« PETASCALE DATA STORAGE INSTITUTE
* 3 universities, 5 labs, G. Gibson, CMU, PI

« SciDAC @ Petascale storage issues

« www.pdsi-scidac.org

Carnegie Mellon
« Community building: ie. PDSW-SCO07 (Sun 11th) S
o . L information
APIs & standards: ie., Parallel NFS, POSIX 0 tec;’;mf:)g;
« Failure data collection, analysis: ie., CFDR l integration
UNIVERSITY OF MICHIGAN
« Performance trace collection & benchmark publication /‘\

« |T automation applied to HEC systems & problems

.
> Los Alamos

* Novel mechanisms for core (esp. metadata, wide area) NATIONAL LABORATORY

EST.1943

O AK Pacific Northwest
RIDGE: Nfona (asoratory

U.S. Department of Energy

-«

cereer " Nofione
labﬂratories National Laboratory

Carnegie Mellon 2
Pz;ralIeFData Laboratory pdSI

www.pdl.cmu.edu & www.pdsi-scidac.org 1 Garth Gibson © November 07

Earthquake simulation

« c/o Dave O’Hallaron, www.cs.cmu.edu/~quake

l x20K timesteps

Solvin Analysis/ | |
> visualization

Mesh

generation
DFS '{-----------mmmmeopmmmmmmmmmmmmmmm e h e !
Velocity Unstructured 4D vel/dis
—p i ,
model mesh wavefield !
~~ 1smMB ~ 10-i100sGB @ 1-10s TB
” pdsi

www.pdl.cmu.edu & www.pdsi-scidac.org 2 Garth Gibson © November 07

Motivation: Earthquake analysis

« Serialization of model, mesh and wavefield into one database file
« Total is generally much too large to be entirely loaded into memory
« Multiple regions of the file contain data of different types
» Different types of data see different access patterns
— B-tree on mesh gets random tiny accesses
— Mesh descriptors get random medium fetches
— Wauvefields get larger accesses, but concurrency makes it look random

« Basic problem: file system sees no internal structure information
» Prefetching, allocation, caching strategies assume all data is of same type
» Mixed access patterns strongly confuse file system policies
» Fall back on safe, probably slower policies: no prefetching, serial locking

« What if file system knew more about “compound, out-of-core” files?

« Hints? Tradition is too few codes issue them, too few systems use them,
too hard to debug performance implications of hints

* What alternatives?
— Partial schema definitions: regions that have different types of access
— Access Methods: embedded some structures in FS (B-trees, arrays ...)
Carnegie Mell ~Aci
Palrlallll(er:;ata{La(l;:)]rato ry p ds /

www.pdl.cmu.edu & www.pdsi-scidac.org 3 Garth Gibson © November 07

a

Motivation: file count scales w/ FLOPS? .

« Understanding File Systems at Rest (www.pdsi-scidac.org/fsstats/)
» Just getting started with data collection, but already see lots of tiny files
» Manipulation of small files, and attributes of small files is a growing problem
« Small things cost mechanical positioning -- orders of magnitude slower
» Large files may in fact be collections of small things (HDF, netCDF, etc)
If sequentially loaded into memory and written from memory, cool
But if accessed “out-of-core”, really much the same problem
Gets worse as numbers of thinas aets laraer. if not seauential access

file size:
count=12338926 average=18958.589506
min=0 max=757630040

national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental
Research and located at Pacific Northwest National Laboratory."

"# Release Number:

"# The data contained herein was collected from Systems in the Environmental Molecular Sciences Laboratory”,
"# Contact:

[0- 2 KB): 3303866 (26.78%) (26.78% cumulative) 1996763.67 KB (0.00%) (0.00% cumulative)
[2- 4 KB): 883060 (7.16%) (33.93% cumulative) 2534585.51 KB (0.00%) (0.00% cumulative)
[4- 8 KB): 917461 (7.44%) (41.37% cumulative) 5182409.88 KB (0.00%) (0.00% cumulative)
[8- 16 KB): 744358 (6.03%) (47.40% cumulative) 8591734.47 KB (0.00%) (0.01% cumulative)
[16- 32 KB): 731235 (5.93%) (53.33% cumulative) 16534655.55 KB (0.01%) (0.01% cumulative)
[32- 64 KB): 669568 (5.43%) (58.75% cumulative) 30855148.03 KB (0.01%) (0.03% cumulative)
[64- 128 KB): 757320 (6.14%) (64.89% cumulative) 70214295.14 KB (0.03%) (0.06% cumulative)
[128- 256 KB): 631071 (5.11%) (70.01% cumulative) 114050978.13 KB (0.05%) (0.11% cumulative)
[256- 512 KB): 558914 (4.53%) (74.54% cumulative) 189985048.43 KB (0.08%) (0.19% cumulative)
[512- 1024 KB): 597161 (4.84%) (79.37% cumulative) 443400973.63 KB (0.19%) (0.38% cumulative)
[1024- 2048 KB): 479472 (3.89%) (83.26% cumulative) 676898557.71 KB (0.29%) (0.67% cumulative)
[2048- 4096 KB): 363371 (2.94%) (86.21% cumulative) 1019631931.23 KB (0.44%) (1.10% cumulative)
[4096~ 8192 KB): 255781 (2.07%) (88.28% cumulative) 1534778534.48 KB (0.66%) (1.76% cumulative)
[8192~ 16384 KB): 256358 (2.08%) (90.36% cumulative) 2894041905.64 KB (1.24%) (3.00% cumulative)
[16384~ 32768 KB): 230819 (1.87%) (92.23% cumulative) 5245575759.34 KB (2.24%) (5.24% cumulative)
[32768~ 65536 KB): 223892 (1.81%) (94.04% cumulative) 10337335940.35 KB (4.42%) (9.66% cumulative)
[65536~ 131072 KB): 584808 (4.74%) (98.78% cumulative) 52004123186.77 KB (22.23%) (31.89% cumulative)
[131072~ 262144 KB): 42167 (0.34%) (99.12% cumulative) 7784126469.45 KB (3.33%) (35.22% cumulative)
[262144~ 524288 KB): 31868 (0.26%) (99.38% cumulative) 11411821832.03 KB (4.88%) (40.09% cumulative)
[524288- 1048576 KB): 39972 (0.32%) (99.70% cumulative) 27336893196.49 KB (11.69%) (51.78% cumulative)
[1048576~ 2097152 KB): 17726 (0.14%) (99.85% cumulative) 25773260950.03 KB (11.02%) (62.80% cumulative)
[2097152- 4194304 KB): 13237 (0.11%) (99.96% cumulative) 37985398325.45 KB (16.24%) (79.04% cumulative)
[4194304~ 8388608 KB): 4336 (0.04%) (99.99% cumulative) 23511276177.30 KB (10.05%) (89.09% cumulative)
[8388608- 16777216 KB): 783 (0.01%) (100.00% cumulative) 8739054420.16 KB (3.74%) (92.82% cumulative)
[16777216~ 33554432 KB): 168 (0.00%) (100.00% cumulative) 3598648498.69 KB (1.54%) (94.36% cumulative)
[33554432~ 67108864 KB): 111 (0.00%) (100.00% cumulative) 5587776404.47 KB (2.39%) (96.75% cumulative)
[67108864~ 134217728 KB): 25 (0.00%) (100.00% cumulative) 2318337024.21 KB (0.99%) (97.74% cumulative)
arn "l!f ‘I‘fll()l] [134217728- 268435456 KB): 9 (0.00%) (100.00% cumulative) 1559281156.26 KB (0.67%) (98.41% cumulative) k -
“ [268435456~ 536870912 KB): 8 (0.00%) (100.00% cumulative) 2969396082.00 KB (1.27%) (99.68% cumulative) ds,
para"erData Laboral [536870912-1073741824 KB): 1 (0.00%) (100.00% cumulative) 757630040.00 KB (0.32%) (100.00% cumulative) p

www.pdl.cmu.edu & www.pdsi-scidac.org 4 Garth Gibson © November 07

PNNL-17013"
Evan Felix <evan.felix@pnl.gov>"

Motivation: HugeDirs -> AttributeDB

« CMU adding directories of 1B to 1T small files to PVFS
Partitioning entries into buckets distributed over all storage servers
Building index structure for insert(), delete(), lookup()
— no range query, but unordered complete scan must be fast (readdir)
Making highly parallel, minimal bottlenecks, minimal coherency
Believe this is extensible to range queries (concurrent B-trees)
— More challenging to fully load balance if key access patterns arbitrary
— Probable next steps to do this however
« Simple extension to not create actual files, just manipulate records
» Special directory is “key, opaque data” tuples
» Use for extended attributes of small files to optimize to access patterns
— le., type: mp3, code, pdf, checkpoint, Find all by type
— le., timestamp of last modification, find N oldest
— le,. Size, find N largest
» Apply powerful aggregation structures as well as indices: ie., fastbits

e Could this be used for variable stores?

Carnegie Mellon ; P
Pa(rallerData Laboratory pdSl

www.pdl.cmu.edu & www.pdsi-scidac.org 5 Garth Gibson © November 07

Motivation: Changelog Representation

« Fastest checkpoint might be a sequential series of “variable=value”
» Instead of seeking to serialized location, just append operation to log
« Each thread writes strictly sequential log of operations
« “Meaning” of set of logs is applying log to (possibly null) initial database

« Decouple writing logs from applying logs to serialized database
» Optimize each separately; pipeline from compute to IO nodes
» Defer serializing by just storing changelogs for later application
» Some checkpoints never read, so never serialized
» If read before serialized, trigger serialization (or something smarter)
* Represent logs as attributes of database; that is, hide in FS (directory?)

» Important tricks: “block logs” so each can be applied in parallel later; type
logs so “no overwrite” can be known and any order allowed

« Not always best representation
» If data sequential anyway, operation encoding probably larger
» If read intermingled with write, might force inefficient serialization

Carnegie Mellon Tl
Pa(rallerData Laboratory pdS’

www.pdl.cmu.edu & www.pdsi-scidac.org 6 Garth Gibson © November 07

Issues: Library vs File System

« Library is user code bound into application
» File has structure if the right library is bound into app touching it
» Rapid development of new “ease of programming” APIs
« Optimization for actual file system is best guess of library writers
— Especially a problem if ease of programming was big goal
« File system is system code independent of application
» File structure known to file system, facilitating optimization
» Slower development and proliferation as file system is a broad service
» FS is always-there service; easy delayed processing, rebalancing, recovery
* FSis inherently distributed, aware of actual servers, changes in servers
* Deployment of new file system APIs?
« Changes in parallel file systems in progress: pNFS, HEC Posix extensions

« Mitigation for deployment issues: canoncial representations
» Any file system offering a specialized API also offers:

— Canonicalization (tar, untar) routines and library implementation written
to canonical representation, which does not have to be (as) fast

— [special case of the backup problem & NDMP solution]
Carnegie Mell B
Palrlallllter:;ata‘Laggratory pdSl

www.pdl.cmu.edu & www.pdsi-scidac.org 7 Garth Gibson © November 07

Next steps?

« Select and work through a few examples

Carnegie Mellon 2
P:;ralleFData Laboratory pdSl

www.pdl.cmu.edu & www.pdsi-scidac.org 8 Garth Gibson © November 07

