PDSI Mini-Workshop

Date: Friday morning, 11/30/07, 9:00-12:30

Title: Advanced, Structured Data Storage for Computational Science Simulations

Lead: Rob Ross

PDSI Attendees: Garth Gibson, Milo Polte

SDM essential attendees: Rob Latham, Sam Lang, Arifa Nisar, Wei-Keng Liao

Goal: Map out organization of structured datasets into FS objects, taking into account common storage habits and access patterns of applications. Discuss how these objects might be made visible by the file system (e.g. as a directory hierarchy). Outline a high-level I/O API that would leverage this approach.

The workshop began with presentations from Rob Ross and Garth Gibson highlighting some of the challenges in structured data storage in HPC systems (see relevant documents).

Rob provided an introduction for participants that aren’t as familiar with the technologies being discussed. He covered how parallel file systems distribute data, object-based parallel file systems, and how parallel file systems perform distributed operations in order to make changes to the global name space. Next he discussed how the netCDF and HDF libraries store data in files and the interfaces provided for applications. He outlined one example issue in mapping between high-level I/O libraries and underlying file systems, block alignment, using data from NWU. Finally he posed some questions to the group, to be discussed during the workshop.

Garth provided a quick overview of the PDSI and then began to discuss an example application, earthquake simulation. He focused this early discussion on the issue of prefetching, noting that when we pack many different types of data into a single file, it becomes very difficult for the file system to detect patterns that allow it to better service requests. This often results in the file system “throwing up its hands” and simply servicing operations as they appear. He noted that in fact users often create many small items to work around the complexity of imposing canonical views on data and the overheads associated with concurrent access to single files in this mode.

Next he switched gears and discussed ongoing work in large directories at CMU in conjunction with the ANL PVFS team. This work is creating an indexing mechanism to allow large distributed directories to be stored and accessed efficiently. This mechanism is thought to be extendable to range queries and could be used to store tuples directly as well. We then discussed using a log representation for checkpoints rather than placing data in appropriate places in the file. This approach has already been prototyped at the MPI-IO layer by D. Kimpe and the ANL team (see EuroPVM/MPI 2007 proceedings). This has the benefit of avoiding overhead of reorganizing data that may not ever in fact be read again.

Next Garth jumped into a discussion of the use of libraries vs. changes in the file system. Libraries have the advantage of being bound to the application and being easier to develop. They are traditionally in charge of data content, making them the more obvious place to perform the types of operations we’re discussing. They don’t require the same level of adoption, because they can be deployed by a small group of users on top of existing file systems.

File systems traditionally operate independently of the application and are slower to develop. Deploying new file system APIs takes time and is a process of concessions that doesn’t always lead to the best solutions for any particular group or domain.

In either case, canonicalization is an important issue to take into account. We discussed a number of alternatives here, including creating a single large file, using a directory hierarchy within the file system, and “bundles” which are sort of a hybrid between these approaches.

With respect to file systems, there is an additional assumption from users that existing POSIX tools will continue to work, such as tar, rar, backup, etc. One option is to allow for a special tar-like application to be run at backup time to perform serialization, with a corresponding tool to deserialize on return to the file system.

As a prototype, we discussed pushing netCDF objects into the PVFS file system using a “bundle” approach as described above. Different “forks” could hold different variables with appropriate stripes to enable efficient active storage operations on these variables and indexing with minimal knowledge of the overall file structure. Implementing this as an enhancement to the PnetCDF library would be a reasonable way to rapidly prototype the approach, if necessary enhancements were made to the PVFS client library to access file system objects directly.

