
Data Management Issues in Large-Scale
First-Principles Molecular Dynamics

François Gygi
University of California, Davis

fgygi@ucdavis.edu

http://www.eslab.ucdavis.edu

SDM Workshop, Berkeley, Dec 11, 2006

mailto:fgygi@ucdavis.edu

Outline

• First-Principles Molecular Dynamics: a brief introduction
• Description of the data
• Current solutions
• Future needs

First-Principles Simulations

• The goal: Simulate the properties of matter from first
principles, i.e. without input from experiments

• The approach: Molecular dynamics: an atomic-scale
simulation method
– Compute the trajectories of all atoms
– extract statistical information from the trajectories

Atoms move according to
Newton’s law:

i i im =R F��

First-Principles Simulations

• Why “First-Principles”?
– Avoid empirical models and adjustable parameters

• Goal: applications to situations where experimental data is
not available or difficult to obtain (e.g. extreme conditions,
high pressure, nanostructures, etc.)

– Use fundamental principles: Quantum Mechanics
– Must describe ions and electrons consistently and

simultaneously

At each time step:

1) Compute the electronic
structure

2) Derive interatomic forces

3) Move atoms

First-Principles Simulations

• The approach is applicable to very diverse problems
– Chemistry
– Nanotechnology
– Semiconductors
– Biochemistry
– High-pressure physics

Growth of a carbon nanotube

on an iron catalyst
Biotin on silicon carbide

Ice-water interface

Silicon quantum dot

First-Principles Simulations

• The computation of the electronic structure is the most
expensive part of the simulation, both in CPU time and
memory

At each time step:

1) Compute the electronic
structure

2) Derive interatomic forces

3) Move atoms

>99% of CPU time

Computing the electronic structure

• Density Functional Theory: the Kohn-Sham equations
– solutions represent molecular orbitals (one per electron)
– molecular orbitals are complex scalar functions in R3

– coupled, non-linear PDEs

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=

=

∇+′
′−
′

+=

==+Δ−

∫

∑

∫

∗

=

ijj

N

i
i

iiii

d

VdVV

NiV

i
δϕϕ

ϕρ

ρρρρ

ϕεϕρϕ

rrr

rr

rrr
rr

rrr

r

)()(

)()(

))(),(()()(),(

1),(

el

1

2

XCion

el…

Parallel implementation of FPMD: Qbox

• Qbox is a C++/MPI implementation of First-Principles
Molecular Dynamics (FPMD)

• Qbox is designed for large-scale parallel platforms and
BlueGene/L

• Main design constraint: small memory footprint
(< 512MB per task, or <256MB for virtual node mode)

The largest current platform: BlueGene/L

• 65,536 nodes, 128k CPUs
• 3D torus network
• 512 MB/node
• 367 TFlop peak

• Currently running on
BG/Ls at
– LLNL
– ANL (INCITE)
– SDSC

– IBM T.J.Watson

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

Qbox performance results on BG/L

8 k-points: 207.3 TFlop/s (56% of peak)

4 k-points: 187.7 TFlop/s (51% of peak)
• Simulation of a 1000-atom

Molybdenum sample
• Uses 131,072 CPUs

1 k-point: 108.8 TFlop/s (30% of peak)

2006 Gordon Bell Award
for Peak Performance

Electronic structure data

• A solution of the Kohn-Sham equations is
represented by a matrix of complex Fourier
coefficients cqn

2
cut

,() i
n n

E

c eϕ ⋅

<

= ∑ q r
q

q

r

• The matrix of complex coefficients cqn is block distributed
(ScaLAPACK data layout)

• Total size
– currently: 5-50 GB
– future: up to 1-2 TB

• One matrix represents the electronic structure at one
instant

Representation of the electronic structure

2
cut

,() i
n n

E

c eϕ ⋅

<

= ∑ q r
q

q

r

n

q

• Atomic positions are represented by 3Natoms real double-
precision numbers

• Total size: 50 kB at each time step for 1000 atoms
• Because of their small size, atomic trajectories are

usually saved at each time step

Representation of atomic positions

Documents associated with FPMD

• Documents describing the simulation parameters (“input
script”)
– Qbox commands

• Documents describing atomic species (“species files”)
– atomic number, number of valence electrons, pseudopotentials,..

• Documents describing the simulation results (“output”)
– Energies, trajectories, etc.

• Documents describing the state of the system (“restart
file”)
– atomic positions and velocities
– electronic wavefunctions

Where does the data reside?

• Documents describing the simulation parameters (“input
script”)
– home dir (few kB)

• Documents describing atomic species (“species files”)
– shared file system or web server (few MB)

• Documents describing the simulation results (“output”)
– home dir or archival system (several MB to several GB)

• Documents describing the state of the system (“restart
file”)
– parallel file system, archival system (several GB to TB)

Choice of Data Format

• We must be able to:
– Exchange simulation samples with other research groups
– Have machine-searchable datasets
– Support validation and verification of codes
– Develop pre-/post-processing pipelines
– Keep track of changes in codes and in file formats

Use XML, Schemas and namespaces

Defining FPMD data standards: XML schemas

• http://www.quantum-simulation.org : web site and
namespace

• sample: describes the state of the system
• species: description of an atomic species
• Other concepts under development

http://www.quantum-simulation.org/

Qbox data flow

my_species.xml

my_simulation.xml

Qbox

my_sample.xml

Qbox cmd script

my_new_sample.xml

Coupling Qbox with other codes

• The results of FPMD simulations can be used as input
for other, more accurate, simulations

• Example: Quantum Monte Carlo simulations (QMC)
• Two types of coupling

– Path Integral Monte Carlo (PIMC): exchange atomic positions
(small data volume)

– Diffusion Monte Carlo: exchange electronic wavefunctions

Qbox / PIMC coupling

my_species.xml
my_simulation.xml

Qbox

my_sample.xml
Qbox commands

PIMC++

Unix named pipe

Unix named pipe

XML Parsing in Qbox

• For each significant data object, Qbox implements
ObjectReader & ObjectHandler classes

• Hierarchy of object handlers
– an object handler can invoke another handler to parse an

embedded element
– reuse the code to read an object

• Try to keep some similarity between the C++ object
model and XML document structure (but not exactly)

Qbox code structure

Qbox

ScaLAPACK/PBLAS

BLACS

MPI

BLAS/MASSV

Apache
XercesC

FFTW lib

Context class
lib

DGEMM lib

The Apache Xerces-C parser: useful features

• validation
• namespace checking
• throws C++ exceptions
• supports progressive parsing
• ported to many platforms

Encoding binary data

• Sample documents contain atomic positions and
electronic wavefunctions

• Wavefunction information could be saved in binary form
in a separate file, but

• multiple files lead to confusion and errors: e.g. copying
the parent file without copying the binary file

• Use base64 little-endian encoding
– inflates data by 30%
– portable

• Keep a single-file model: One sample, one file.

Parsing large files

• XML samples can be large (1-50 GB)
• Sequential parsing of large XML files is slow
• Our current solution in Qbox: Parallel parsing

– parallel parsing can be done on leaves of the document tree
– parallel read + preprocessing of leaves
– reduced XML document parsed in-memory by Xerces-C

Post-processing

• FPMD users want to build post-processing pipelines
• Needs vary widely—no “universal” workflow
• We use the GNOME xsltproc XSLT processor
• xsltproc is namespace-aware

– no need to track versioning throughout all post-processing
pipelines

• xsltproc is web-aware
– can post-process a web-based sample

Post-processing pipelines

my_species.xml

my_simulation.xml

Qboxmy_sample.xml

Qbox cmd script my_new_sample.xml

XSLT processor

XSLT script

visualization pgms

gnuplot

Visualization

• map3Dv: home-grown tool built on
VTK

• need for parallel, off-line rendering

plotSample

(C++ application)

map3Dv

(C++/VTK application)

sample.xml

Data analysis

xsltproc

gnuplot

sample.xml

XSLT script

Example XSLT script

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fpmd="http://www.quantum-simulation.org/ns/fpmd/fpmd-1.0">
<!-- use: xsltproc param atomname "'O1'" test.xsl md.r -->
<xsl:param name="atomname"/>
<xsl:output method="xml" indent="yes"/>
<xsl:strip-space elements="*"/>
<xsl:template match="/fpmd:sample">
<xsl:apply-templates/>

</xsl:template>
<xsl:template match=“atomset">
<xsl:copy-of select="atom[@name=$atomname]"/>

</xsl:template>
<xsl:template match="*"/>
</xsl:stylesheet>

Extract the position and velocity of a
given atom from a simulation

Using web-based documents

• The URI defining a sample can be a file name (e.g.
mysample.xml) but also a URL (e.g.
http://www.mysite.org/results/sample.xml)

• Qbox uses the Xerces-C parser
– can use web-based pseudopotentials
– can read web-based samples

<!-- [qbox] load http://www.quantum-simulation.org/examples/samples/ch4.xml -->
<!-- LoadCmd: loading from http://www.quantum-simulation.org/examples/samples/ch4.xml -->
<!--
Starting XML parsing
SpeciesHandler: found href in species definition
name=carbon href=http://www.quantum-simulation.org/examples/species/carbon_pbe.xml
SpeciesHandler: found href in species definition
name=hydrogen href=http://www.quantum-simulation.org/examples/species/hydrogen_pbe.xml
WavefunctionHandler::startElement: wavefunction nspin=1 nel=8 nempty=0
XML parsing done

...

Data Compression

• Simulation data (trajectories and electronic structure)
has no obvious structure or pattern

• Conventional compression algorithms are inefficient
• We develop “physics-based” compression algorithms

– e.g. store some data at low resolution

• Trade off between space and time to recompute
– e.g. BG/L

• New electronic structure methods use O(NlogN) data
instead of N2.

Long-term goal: interoperable XML
applications

Application A
Application B

Application C

A-B XSLT
translator

B-C XSLT
translator

Summary

• Scaling First-Principles Molecular Dynamics to petaflop
platforms will require
– efficient parallel file systems
– fast, parallel XML parsers
– tools to move data to other sites

• Post-processing pipelines
– fast XSLT processors

• Reduction of data volume
– new “physics-based” compression algorithms
– new “linear-scaling” electronic structure methods

	Data Management Issues in Large-Scale First-Principles Molecular Dynamics
	Outline
	First-Principles Simulations
	First-Principles Simulations
	First-Principles Simulations
	First-Principles Simulations
	Computing the electronic structure
	Parallel implementation of FPMD: Qbox
	The largest current platform: BlueGene/L
	Qbox performance results on BG/L
	Electronic structure data
	Documents associated with FPMD
	Where does the data reside?
	Choice of Data Format
	Defining FPMD data standards: XML schemas
	Qbox data flow
	Coupling Qbox with other codes
	Qbox / PIMC coupling
	XML Parsing in Qbox
	Qbox code structure
	The Apache Xerces-C parser: useful features
	Encoding binary data
	Parsing large files
	Post-processing
	Post-processing pipelines
	Visualization
	Data analysis
	Example XSLT script
	Using web-based documents
	Data Compression
	Long-term goal: interoperable XML applications
	Summary

