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S3D I/O Kernel

• S3D is a turbulent combustion application 
developed at SNL

P41

P41

local−to−global

4D subarray

in P41

Z

Y

X

mapping

P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 15P

39

43

47
63

59

55

23

27

31

16
32

48 49
33

17 18
34

50 51
35

19

P41

n = 1

n = m−1

n = 0

n = m−1

n = 1

m: length of the 4th dimension

n:   index of the 4th dimension

n = 0

P0 P1 P2

• Production runs 
usually require > 
10,000 cores

• Checkpoint writes
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Results on Cray XT @ ORNL

• Original design

! One file per process per 
checkpoint

• Using MPI-IO

! One file per checkpoint

• Experiments

! 10 checkpoints

! Fixed subarray size: 
50x50x50

! Lustre file system
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Client Process Collaboration

• MPI collective I/O proves collaboration 
scalable

! 2-phase I/O: data is redistributed among processes to 
generate large contiguous I/O requests

• Other optimizations

! I/O alignment with file system lock boundaries

! File caching
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BTIO benchmark

• 3D block tri-diagonal array partitioning pattern

combined view

slice 0 slice 1 slice 2
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I/O Aligned with Lock Boundaries

• MPI collective I/O

! Divide aggregate access 
range among processes

! Each process is 
responsible for the I/O 
in its file domain

• Comparison

! Even division

! Division aligned with 
lock boundaries
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MPI-IO Client-side File Caching

• A fully functional caching layer in MPI library

! Clients handle cache coherence control

! Handle read/write, collective/independent I/O

• Mechanisms

! An I/O thread in each MPI process

! Cache metadata management

! Local/global caching policies
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  BTIO     and      S3D I/O
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FLASH I/O

• I/O kernel of the FLASH 
astrophysics application 
developed at U. of Chicago

• I/O method: HDF5

• Each process writes 80 subarrays

! 16x16x16 doubles

• Writes are not interleaved 
among processes
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Summary

• MPI-IO for S3D application

! One file per checkpoint

! Data arrays are stored in canonical order

! Performance is comparable to one-file-per-process 
approach

• A file caching layer for MPI-IO

! Aggregate I/O for better performance

! File accesses aligned with lock boundaries


