Parallel Access of Dense Extendible Arrays

Ekow Otoo and Doron Rotem

Lawrence Berkeley National Laboratory

-~
A
freeeee ‘||||

BERKELEY. LAB

Otoo & Doron Access of Dense Ext. Array

Introduction

Outline

@ Introduction

9 Problem Statement

e Mapping Function

@ Disk Resident Extendible Arrays

e Parallel Access of Disk Resident Extendible Array

@ Future Work Plans

Otoo & Doron Access of Dense Ext. Array

Problem Statement

Problem Statement

Problem:
An allocation of a multidimensional array in a parallel file
system such that:

@ any dimension is allowed to expand.

@ parallel applications read/write/manipulate entire array or
sub-arrays

@ array can be extended without reorganizing previously
allocated elements,

@ define a mapping function and its inverse for element
access.

Data types: integers, floats, double and complex types.

Otoo & Doron Access of Dense Ext. Array

Problem Statement

lllustration of an Extendible Array

@ A 2-D array initially defined as A[3][3] and then extended by by 2
columns, then by 1 row, followed by 1 column and so on.

0 1 2 3 4 5 6
O o 1| 2|9 |12120]24

Il 3| 4] 5(10|13 |[21 |25

2 6| 7| 81114 |[22] 26

3115|1617 | 18|19 || 23|27

@ The labels in the cells are location addresses of the elements.
@ An element A(2,5) maps to location 22

@ The address calculation is done by a function denoted as:
Fi(i0yi1y- - yip—1) — 1
and an inverse .7, ' (I) — (ig,i1,...,ix_1)

Otoo & Doron Access of Dense Ext. Array

Mapping Function

Linear Mapping for an Extendible Array

Axial-Vectors —» ‘—1,—1,[0,0],Sd

39.0131s | |

5.20.[141s |

1 3 4 5 6

2
1| 29 |12 (20|24

(=]

0,0,3,11:s ¢

0
0

I 3] 4] 5{ 10|13 |[21] 25
6

2 71 8| 11|14 |22 26

3,15,[5,11,8 ¢ 31 15] 16|17 | 18|19 || 23| 27

L First Storage Location Pointer

Multiplying Coefficients
Starting Address of Segment
First Index of Segment

Otoo & Doron Access of Dense Ext. Array

Mapping Function

Linear Mapping for an Extendible Array

Axial-Vectors —= [~1,-L[0,0L5] [3.9.[13]s | |[5.20.[141s |

0 1 2 3 4 5 6
m Of o 1] 2 12 (20| 24
Ll 3| 4| 5| 10]13 | 2125
20 6| 7| 8| 11]14|22]26
31505118 ¢ 3115] 16|17 | 18|19 || 23|27

L First Storage Location Pointer

Multiplying Coefficients
Starting Address of Segment
First Index of Segment

@ The element A(2,5) is located in either segment of row 2 with
start address 0 or segment of column 5 with start address 20.

@ ltis always allocated in segment with maximum starting address.
@ The address of A(2,5) is computed by the algorithm %, ().

Otoo & Doron Access of Dense Ext. Array

Mapping Function

Comparison of File Element Access Cost

Conventional Arra{y Function s
Extendible Array Function ===

3.64

Element Access Time (micro sec)

2-Dim 3-Dim 4-Dim

Otoo & Doron Access of Dense Ext. Array

Disk Resident Extendible Arrays

Disk Resident Extendible Arrays

@ The elements are first grouped into chunks of some
predefined Chunk-Shape, A[l][11]...A[lx—1]

Otoo & Doron Access of Dense Ext. Array

Disk Resident Extendible Arrays

Disk Resident Extendible Arrays

@ The elements are first grouped into chunks of some
predefined Chunk-Shape, A[l][11]...A[lx—1]

@ The chunks form the units of transfer between memory and
a parallel file system.

@ The mapping functions discussed are now applied to
address the chunks and the array elements within a chunk
can now be accessed using conventional array element
address calculation.

Otoo & Doron Access of Dense Ext. Array

Disk Resident Extendible Arrays

Disk Resident Extendible Arrays

@ The elements are first grouped into chunks of some
predefined Chunk-Shape, A[l][11]...A[lx—1]

@ The chunks form the units of transfer between memory and
a parallel file system.

@ The mapping functions discussed are now applied to
address the chunks and the array elements within a chunk
can now be accessed using conventional array element
address calculation.

@ The Axial-Vectors are retained in a Meta-Data file but read
into memory at each session.

@ Additional information in the Meta-Data include the bounds
of the array, the chunk-shapes, etc.

Otoo & Doron Access of Dense Ext. Array

Parallel Access of Disk Resident Extendible Array

The Allocation Scheme

Global
Subarray
Processor|
Buffer/Cdche

102 0] 14 2] 041
Principal Array 3.3/ 4 5 314 S
Partitined into 2 { 4 01, 2] 0]1
4 zones for the 50 3|4 5 34 5
4 processors

3 { 6l 0)1g 2/ 0[] 142

70 347 5| 3|4 s

4{8012012
9
P

F

[0 1 18 19
Lol 1T 2[3] 4[5][o[1] 2[3[4 5]-====-- Lol 22 o)

Layout of Array Chunks in a File

Otoo & Doron Access of Dense Ext. Array

Parallel Access of Disk Resident Extendible Array

Accessing Extendible Arrays (The pDRXA Library)

@ Array is distributed by Block, Block partitioning scheme and
along chunk boundaries. Block-Cyclic partitioning not yet

@ A process controls a region of sub-array called a zone and an
application can sub-arrays with either independent or collective
I/O.

Otoo & Doron Access of Dense Ext. Array

Parallel Access of Disk Resident Extendible Array

Accessing Extendible Arrays (The pDRXA Library)

@ Array is distributed by Block, Block partitioning scheme and
along chunk boundaries. Block-Cyclic partitioning not yet

@ A process controls a region of sub-array called a zone and an
application can sub-arrays with either independent or collective
I/O.

@ Each process then makes its zone accessible by creating a
memory window for RMA access.

@ Since each process has all the distribution information, it can
access an element locally, if it controls the zone of the element;
otherwise it accesses the element remotely via functions like
MPI_Get(), MPI_Put() and MPI_Accumulate(), etc.

Otoo & Doron Access of Dense Ext. Array

Parallel Access of Disk Resident Extendible Array

Accessing Extendible Arrays (The pDRXA Library)

@ Array is distributed by Block, Block partitioning scheme and
along chunk boundaries. Block-Cyclic partitioning not yet

@ A process controls a region of sub-array called a zone and an
application can sub-arrays with either independent or collective
I/O.

@ Each process then makes its zone accessible by creating a
memory window for RMA access.

@ Since each process has all the distribution information, it can
access an element locally, if it controls the zone of the element;
otherwise it accesses the element remotely via functions like
MPI_Get(), MPI_Put() and MPI_Accumulate(), etc.

@ The processing model is consistent with the Global-Array toolkit
model for parallel processing of arrays.

@ The idea then is to define the access functions to be consistent
with the Disk Resident Array library of GA and leverage the
scientific processing capability of GA.

Otoo & Doron Access of Dense Ext. Array

Future Work Plans

Future Work Plans

@ There are a number of popular and established standard
array oriented file formats that the methods can be used to
support.

e HDF4/HDF5 and their derivatives - HDF5-EOS, HDF5-Lite.

e HDF5 allows extendibility in any dimension using data
chunking and manages the chunks using a B-Tree index.

e The B-Tree index can be replaced with DRXA access
schemes

Otoo & Doron Access of Dense Ext. Array

Future Work Plans

Future Work Plans

@ There are a number of popular and established standard
array oriented file formats that the methods can be used to
support.

e HDF4/HDF5 and their derivatives - HDF5-EOS, HDF5-Lite.

e HDF5 allows extendibility in any dimension using data
chunking and manages the chunks using a B-Tree index.

e The B-Tree index can be replaced with DRXA access
schemes

@ DRA is the persistent storage for GA and we mimic its
access methods in pDRXA.

@ An API of pDRXA consistent with those of DRA should
make it accessible to any application that uses GA.

Otoo & Doron Access of Dense Ext. Array

Future Work Plans

Future Work Plans

@ There are a number of popular and established standard
array oriented file formats that the methods can be used to
support.

e HDF4/HDF5 and their derivatives - HDF5-EOS, HDF5-Lite.

e HDF5 allows extendibility in any dimension using data
chunking and manages the chunks using a B-Tree index.

e The B-Tree index can be replaced with DRXA access
schemes

@ DRA is the persistent storage for GA and we mimic its
access methods in pDRXA.

@ An API of pDRXA consistent with those of DRA should
make it accessible to any application that uses GA.

@ NetCDF {NCAR} and parallel NetCDF {SDM Center} can
utilize pDRXA access functions without reliance on HDF5

Otoo & Doron Access of Dense Ext. Array

	Introduction
	Problem Statement
	Mapping Function
	Disk Resident Extendible Arrays
	Parallel Access of Disk Resident Extendible Array
	Future Work Plans

