
 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 1

• PETASCALE DATA STORAGE INSTITUTE
• 3 universities, 5 labs, G. Gibson, CMU, PI

• SciDAC @ Petascale storage issues
• www.pdsi-scidac.org
• Community building: ie. PDSW-SC07 (Sun 11th)
• APIs & standards: ie., Parallel NFS, POSIX
• Failure data collection, analysis: ie., CFDR
• Performance trace collection & benchmark publication
• IT automation applied to HEC systems & problems
• Novel mechanisms for core (esp. metadata, wide area)

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 2

Earthquake simulation

Solving

Velocity
model

Mesh
generation

Analysis/
 visualization

Unstructured
mesh

4D vel/dis
wavefield

10s MB 10-100s GB 1-10s TB

Parallel supercomputer w/1-10Ks PEs

x20K timesteps

DFS

• c/o Dave O’Hallaron, www.cs.cmu.edu/~quake

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 3

Motivation: Earthquake analysis
• Serialization of model, mesh and wavefield into one database file

• Total is generally much too large to be entirely loaded into memory
• Multiple regions of the file contain data of different types
• Different types of data see different access patterns

– B-tree on mesh gets random tiny accesses
– Mesh descriptors get random medium fetches
– Wavefields get larger accesses, but concurrency makes it look random

• Basic problem: file system sees no internal structure information
• Prefetching, allocation, caching strategies assume all data is of same type
• Mixed access patterns strongly confuse file system policies
• Fall back on safe, probably slower policies: no prefetching, serial locking

• What if file system knew more about “compound, out-of-core” files?
• Hints? Tradition is too few codes issue them, too few systems use them,

too hard to debug performance implications of hints
• What alternatives?

– Partial schema definitions: regions that have different types of access
– Access Methods: embedded some structures in FS (B-trees, arrays …)

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 4

Motivation: file count scales w/ FLOPS?
• Understanding File Systems at Rest (www.pdsi-scidac.org/fsstats/)

• Just getting started with data collection, but already see lots of tiny files
• Manipulation of small files, and attributes of small files is a growing problem
• Small things cost mechanical positioning -- orders of magnitude slower
• Large files may in fact be collections of small things (HDF, netCDF, etc)

– If sequentially loaded into memory and written from memory, cool
– But if accessed “out-of-core”, really much the same problem
– Gets worse as numbers of things gets larger, if not sequential access

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 5

Motivation: HugeDirs -> AttributeDB
• CMU adding directories of 1B to 1T small files to PVFS

• Partitioning entries into buckets distributed over all storage servers
• Building index structure for insert(), delete(), lookup()

– no range query, but unordered complete scan must be fast (readdir)
• Making highly parallel, minimal bottlenecks, minimal coherency
• Believe this is extensible to range queries (concurrent B-trees)

– More challenging to fully load balance if key access patterns arbitrary
– Probable next steps to do this however

• Simple extension to not create actual files, just manipulate records
• Special directory is “key, opaque data” tuples
• Use for extended attributes of small files to optimize to access patterns

– Ie., type: mp3, code, pdf, checkpoint, …. Find all by type
– Ie., timestamp of last modification, find N oldest
– Ie,. Size, find N largest

• Apply powerful aggregation structures as well as indices: ie., fastbits
• Could this be used for variable stores?

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 6

Motivation: ChangeLog Representation
• Fastest checkpoint might be a sequential series of “variable=value”

• Instead of seeking to serialized location, just append operation to log
• Each thread writes strictly sequential log of operations
• “Meaning” of set of logs is applying log to (possibly null) initial database

• Decouple writing logs from applying logs to serialized database
• Optimize each separately; pipeline from compute to IO nodes
• Defer serializing by just storing changelogs for later application
• Some checkpoints never read, so never serialized
• If read before serialized, trigger serialization (or something smarter)
• Represent logs as attributes of database; that is, hide in FS (directory?)
• Important tricks: “block logs” so each can be applied in parallel later; type

logs so “no overwrite” can be known and any order allowed
• Not always best representation

• If data sequential anyway, operation encoding probably larger
• If read intermingled with write, might force inefficient serialization

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 7

Issues: Library vs File System
• Library is user code bound into application

• File has structure if the right library is bound into app touching it
• Rapid development of new “ease of programming” APIs
• Optimization for actual file system is best guess of library writers

– Especially a problem if ease of programming was big goal
• File system is system code independent of application

• File structure known to file system, facilitating optimization
• Slower development and proliferation as file system is a broad service
• FS is always-there service; easy delayed processing, rebalancing, recovery
• FS is inherently distributed, aware of actual servers, changes in servers

• Deployment of new file system APIs?
• Changes in parallel file systems in progress: pNFS, HEC Posix extensions

• Mitigation for deployment issues: canoncial representations
• Any file system offering a specialized API also offers:

– Canonicalization (tar, untar) routines and library implementation written
to canonical representation, which does not have to be (as) fast

– [special case of the backup problem & NDMP solution]

 Garth Gibson © November 07www.pdl.cmu.edu & www.pdsi-scidac.org 8

Next steps?
• Select and work through a few examples

