
Storage Mini-Workshop



Argonne National
Laboratory

Parallel File Systems

 File system information (data and metadata) spread across multiple servers
 Data for large files is striped across multiple resources

– Simultaneous use of multiple servers, disks, and network links
 Two data models/APIs are exposed:

– Directories, with entries
– Files, with a linear array of bytes (and perhaps extended attributes)

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O
servers (IOS),  while small bioinformatics files are each stored on a single IOS.

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOSIOS IOS IOS

H01

/pfs

/astro

H03 /bioH06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq



3
Argonne National

Laboratory

Object Based Parallel File Systems

 Underneath, many parallel file systems are
using an object-based storage organization
– I/O servers provide access to named

“objects”
• Hold byte streams
• May have associated attributes

– I/O servers responsible for allocation of
local storage space

 Separate metadata servers may be used to
store file system name space and map file
data onto objects

 These structures are hidden from
applications and libraries outside the file
sysetm

Block I/O Manager Block I/O Manager

Medium Medium

Block Interface

OSD Interface

File System User
Component

File System Storage
Management

File System User
Component

OSD Storage
Management

System Call API

Applications Applications

System Call API

Traditional FS Model Object-Based FS Model



4
Argonne National

Laboratory

Client

...

Directory Metafile Datafiles

Client

...

Directory Metafile Datafiles

Client

...

Directory Metafile Datafiles

Adding Files to a Coherent Name Space

 Parallel file systems build up constructs in multiple steps, kept coherent
through locks or atomic operations
– e.g. clients orchestrate new file creation in a series of steps

 Again, the building-block operations are hidden from applications and other
code outside the file system

(1) Create metafile
and datafiles

(2) Update metafile
to refer to datafiles

(3) Create directory
entry for file



5
Argonne National

Laboratory

netCDF/PnetCDF Files

 High-level I/O libraries try to present data structures
that are more useful to scientists

 PnetCDF files consist of three regions
– Header
– Non-record variables (all dimensions specified)
– Record variables (ones with an unlimited

dimension)
 Record variables are interleaved, so using more than

one in a file is likely to result in poor performance due
to noncontiguous accesses

 All this is built on top of the linear array of bytes
presented by the file system, because that’s the only
interface available



6
Argonne National

Laboratory

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Files

 HDF5 has a similar structure, only it looks even more like a file system
inside a file because of the hierarchical nature

 Again, this structure is mapped onto a linear array of bytes



7
Argonne National

Laboratory

Defining Dimensions (in PnetCDF)

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC_CLOBBER, hints, &file_id);

/* define dimensions */

status = ncmpi_def_dim(ncid, "dim_tot_blks",
tot_blks, &dim_tot_blks);

status = ncmpi_def_dim(ncid, "dim_nxb",
nzones_block[0], &dim_nxb);

status = ncmpi_def_dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def_dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference



8
Argonne National

Laboratory

Creating Variables (in PnetCDF)

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks;

dimids[1] = dim_nzb;

dimids[2] = dim_nyb;

dimids[3] = dim_nxb;

for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables



9
Argonne National

Laboratory

Writing Variables (in PnetCDF)

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */

size_t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = 0;

count_4d[0] = local_blocks;

count_4d[1] = nzb;  count_4d[2] = nyb;  count_4d[3] = nxb;

for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a
single variable ... */

/* collectively write out all values of a single variable
*/

ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d,
unknowns, 1, mpi_type);

}

status = ncmpi_close(file_id); Typical MPI buffer-
count-type tuple



10
Argonne National

Laboratory

Stripe Alignment and I/O Performance

 Mapping onto linear array of bytes can lead to performance problems
 One reason is unaligned access

– More than one process sending data to a single server
simultaneously
• Alignment is with respect to file striping by the file system
• Also impacts behavior of locking subsystem (false sharing)

– Can be managed by MPI-IO in some cases (data from W.-K. Liao)



11
Argonne National

Laboratory

BTIO and Stripe Alignment

 BTIO class C I/O Benchmark
– 3D array access:

162 x 162 x 162 40-byte records
– 40 writes/reads
– Collective I/O (3D subarrays)
– Total I/O amount = 12974.63 MB

 Results here from Tungsten
machine at NCSA running Lustre

– 8 I/O servers, 1MB stripe size
– Up to 11GB/s peak I/O to independent files!

 “Aligned” results use MPI-IO research prototype with file system alignment
awareness (from NWU)

– Augmentation to two-phase optimization

Data from Wei-Keng Liao (NWU)



Argonne National
Laboratory

Idea: Expose File System Constructs

 What if we allowed high-level libraries access to the underlying FS
structures?

 Variables could be split across FS objects as appropriate
 Alignment could be explicitly managed
 Metadata could be stored in separate objects, keeping it out of data path
 Hierarchical structures could be easily constructed and managed

 Also helps with active storage, because data can be placed to maintain
necessary locality



Argonne National
Laboratory

(Some of the) Challenges

 How do we present resulting data structures back to users?
– Big “file”?
– Directory hierarchy?
– How do existing UNIX tools work on them? Or do they?

 How do we serialize the resulting data structures?
– What is the right order?
– How do we preserve the structure we created, so we can recreate if

placed on this FS again?
 What is the right API?

– Can we somehow retain the ability to use POSIX and/or MPI-IO
interfaces?


