

Managing Exploratory Workflows

Juliana Freire Cláudio T. Silva http://vistrails.sci.utah.edu University of Utah

Joint work with: Erik Andersen, Steven P. Callahan, David Koop, Emanuele Santos, Carlos E. Scheidegger, Nathan Smith, and Huy T. Vo

Workflows and Scientific Discovery

- Workflows are emerging as a paradigm for representing and managing complex computations
- They capture computation and analysis processes, enabling
 - Automation
 - Reproducibility
 - Result sharing
- Potential to accelerate and transform the scientific analysis process
- Workflows are rapidly replacing primitive *shell* scripts
 - *Kepler, Taverna*, Apple's Mac OS X Automator, Microsoft Windows Workflow Foundation, and SGI Scientific Workflow Solution,
- But... existing systems fail to provide the necessary infrastructure for exploratory tasks

Exploration and Workflows

- Workflows have been traditionally used to automate repetitive tasks
- In exploratory tasks, change is the norm!
 - Data analysis and exploration is an iterative process
 - E.g., Data mining, visualization, visual analytics, simulation, etc.

Data Exploration and Workflows: Today

Data Exploration and Workflows: Issues

- Data provenance is maintained manually through filenaming conventions and detailed notes
 - A time-consuming process
- Hard to understand the exploratory process and relationships among workflows
- Hard to further explore the data, e.g., locate relevant data products/workflows and modify them
- Hard to collaborate
 - Work is likely to be lost if creator leaves

The generation and maintenance of workflows is a major bottleneck in the scientific process

Need Support for Reflective Reasoning

- Reflective reasoning is key in the scientific process
- Reflective reasoning requires the ability to store temporary results, to make inferences from stored knowledge, and to follow chains of reasoning backward and forward, sometimes backtracking when a promising line of thought proves to be unfruitful. ...the process is slow and laborious"

Donald A. Norman

Need external aids—tools to facilitate this process
 Need aid from people—collaboration

Need data and process management!

VisTrails: Managing Exploration

- Streamlines the creation, execution and sharing of a large number complex workflows
- VisTrails manages the data, metadata and the exploration process, scientists can focus on science!
- Not a replacement for visualization or scientific workflow systems: provides infrastructure that can be combined with and enhance these systems

Focus on usability---build tools for scientists

- Change-based provenance
- Scalable generation of data products
- Interacting with and querying provenance
- Extensibility
- More details available in http://vistrails.sci.utah.edu

Change-Based Provenance

- Records user interactions with workflows
- Workflow evolution is captured in a vistrail—a rooted tree where
 - *nodes* correspond to workflow versions
 - *edges* correspond to actions that transform the parent into the child workflow

decimate = $x_3 \circ x_2 \circ x_1 \circ \emptyset$

Change-Based Provenance

- Records user interactions with workflows
- Workflow evolution is captured in a vistrail—a rooted tree where
 - *nodes* correspond to workflow versions
 - *edges* correspond to actions that transform the parent into the child workflow
- Action algebra:
 - addModule, deleteModule, addConnection, deleteConnection, setParameter, ...
 - Can be easily extended, e.g., addDirector for Ptolemy-based systems

Three Layers of Metadata

Querying and Understanding Provenance

- Sample query from *Provenance Challenge*:
 - Find all invocations of procedure align_warp using a twelfth order nonlinear 1365 parameter model (see model menu describing possible values of parameter "-m 12" of align_warp) that ran on a Monday.

New provenance query language

For details see http://twiki.gridprovenance.org/bin/view/Challenge/VisTrails

- But who is going to write those queries?
- WYSIWYQ -- What You See Is What You Query
 - Interface to create workflow is same as to query!

Extensibility: Adding New Modules

class PythonCalc(Module):

```
def compute(self):
    v1 = self.getInputFromPort("value1")
    v2 = self.getInputFromPort("value2")
    self.setResult("value", self.op(v1, v2))
def op(self, v1, v2):
    op = self.getInputFromPort("op")
    if op == '+':
        return v1 + v2
    elif op == '-':
        return v1 - v2
    elif op == '*':
        return v1 - v2
    elif op == '/':
        return v1 / v2
    raise ModuleError("unrecognized operation: '%s'" % op)
```

Define module

Register with VisTrails

In your .vistrails: addPackage('pythonCalc')

```
def initialize(*args, **keywords):
    reg = modules.module_registry
    reg.addModule(PythonCalc)
    reg.addInputPort(PythonCalc, "value1", (modules.basic_modules.Float, 'the first argument'))
    reg.addInputPort(PythonCalc, "value2", (modules.basic_modules.Float, 'the second argument'))
    reg.addInputPort(PythonCalc, "op", (modules.basic_modules.String, 'the operation'))
    reg.addOutputPort(PythonCalc, "value", (modules.basic_modules.Float, 'the result'))
```

Conclusions and Future Work

- Provenance beyond reproducibility: support and streamline scientific process
 - Reduce time to insight!
- Initial focus on visualization, but ideas are applicable to exploratory tasks in general
 - Easy to extend (all python, support web services too!)
- Many important applications in different domains some ongoing collaborations:
 - OHSU (environmental observation and forecasting systems); Emulab (Networking experiments); Harvard Medical School (radiation oncology); UCSD (biomedical informatics)
- Automate the generation of data products, e.g., by analogy

Automating Workflow Creation: Visualization by Analogy

By analogy, specialist can do it!

Automating Workflow Creation: Visualization by Analogy

By analogy, specialist can do it!

Simple in VisTrails:

$$\mathbf{v}_4 = (\mathbf{v}_2 - \mathbf{v}_1) \circ \mathbf{v}_3$$

Conclusions and Future Work

- Provenance beyond reproducibility: support and streamline scientific process
 - Reduce time to insight!
- Initial focus on visualization, but ideas are applicable to exploratory tasks in general
- Many important applications in different domains—some ongoing collaborations:
 - OHSU (environmental observation and forecasting systems); Emulab (Networking experiments); Harvard Medical School (radiation oncology); UCSD (biomedical informatics)
- Automate the generation of data products, e.g., by analogy
- Support additional workflow execution engines
 - Collaborating with Kepler; execute workflows on the grid
- Scalable database backend
- Mine history—potentially useful information about good and bad problem-solving strategies
- Vision: scientists (end-users) steering their own explorations

 This work is partially supported by the National Science Foundation, the Department of Energy, an IBM Faculty Award, and a University of Utah Seed Grant.

More info about VisTrails

google vistrails

Or

http://vistrails.sci.utah.edu

