, at an order of magnitude larger, clearly demonstrates
differences in IO performance. For such output, it would never
be appropriate to use the collective MPI-IO method, instead
favoring the independent IO method or POSIX methods, if it
is possible to cope with the large number of files they create.

As shown above, both the particle and restart data differ in
size and show different performance characteristics depending
on the size of the run. This demonstrates the need for dif-
ferentiating 10 methods both by run and by output grouping.
ADIOS enables such differentiation.

D. GTC Strong Scaling

Strong scaling results are attained on the Ewok end-to-end
cluster at ORNL. Interesting insights are attained despite the
cluster’s relatively small size.

Test runs with small data sizes are not meaningful due
to caching effects, so discussion is focused on larger data
runs on the largest number of processors. The results of
these evaluations are shown for particles in Graph 10 and
for restarts in Graph 11. The most important characteristic
of these results is how relative performance differs between
Jaguar and Ewok for the independent and collective MPI-IO
calls. Although both of these machines are housed at the same
location and maintained and configured by the same staff,
their different architectures yield the opposite performance
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results of what we saw for the particles and restarts. When
running on Ewok, or by extension probably other Infiniband-
based Linux clusters, using collective MPI-IO for restarts and
independent MPI-10O for particles is the better configuration.
This further emphasizes the need to have configurable 10
as part of scientific simulations in order to achieve best 10
performance. ADIOS offers this capability, per IO grouping,
by simply changing a single entry in the XML file when the
job is submitted.

E. Evaluation Discussion

The performance advantages of the ADIOS approach are
shown by measuring the performance of the native parallel
HDF-5 output from the Chimera supernova code compared
against various methods integrated with ADIOS. The over-
heads involved in parallel HDF-5 vs. independent MPI-IO are
identified and compared with ADIOS performing independent
MPI-IO. We show that the coordination and small writes
required by HDF-5 for file consistency degrade performance
by as much as three orders of magnitude compared to other
methods. With a total time of 1400 for the real-time consis-
tency output directly to HDF-5 vs. a net total time of less than
120 seconds to output data in HDF-5 via the BP intermediate
file format using a delayed consistency method and conversion,
it is hard to justify the wall clock expense during a production
simulation run to perform real-time consistency validation.

The GTC fusion code is evaluated with both weak and
strong scaling for two different outputs performed at the same
time. We show that as the size of the simulation run increases
and based on data size, it is appropriate to use different
IO methods. By also running tests on the small end-to-end



Ewok cluster, performance differences and resulting changes
in recommended IO methods are demonstrated.

Both of these results demonstrate the need for using delayed
file consistency, with rapid conversion to a consistent HDF-5
and/or NetCDF file, and with configurable IO as provided by
ADIOS. As platforms change or for different sizes of simula-
tion run, the selection of the IO method for each grouping of
data within the simulation is critical for minimizing the time
spent in IO.

V. CONCLUSIONS AND FUTURE WORK

For petascale machines, the performance penalties of using
full internal file consistency during a production run can be
too onerous. Through ADIOS, a developer can debug a code
using an underlying API with active consistency checks, like
parallel HDF-5 or parallel NetCDF, but during a production
run, one can switch to whichever 10 method gives the best
performance, thus yielding the ‘most science’ with the least IO
overhead. In some cases, this will be Parallel HDF-5 or Parallel
NetCDF. In other cases, through the use of an intermediate
format like BP, it is possible to deliver excellent performance
while still maintaining sufficient metadata for easy conversion
to the file format compatible with the science workflow
already employed. Further, ADIOS’ additional feature of data
characteristics can aid in data selection on the large output
sets.

We have demonstrated that in some, if not many cases, the
use of alternative IO methods can yield dramatically better IO
performance during production runs while still maintaining
format compatibility via relatively cheap methods for file
conversion. We conclude therefore, that to attain high 1O
performance on petascale machines, it is imperative to be able
to configure the I0 method employed for each 10 grouping
within a code differently, at runtime and without any source
code changes. ADIOS provides such functionality.

The next release of ADIOS is focused on providing high lev-
els of performance for read operations. We acknowledge that
MxN-style read operations would require additional efforts on
our part, including potentially custom IO methods to organize
data as it moves to disk. For example, for climate modeling,
data is widely distributed and potentially distributed differently
on each run. Efficiently storing and retrieving such data may
require methods that use a data staging area to organize the
data, both as it is written to disk and read for distribution to
the compute nodes. We have yet to develop these methods.
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