
Performance Evaluation of
Application I/O Kernels Using

MPI Collective I/O and Caching

Wei-keng Liao and Alok Choudhary
Northwestern University

In Collaboration with
 Rob Ross, Rob Latham, and Rajeev Thakur
 Argonne National Laboratories

 Jacqueline Chen
 Sandia National Laboratories

Ramanan Sankaran and Scott Klasky
Oak Ridge National Laboratory

SDM All-hand Meeting, Nov. 2007

Wei-keng Liao, Northwestern University

S3D I/O Kernel

• S3D is a turbulent combustion application
developed at SNL

P41

P41

local−to−global

4D subarray

in P41

Z

Y

X

mapping

P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 15P

39

43

47
63

59

55

23

27

31

16
32

48 49
33

17 18
34

50 51
35

19

P41

n = 1

n = m−1

n = 0

n = m−1

n = 1

m: length of the 4th dimension

n: index of the 4th dimension

n = 0

P0 P1 P2

• Production runs
usually require >
10,000 cores

• Checkpoint writes

Wei-keng Liao, Northwestern University

Results on Cray XT @ ORNL

• Original design

! One file per process per
checkpoint

• Using MPI-IO

! One file per checkpoint

• Experiments

! 10 checkpoints

! Fixed subarray size:
50x50x50

! Lustre file system

0

5

10

15

20

32
10

00
20

00
40

00
80

00

11
20

0

unique file shared file

Number of MPI processes

W
ri

te
 b

an
d
w

id
th

 i
n
 G

B
/s

Wei-keng Liao, Northwestern University

Client Process Collaboration

• MPI collective I/O proves collaboration
scalable

! 2-phase I/O: data is redistributed among processes to
generate large contiguous I/O requests

• Other optimizations

! I/O alignment with file system lock boundaries

! File caching

Wei-keng Liao, Northwestern University

BTIO benchmark

• 3D block tri-diagonal array partitioning pattern

combined view

slice 0 slice 1 slice 2

Z

Y

X

local−to−global
mapping

ghost cells

each process
4D subarray in

P

P

1

4

7

P

P

P P

P P

P P

7

1

4 5

2

8

0

3

P6

6P

3

0

P

P

P6

P

P P P

P

2 0

7

1

P

5P

8

3P 4P

P6

6

8

5

P

P

P

2P

P6

Wei-keng Liao, Northwestern University

I/O Aligned with Lock Boundaries

• MPI collective I/O

! Divide aggregate access
range among processes

! Each process is
responsible for the I/O
in its file domain

• Comparison

! Even division

! Division aligned with
lock boundaries

0

50

100

150

200

16 25 36 49 64
0

50

100

150

200

16 25 36 49 64

0

200

400

600

800

16 25 36 49 64
0

200

400

600

800

16 25 36 49 64

array size 1023 array size 1623

Lustre Lustre

GPFS GPFS

aligned not aligned

Number of compute nodes

W
ri

te
 b

an
d
w

id
th

 i
n
 M

B
/s

Wei-keng Liao, Northwestern University

MPI-IO Client-side File Caching

• A fully functional caching layer in MPI library

! Clients handle cache coherence control

! Handle read/write, collective/independent I/O

• Mechanisms

! An I/O thread in each MPI process

! Cache metadata management

! Local/global caching policies

Wei-keng Liao, Northwestern University

 BTIO and S3D I/O

0

100

200

300

400

500

600

16 36 64 100

0

50

100

150

200

16 36 64 100

Number of compute nodes

W
ri

te
 b

an
d
w

id
th

 i
n
 M

B
/s

Lustre

GPFS

caching native

0

40

80

120

160

200

8 16 32 64 128

caching native

0

100

200

300

400

500

600

700

8 16 32 64 128

GPFS

Lustre

W
ri

te
 b

an
d
w

id
th

 i
n
 M

B
/s

Number of compute nodes

Wei-keng Liao, Northwestern University

FLASH I/O

• I/O kernel of the FLASH
astrophysics application
developed at U. of Chicago

• I/O method: HDF5

• Each process writes 80 subarrays

! 16x16x16 doubles

• Writes are not interleaved
among processes

0

50

100

150

200

16 32 64 128

caching native

0

100

200

300

400

500

16 32 64 128

W
ri

te
 b

an
d
w

id
th

 i
n
 M

B
/s

Number of compute nodes

GPFS

Lustre

Wei-keng Liao, Northwestern University

Summary

• MPI-IO for S3D application

! One file per checkpoint

! Data arrays are stored in canonical order

! Performance is comparable to one-file-per-process
approach

• A file caching layer for MPI-IO

! Aggregate I/O for better performance

! File accesses aligned with lock boundaries

