
Enabling In-situ Execution of Coupled Scientific

Workflow on Multi-core Platform

Fan Zhang, Ciprian Docan, Manish Parashar

Center for Autonomic Computing

Rutgers University, Piscataway NJ, USA

{zhangfan,docan,parashar}@cac.rutgers.edu

Scott Klasky, Norbert Podhorszki, Hasan Abbasi

Oak Ridge National Laboratory

P.O. Box 2008, Oak Ridge, TN, 37831, USA

{klasky,pnorbert,habbasi}@ornl.gov

Abstract—Emerging scientific application workflows are com-
posed of heterogeneous coupled component applications that
simulate different aspects of the physical phenomena being
modeled, and that interact and exchange significant volumes of
data at runtime. With the increasing performance gap between
on-chip data sharing and off-chip data transfers in current
systems based on multicore processors, moving large volumes
of data using communication network fabric can significantly
impact performance. As a result, minimizing the amount of
inter-application data exchanges that are across compute nodes
and use the network is critical to achieving overall application
performance and system efficiency. In this paper, we investigate
the in-situ execution of the coupled components of a scientific
application workflow so as to maximize on-chip exchange of
data. Specifically, we present a distributed data sharing and
task execution framework that (1) employs data-centric task
placement to map computations from the coupled applications
onto processor cores so that a large portion of the data exchanges
can be performed using the intra-node shared memory, (2) pro-
vides a shared space programming abstraction that supplements
existing parallel programming models (e.g., message passing) with
specialized one-sided asynchronous data access operators and can
be used to express coordination and data exchanges between the
coupled components. We also present the implementation of the
framework and its experimental evaluation on the Jaguar Cray
XT5 at Oak Ridge National Laboratory.

Keywords-coupled simulations, data-intensive application
workflows, data-centric task mapping, in-situ application exe-
cution

I. INTRODUCTION

High-performance computing (HPC) systems are increas-

ingly being based on processor architectures that rely on large

core counts and deeper memory hierarchies to achieve better

performance and efficiency. For example, the current Jaguar

system is composed of 12-core AMD Opteron processors,

the upcoming Titan system will be based on 16-core AMD

Opteron processors, and the forthcoming petascale supercom-

puters Mira and Sequoia will both employ the IBM Blue

Gene/Q 18-core processor to exploit more on-chip parallelism.

This architectural trend is increasing the performance gap

between on-chip data sharing and off-chip data transfers, and

moving large volumes of data using communication network

fabric can significantly impact performance. As a result, mini-

mizing the amount of data exchanges that are across compute

nodes and use the network is critical to achieving overall

application performance and system efficiency.

Meanwhile emerging scientific application workflows that

target at high-end computing platforms are composed of

heterogeneous coupled component applications that simulate

different aspects of the physical phenomena being modeled,

and that interact and exchange significant volumes of data

at runtime. For example, in the Community Earth System

Model (CESM) [1] application workflow, separate parallel

applications are coupled as part of a multiphysics model that

simulates the interaction of the earth’s ocean, atmosphere, land

surface and sea ice. Similarly, the coupled fusion simulation

workflows [2] developed by the Fusion Simulation Project

are composed of codes modeling kinetic pedestal buildup

(XGC0), magnetic equilibrium reconstruction (M3D OMP),

linear stability-boundary check (Elite), nonlinear ELM crash

(M3D MPP), and diverter heat-load evaluation (XGC0). Fur-

thermore, application workflows are increasingly being com-

posed of end-to-end I/O pipelines, such as those enabled

by the Adaptive IO System (ADIOS) [3], which extract

and stream data being produced by the simulations to data

staging nodes where parallel data analysis and/or transforma-

tion operations (e.g., redistribution, interpolation, reduction)

are executed asynchronously and concurrently. The costs of

moving the increasingly large volume of data associated with

these interactions and couplings has become a dominant part

of the overall application executions times and costs.

Clearly, in order to effectively utilize the potential of current

and emerging HPC systems it is essential that such coupled

data-intensive scientific workflows exploit data locality and

core-level parallelism to the extent possible. However, achiev-

ing this can often be non-trivial and involves several challeng-

ing issues: (1) Locality-aware mapping of tasks from separate

coupled applications onto processor cores. While existing

research (e.g., [4], [5]) has focused on mapping frequently

communicating computation tasks (i.e., MPI processes) within

a single parallel application onto processing elements (PEs)

that are physically “close”, mapping computation tasks from

multiple separate applications that part of a tightly coupled

simulation workflow presents new challenge. (2) Efficient sup-

port for coordination and data exchange between the coupled

applications. The coordination and data exchange patterns in

application workflows can vary depending upon the type of

data decomposition of the coupled application, the number of

tasks in each application, the nature of the coupling, etc. For

example, code coupling typically requires data redistribution,

i.e., the M×N problem where data from an application running

on M processes is coupled with another application running

on N processes [6]. Existing solutions to this M×N coupling

problem have involved approaches such as using separate data

coupling server or creating a single MPI meta-application.

Appropriate abstractions and underlying mechanisms that are

flexible, efficient and scalable, and exploit on-chip commu-

nications to the extent possible are required to support the

inter-application coordinations and data exchanges.

In this paper, we investigate the in-situ execution of the cou-

pled component applications of a scientific workflow, so as to

maximize intra-node exchange of data. Specifically, we present

a distributed data sharing and task execution framework that

(1) employs data-centric task placement to map computations

from the coupled applications onto processor cores so that a

large portion of the data exchanges can be performed using

the on-processor shared memory, (2) provides a shared space

programming abstraction that supplements existing parallel

programming model (e.g., message passing) with specialized

one-sided asynchronous data access operators, and can be

used to express coordination and data exchanges between the

coupled applications and end-to-end applications workflows.

The framework builds a scalable, semantically specialized

virtual shared space that is distributed across processor cores

on compute nodes of the HPC system, and provides simple

abstractions for coordination, interaction and data-exchange.

We have implemented the data sharing and task execution

framework on the Jaguar Cray XT5 system at Oak Ridge Na-

tional Laboratory. The framework currently supports execution

and data-centric task mapping for workflow that composed of

data parallel applications with regular multidimensional data

meshes and domain decompositions.

The rest of the paper is structured as follows. Section II

describes the problem addressed and presents two motivating

application workflow scenarios. Section III describes the ar-

chitecture of the presented framework. It also describes the

programming abstractions provided for supporting coupled

application workflows. Section IV describe the implementation

of the framework. Section V presents an experimental evalua-

tion of the framework using sample workflows on the Jaguar

Cray XT5 system at ORNL. Section VI presents related work.

Section VII concludes the paper and outlines future research

directions.

II. BACKGROUND

A. Motivating Application Scenarios

This research is motivated by two application scenarios

that are becoming increasingly important at the peta- and

exascales:

End-to-end application workflows: Traditionally, scien-

tific data analysis and visualization are performed offline as a

post-processing step. For example, simulations write data to a

file system, which is then read by analysis and visualization

codes. However, given the increasing scale of long-running

simulations and the costs associated with IO, end-to-end

application workflows that integrate simulations with online

data analysis and visualization are more attractive.

Coupled multi-phase, multi-physics simulations: Large-

scale simulations model complex phenomena that involves

multiple physics, phases, scales that are coupled together.

For example, the CESM coupled climate modeling system

has different parallel geophysical component models such as

atmosphere, land and sea-ice. These models are tightly coupled

and frequently exchange boundary data consisting of a large

number of data fields. Furthermore, the order of execution

of the models and coordination between them is defined by

the science. For example, in a typical CESM configuration,

during each simulation step, the land and sea-ice components

run concurrently, and run after the atmosphere model has

completed.

coupled data region

coupled data

Scenario 1: Online Data Processing Scenario 2: Coupled Climate Modeling

coupled data

coupled data

region

Fig. 1. Examples of coupled scientific workflow

Both motivating application scenarios described above can

be represented as scientific workflows composed of interacting

component applications, that are parallelized by decomposing

and distributing their data domains across a set of computation

tasks (i.e., processes in a MPI program). Furthermore, the

coupling between these applications can be defined in terms of

overlaps in their domains, i.e., applications regularly exchange

data that associated with the overlapped regions. This is

illustrated in Figure 1. The coupled data region (the shaded

area in the figure) is the entire data domain in the end-to-end

application workflow (i.e., online data processing) scenario,

and is the interface region between the component models

in case of the coupled multi-physics simulation (i.e., coupled

climate modeling) scenario.

B. In-situ Execution of Coupled Scientific Workflow

It is clear from Figure 1 and the discussion above that re-

ducing the overheads of data movement during the interactions

between the component applications can improve performance

and efficiency. However, existing frameworks typically run the

different applications of these tightly-coupled data-intensive

workflows on separate sets of compute nodes, which results

in a large amount of inter-application data movement over the

communication network fabric impacting both, performance

and costs.

... ...

... ...

shared memory

a multicore compute node

MEM

MEM

a CPU core

A1

A2

CPU core running simulation code

CPU core running data analysis code

Fig. 2. In-situ execution of online data processing workflow

MEM

... ...

shared memory

a multicore compute node

a CPU core

A1 CPU core running atomosphere model

MEM

... ...

MEM MEM

A2 CPU core running land model

A3 CPU core running sea-ice model

Time

Fig. 3. In-situ execution of coupled climate modeling workflow

The expensive network-based data movement can be re-

duced through in-situ execution of the coupled application

so as to maximize on-node data locality. The key idea of

in-situ execution is a data-centric mapping of computation

task associated with the coupled component applications onto

processor cores so that a large portion of the data exchanges

can be performed using the on-node shared memory. This is

illustrated in Figures 2 and 3 for the two application scenarios.

In Figure 2, the simulation and analysis components of the

end-to-end application workflow run concurrently on the same

compute nodes, but on different cores. As a result, intra-node

data transfers between the applications can be performed using

shared memory. Similarly, as shown in Figure 3, the atmo-

sphere, land and sea-ice components of the coupled climate

modeling workflow run on the same set of compute nodes, and

data produced by atmosphere model is cached in memory, and

then consumed in-situ by subsequent computation tasks of land

and sea-ice models.

The rest of this paper focuses on a framework for enabling

in-situ execution of coupled scientific workflows as illustrated

above. Specifically, it focuses on addressing two key chal-

lenges: first, mapping the computation tasks of the workflow

component applications onto distributed multicore processors

in order to increase on-node locality and the amount of intra-

node exchange, and second, abstraction and mechanisms for

expressing and implementing efficient parallel data transfers

between these applications.

III. ARCHITECTURE AND PROGRAMMING INTERFACE

A. System Architecture

The system architecture of the proposed framework con-

sists of two main components as illustrated in Figure 4, the

workflow management server and the execution client. The

workflow management server acts as the rendezvous point to

bootstrap execution clients and manages the execution of the

DAG-based workflow, and the distributed execution clients

run the computation tasks of the data parallel applications

within the coupled scientific workflow. For example, in case

of an MPI application, one MPI process is created per core

on a multicore compute node, and each process runs as an

execution client. Both components build on the HybridDART

communication layer.

The HybridDART Communication Layer supports asyn-

chronous data transport between computation tasks running

on a multicore based system. It is based on DART [7],

which builds on RDMA-enabled networks and provides an

RPC-like abstraction and hides the complexities of the un-

derlying communication systems such as buffer management.

HybridDART exploits the available shared memory between

processor cores on a compute node to achieve better perfor-

mance, and dynamically select the appropriate data transfer

mechanism, i.e., shared memory or RDMA-supported network

transport, depending on the locations of the communicating

tasks.

The execution clients build a co-located DataSpace (CoDS),

which provides a virtual distributed shared-space abstraction

that can be associatively accessed by the coupled applications

using semantically specialized operators that are based on

representation of the scientific application’s data domain, for

example, a grid or mesh. The CoDS Data Lookup service

provides data locations to compute communication schedule

and the Data Sharing Service implements a simple put(),

get() data sharing API that can be used for inter-application

coordination and data sharing. These data sharing operations

are implemented using HybridDART. Coupled data generated

by data producer applications in the sequential coupling sce-

nario is first stored in the CoDS distributed memory space,

and then shared with subsequently running data consumer

applications. Concurrent coupling scenario directly transports

coupled data between the concurrently running producer and

consumer applications.

The workflow management server includes two major

modules. The Execution Client Management module handles

the registration/unregistration of the execution clients, and

manages information such as the network address for each

registered execution client. The Workflow Engine manages

Fig. 4. A schematic overview of the system architecture.

the correct enactment and progress of DAG-based scientific

workflows composed of parallel applications.Workflow Engine

is also responsible for tracking the availability of registered

execution clients, their allocation to the parallel component

applications, and the initial distribution of computation tasks.

The overall goal of our framework is to enable the in-situ

execution of the scientific workflow by using a data-centric

and locality-aware task mapping that moves computation tasks

closer to the data they require. As shown in Figure 4, the

framework employs a combination of server side and client

side task mappings strategies to support the two coupling

patterns in the motivating application workflow scenarios, i.e.,

concurrent coupling in the online data processing workflow

scenario and sequential coupling in the coupled climate mod-

eling workflow scenario.

The server side mapping strategy is designed to place

computation tasks from concurrently coupled applications so

that data producer and consumer tasks run closer to each other,

i.e., on cores of the same compute node. In this strategy, the

framework first computes the inter-application communication

graph offline for the workflow components based on the

specified data decomposition of the component applications.

The workflow management server then uses graph partitioning

tools (e.g., METIS [8]) to group and map data-intensive

communicating tasks onto the same compute node, in order to

reduce the amount of network-based data transfer.

The client side mapping strategy is designed to place

computation tasks of the data consumer applications closer to

required data. In a sequentially coupled workflow scenario,

the coupled applications run in a time sequential manner,

so the coupled data generated by data producer applications

would have been stored in CoDS when the data consumer

applications are launched. This decentralized mapping strategy

first distribute and assign a computation task of the data

consumer applications to each execution client, then execution

client queries the Data Lookup service to get locations of data

required by the assigned computation task, and dispatch that

task to compute node where all or large portion of coupled

data can be directly retrieved from local memory.

Once task mapping is complete, the Tasks Execution Engine

initiates the execution of the computation tasks of an applica-

tion on the processor cores they are mapped.

B. Programming Interface

Programming application workflows using our framework

consists of three steps: (1) composing the coupled application

components into a DAG, (2) exposing the data decomposition

used by the applications, and (3) expressing coordination and

data sharing between the coupled applications using the CoDS

operators. These steps are described below.

ATM

ICE LND

ATM: atomosphere model
ICE: sea-ice model

LND: land model

SIM PROC

PROC: data processing code

SIM: parallel simulation code

bundle-1
bundle-1

bundle-2 bundle-3

Scenario 1:

Online Data Processing

Scenario 2:

Coupled Climate Modeling

Fig. 5. Examples of workflow DAG representations.

Our framework supports coupled application workflows that

can be expressed as a DAG, where each vertex in the DAG rep-

resents a parallel application. Our DAG representation extends

traditional DAG representation such as DAGMan used in the

workflow engine Pegasus [9], with the concept of a “bundle”

which represents a group of parallel applications that need

to be scheduled simultaneously, for example, concurrently

coupled applications that exchange data at runtime. The edges

of the DAG represent data dependencies between sequentially

couopled applications.

The DAG as well as the bundles are explicitly defined by

users. Figure 5 presents the DAG representation for the two

coupled scientific workflow scenarios, online data processing

and climate modeling. Users produce a DAG description file

for their workflow (see Listing 1), which is then parsed by the

management server. Each parallel application in the DAG is

identified by a unique application id in the description file.

Online Data Processing Workflow

Simulation code has appid=1

Processing code has appid=2

Bundle is specified by IDs of its applications

APP_ID 1

APP_ID 2

BUNDLE 1 2

Climate Modeling Workflow

Atmosphere model has appid=1

Land model has appid=2, Sea-ice model has appid=3

APP_ID 1

APP_ID 2

APP_ID 3

PARENT_APPID 1 CHILD_APPID 2

PARENT_APPID 1 CHILD_APPID 3

BUNDLE 1

BUNDLE 2

BUNDLE 3

Listing 1. DAG representation for workflows for the Online Data Processing
and Climate Modeling scenarios.

The proposed framework requires two piece of information

to perform the data-centric task mapping:

(1) Data required by a computation task. The current

implementation uses an application’s data decomposition to

infer the data regions that a computation task needs. As

a result, users need to specify the decomposition of the

applications data domain. We assume that the application

are based on a regular multidimensional data domain and its

decomposition can be expressed in terms of a domain size,

process layout, data distribution type, and data block size. A

n-tuple (s1, ..., sn) and n-tuple (p1, ..., pn) is used to specify

the size and number of processes in each dimension of the

coupled data domain. The framework currently supports three

types of data distributions: standard blocked, cyclic and block-

cyclic. A n-tuple (b1, ..., bn) is used to specify the size in each

dimension of the data block when block-cyclic distribution

type is applied.

(2) Data locations. The location of data required by a task

can be discovered in two ways. The first is querying the Data

Lookup service, which keeps track of locations of the data that

has been produced and stored in CoDS. The second is using

the data decomposition used by the application as specified by

users, which indicates how coupled data is to be partitioned

among different computation tasks (i.e. processes in a MPI

program). The former is used for sequential coupling while

the latter is used for concurrent coupling scenarios.

Application can use a simple API (shown in Table I) to share

the coupled data. There are two pairs of operators for concur-

rent and sequential data coupling respectively: cods put con()

and cods get con() are used to set up direct data transfers

between producer and consumer applications for a concurrent

coupling scenario. cods put seq() and cods get seq() enable

asynchronous data sharing using the CoDS distributed in-

TABLE I
PROGRAMMING INTERFACE FOR COUPLING.

cods put seq() Put data (specified by a geometric de-
scriptor) into the virtual shared space.
Used in sequential data coupling.

cods get seq() Get data (specified by a geometric de-
scriptor) from the virtual shared space.
Used in sequential data coupling.

cods put con() Put data (specified by a geometric de-
scriptor) into the virtual shared space.
Used in concurrent coupling.

cods get con() Get data (specified by a geometric de-
scriptor) from the virtual shared space.
Used in concurrent coupling.

memory storage space and enable the sequential coupling

scenario. These operators require users to specify the region

of interest using a simple geometric descriptors, for example,

a bounding box (i.e., < 0, 0, 0; 10, 10, 20 >). The inter-

application data transfers associated with these operators are

transparently managed at runtime by the framework.

IV. IMPLEMENTATION OVERVIEW

A. Data Sharing using Co-located DataSpaces (CoDS)

Coupled applications share data using the virtual shared

space abstraction provided by the co-located data space. CoDS

is based on DataSpaces [10] and essentially constructs a

distributed hash table (DHT) that spans cores across all the

compute nodes, which keeps track of locations of the coupled

data and uses a semantically specialized indexing that is

based on the scientific applications’ representation of the data

domain.

coupled region of 2D data domain

SFC linearized 1-dimensional domain

<0 ~ 20> <21 ~ 41> <42 ~ 63>

DHT core

Node 1 Node 2 Node 3

location table
...

Fig. 6. SFC-based linearization of the application domain and DHT
construction.

For example, in case of a Cartesian mesh, the framework

applies Hilbert space-filling curve (SFC) to linearize the n-

dimensional Cartesian coordinates to generate a 1-dimensional

index space, which is then used to construct the DHT. Using

this indexing, a continuous data region in the original Cartesian

domain can be represented either by a geometric descriptor

such as a bounding box, or a set of spans of the linearized

index space.

The 1-dimensional index space is divided into intervals,

which are assigned to DHT cores (each compute node has one

DHT core). As a result, each DHT core is assigned a distinct

data region of the application data domain, and creates a table

to record where data associated with that region is located.

Figure 6 illustrates how a simple 2D 8×8 data domain is lin-

earized, divided and indexed across the DHT cores. The figure

also shows the location table at each core used to maintain

the storage locations for shared variables (e.g., temperature,

velocity) defined over the coupled data domain. When a data

put() operation is invoked, the execution client translates the

user-defined geometric descriptor into a linearized DHT query

key, and routes the query to the appropriate DHT cores that

are responsible for data regions specified by the key. The

corresponding DHT cores then update their location tables to

record the location of the newly inserted data.

A communication schedule represents the sequence of data

transfers required to correctly move data between coupled

applications. When the data consuming application invokes

a get() operation with the appropriate geometric descriptor,

the execution client first translates the geometric descriptor

into the corresponding set of index spans and queries the

DHT for locations of the data. After successfully retrieving

data locations, the execution client can compute the com-

munication schedule. To optimize subsequent operations, the

execution client caches this communication schedule. As data

coupling patterns are often repeated in iteration based scientific

simulations, these schedules can be reused, which improves

performance.

The framework uses a receiver-driven pull approach to

implement the data transfers in parallel for both, the concurrent

and sequential coupling scenarios. Once the communication

schedules are computed, the receiving execution clients issue

one or more data requests to the processor cores where data

is being produced (for the concurrent coupling scenario) or

processor cores where data has been stored (for the sequential

coupling scenario). The actual data transfers use HybridDART,

which creates remotely accessible data buffers using either

shared memory segments or RDMA memory regions, depend-

ing on whether the end-points of the data transfer are on the

same node or on different nodes. Selected execution clients

can directly get/put data from/to these buffers. HybridDART

automatically selects the appropriate transport methods, avoid-

ing the use of network interfaces to transfer data when the

communicating execution clients run on different processor

cores of the same compute node, using shared memory instead.

B. Data-Centric Task Mapping

Our framework employs locality-aware, data-centric task

placement to map computations from the coupled applications

onto processor cores so that a large portion of the data ex-

changes can be performed using the on-node shared memory.

Server side data-centric task mapping is used for a “bundle”

of concurrently coupled applications. Implementation of this

mapping consists of two steps. The first step is the generation

of the inter-application communication graph. Currently this

step is performed offline before the workflow starts running,

and is based on the data decomposition descriptor specified by

users for each application. Each vertex of the communication

0 1 2 3
4 5 6 7

111098

0 1

2 3

APP2

coupling data flow

APP2

10

11

compute node 1

APP1
partition into groups

APP1

compute node 2

communication graph

Fig. 7. Locality-aware, data-center partitioning of the inter-application
communication graph for concurrently coupled applications.

graph represents a computation task of a parallel application

in the “bundle”, and each edge connects two communicat-

ing computation tasks from different applications that are

concurrently coupled. The second step is performed by the

workflow management server at runtime, which consists of

partitioning the inter-application communication graph and

the distribution of computation tasks. Before launching the

applications within the “bundle”, the workflow management

server uses METIS [8] to partition the total num task computa-

tion tasks into num task/core count groups, where core count

represents the number of processor cores on a compute node.

After the partitioning completes, each task group is mapped

to a distinct compute node, and the associated computation

tasks are distributed to the core count processor cores in a

round-robin fashion. Figure 7 shows the mapping of com-

putation tasks from two concurrently coupled applications,

APP1 and APP2 onto two 8-core compute nodes. In this

simple scenario, APP1 runs 12 computation tasks and APP2

runs 4 computation tasks. The goal of the partitioning is

to remove inter-application network-based data transfer links

in the communication graph by grouping the communicating

computation tasks onto the same multi-core compute node, so

that data transfers are intra-node.

Decentralized client side data-centric task mapping is used

to launch applications that are sequentially coupled with

a preceding application in the workflow. As soon as the

required computation resources are available for the pend-

ing applications, the workflow management server distributes

computation tasks to the compute nodes in a round-robin

fashion. After this initial task distribution, each execution

client is assigned a computation task that has three attributes:

application id, process rank, and its requested data region.

The execution client then queries the Data Lookup service

for the storage locations of the data region that demanded by

the assigned computation task. The query result could contain

one compute node where the entire demanded data region is

stored, or multiple compute nodes that each stores a portion of

the demanded data region. Each execution client selects only

one compute node to map the assigned computation task, by

maximizing the amount of coupled data that can be locally

retrieved by the computation task.

C. Dynamic Execution Clients Grouping and Application

Launching

Our framework supports executing a parallel application on

a set of dynamically selected processor cores, which enables

running computation tasks of different applications on the

same multi-core processor. Applications of a workflow are

currently implemented as MPI-based subroutines that statically

compiled and linked into the framework, so each execution

client could dynamically select which application routine to

run at runtime.

The execution client would get one assigned computation

task when the mapping process is completed. Then each

execution client is colored with the value of application id

which is associated with the computation task and uniquely

assigned by users. Execution clients with the same color form

a processes group at runtime to execute a parallel application.

A “bundle” that consists of k concurrently coupled applications

will divide the allocated execution clients into k different

groups. The execution clients then utilize MPI Comm split

function to create a new communication domain or commu-

nicator for each processes group, and use the computation

task’s process rank value to control rank assignment within the

group. Finally, execution client selects and runs the pre-linked

MPI-based subroutine which matches the task’s application id,

and uses the newly created communicator for all subsequent

intra-application communication.

Our prototype requires each application to be developed as a

MPI-based subroutine of the framework, and statically linked

at compile time. An ideal implementation would represent

each application in the workflow as a separate MPI binary

executable, schedule and execute these executables dynami-

cally at runtime, which requires less source code modifica-

tions of user’s legacy simulation programs. Dynamic process

management features defined in MPI-2 standard, such as

MPI Comm spawn and MPI Comm spawn multiple, support

runtime execution of MPI binaries. However, the targeted

platform used by current implementation does not support

these features.

V. EXPERIMENTAL EVALUATION

The prototype implementation of our framework was eval-

uated on the Jaguar Cray XT5 system at Oak Ridge National

Laboratory. Jaguar XT5 has 18,688 compute nodes, and each

compute node contains dual hex-core AMD Opteron proces-

sors and 12 cores, 16GB memory and a SeaStar2+ router that

interconnects the nodes via a fast 3D torus network.

Our evaluation presented in this section consists of three

parts. The first part evaluates the effectiveness of the

framework’s data-centric task mapping using different inter-

application data transfer patterns. We also compared our

data-centric task mapping strategy with the round-robin task

mapping that employed by many MPI job launchers. The

second part analyzes the framework’s impact on various data

communication costs within a coupled simulation workflow

and explains the overall cost reduction that can be achieved

by favoring the intra-node inter-application data transfers. The

third part evaluates the scalability of the framework’s data

sharing substrate, i.e., CoDS.

The experiments used two testing workflow scenarios which

are driven by the online data processing and coupled climate

modeling examples. The first scenario concurrently couples

two interacting applications which are referred to as CAP1 and

CAP2. CAP1 and CAP2 run concurrently and share data over

a 3-dimensional data domain. The second scenario sequentially

couples three applications which are referred to as SAP1,

SAP2 and SAP3. The execution of this sequential workflow

first launches SAP1 which produces and stores data into the

CoDS. When SAP1 completes, SAP2 and SAP3 would be

launched to run on the same set of compute nodes used by

SAP1, and retrieve coupled data from the CoDS. Similar to the

first scenario, the three applications use a shared 3-dimensional

common data domain.

A. Effectiveness of the Data-centric Task Mapping

This section evaluates the effectiveness of our data-centric

task mapping. More specifically, we ran experiments to mea-

sure the amount of inter-application data that transferred over

the network, and the time used to transfer the coupled data,

for both data-centric task mapping and the round-robin task

mapping. In this case, we used a concurrent and a sequential

testing scenario. Each computation task of the data producing

applications (CAP1 and SAP1) was assigned a region of size

128×128×128 from the global data domain, and inserts 32MB

data into CoDS. For the concurrent coupling scenario, CAP1

and CAP2 separately ran on 512 and 64 cores, a total of 8GB

inter-application coupled data was redistributed from CAP1 to

CAP2. For the sequential coupling scenario, SAP1 first ran on

512 cores, then SAP2 and SAP3 separately ran on 128 and

384 cores. A total of 16GB data was redistributed from SAP1

to SAP2 and SAP3.

0

2

4

6

8

10

block-block cyclic-cyclic block-cyclic cyclic-block

D
a
ta

 S
iz

e
(G

B
)

Types of inter-application data communication pattern

round-robin task mapping
data-centric task mapping

Fig. 8. Concurrent coupling scenario: Comparison of the amount of coupled
data transferred over the network for the data-centric and round-robin task
mapping cases, for different inter-application communication patterns.

Figure 8 and Figure 9 plot the amount of coupled data

that is transferred over the communication fabric for the two

coupling scenarios. The X axis of the figures represents the

data decomposition pattern for the two coupled applications.

0

2

4

6

8

10

12

14

16

18

block-block cyclic-cyclic block-cyclic cyclic-block

D
a
ta

 S
iz

e
(G

B
)

Types of inter-application data communication pattern

round-robin task mapping
data-centric task mapping

Fig. 9. Sequential coupling scenario: Comparison of the amount of coupled
data transferred over the network for the data-centric and round-robin task
mapping, for different inter-application communication patterns.

Fig. 10. Coupled data region when the two applications are decomposed
differently.

As shown in the figures, the locality aware data-centric

task mapping works effectively for both scenarios when the

coupled applications have the same data distribution type.

Compared to the round-robin task mapping,the data-centric

task mapping transferred about 80% less data over the network

by co-locating data producing and consuming computation

tasks in CAP1 and CAP2, and transferred about 90% less data

over the network by placing data consuming tasks in SAP2 and

SAP3 closer to the data. Most of the data is retrieved in-situ

using intra-node shared memory. However, our framework did

not perform as well when the applications have different data

distribution patterns. Figure 10 shows why it is harder for data-

centric task mapping to be effective when two applications

have different distributions. In Figure 10, the shaded region

of the shared data domain is mapped to APP1 process 0

using a blocked distribution, and mapped to APP2 processes

0-34 using a block-cyclic distribution. If APP1 process 0

tries to get coupled data corresponding to the shaded region

from APP2, it needs to retrieve data from each process of

APP2, i.e., 0-34. As a result, a 1-to-N or even N-to-N inter-

application communication patterns may occur, and the value

of N can be much larger than the processor cores count when

application runs at scale, which makes it harder to achieve in-

situ workflow execution and intra-node inter-application data

flow.

0

200

400

600

800

CAP2 SAP2 SAP3

128MB 64MB 21MB

T
ra

n
s
fe

r
ti
m

e
 o

f
th

e
 c

o
u
p
lin

g
 d

a
ta

(m
s
)

applications that retrieve data

amount of data retrieved by each computatin task (or process)

round-robin task mapping
data-centric task mapping

Fig. 11. Transfer time for the coupled data for the concurrent and sequential
coupling scenarios. The bottom X axis indicates the application name, and
the top X axis indicates the amount of data retrieved by one computation task
in the corresponding application.

Figure 11 presents the time required to retrieve coupled data

for applications CAP2, SAP2 and SAP3. For each application,

the data transfer time decreased significantly for data-centric

mapping when compared with the round-robin task mapping.

This performance improvement was because most of the

coupled data could be directly retrieved from the intra-node

shared memory in case of data-centric task mapping. As shown

in the figure, a;though SAP2 and SAP3 retrieve less data

per computation task, the time to transfer data is longer than

CAP2. The main reason is that in the sequential scenario, more

data retrieve requests need to be processed because each of the

512 cores (in this case) requires certain data regions.

B. Impact on Intra-application Data Communication

This experiment evaluates how our data centric task map-

ping affected the performance of the intra-application data

communication. There are two primary types of data commu-

nications for applications within a coupled scientific workflow.

The first is the inter-application data coupling in which the

coupled data is transferred between the different compo-

nent applications. The second is the intra-application data

communication. This experiment used 2D or 3D stencil-like

near-neighbor data exchanges to represent the cost of intra-

application communication, which is common for the targeted

class of data parallel scientific applications. The configurations

used for these experiments for the two workflow scenarios,

such as the number of processor cores used and dimensions

of the data domain, were the same as those used in the previous

experiment.

Figure 12 and Figure 13 illustrate the influence of data-

centric task mapping on the cost of intra-application near-

neighbors data exchange. As shown in the figures, data-

centric task mapping almost doubled the amount of network

transferred intra-application data exchanges, for application

CAP2 in the concurrent workflow scenario, and SAP2 in the

sequential workflow scenario. For other applications including

0

0.5

1.0

1.5

CAP1 CAP2

S
iz

e
 o

f
In

tr
a

-A
p

p
 C

o
m

m
u

n
ic

a
ti
o

n
 D

a
ta

 (
G

B
)

Name of testing applications in the concurrent scenario

total amount
data over network (round-robin mapping)
data over network (data-centric mapping)

Fig. 12. Concurrent coupling scenario: Comparison of the amount of coupled
data transferred over the network for the data-centric and round-robin task
mapping cases, for different inter-application communication patterns.

0

0.5

1.0

1.5

SAP1 SAP2 SAP3

D
a

ta
 s

iz
e

 (
G

B
)

Name of testing applications in the sequential scenario

total amount
data over network (round-robin mapping)
data over network (data-centric mapping)

Fig. 13. Sequential coupling scenario: Comparison of intra-application
data exchanges over the networks between round-robin and data-centric task
mapping.

CAP1, SAP1 and SAP3, the changes were very small. CAP2

and SAP2 share a common characteristic, i.e., both of them run

on a smaller portion of the processor cores used for the coupled

applications. For example, CAP2 runs on 64 cores out of 576,

and SAP2 runs on 128 cores out of 512. Data-centric task

mapping co-locates the data consuming application with the

data producing application, or with the required data already

produced and stored. By moving computation to data, the

smaller number of computation tasks in CAP2 and SAP2

were more scattered across different compute nodes. As a

result, while the amount of inter-application data transfers

over the network greatly decreased, the intra-application data

exchanges over the network in CAP2 and SAP2 increased.

Figure 14 and Figure 15 give a clearer view on the com-

munication cost (measured as the amount of data transferred

over network). In the two workflow scenarios used in the

experiment, inter-application coupling requires redistribution

of the volume of the entire shared data region, which re-

sulted in larger transferred data size compared with the intra-

application near-neighbor data exchanges. As shown by the

figures, transferring the coupled data is the dominant cost

0

1

2

3

4

5

6

7

8

9

10

round-robin task mapping data-centric task mapping

D
a

ta
 s

iz
e

 (
G

B
)

inter-app data transfer
CAP1 intra-app data transfer
CAP2 intra-app data transfer

Fig. 14. Concurrent coupling scenario: Decomposition of the cost of data
transfers over the network for round-robin and data-centric task mapping.

0

2

4

6

8

10

12

14

16

18

round-robin task mapping data-centric task mapping

D
a

ta
 s

iz
e

 (
G

B
)

inter-app data transfer
SAP1 intra-app data transfer
SAP2 intra-app data transfer
SAP3 intra-app data transfer

Fig. 15. Sequential coupling scenario: Decomposition of the cost of data
transfers over the network for round-robin and data-centric task mapping.

when round-robin task mapping is applied. With data-centric

task mapping, the significant decrease of inter-application data

transfers over the network significantly reduces the overall

communication cost. As a result, the effectiveness of the

data-centric task mapping also depends on the ratio of inter-

application data transfer size to intra-application data exchange

size. As long as the large amount of data movement between

applications is a concern for a coupled workflow, data-centric

task mapping presents clear advantages.

C. Scalability

This section evaluates the scalability of the framework.

The experiment used weak scaling and varied the number of

processor cores for the coupled applications and consequently

the number of data retrieve queries. For the concurrent cou-

pling workflow scenario, the number of processor cores for

CAP1/CAP2 were varied from 512/64 to 8192/1024. For the

sequential workflow scenario, the number of processor cores

for SAP/(SAP2+SAP3) were varied from 512/(128+384) to

8192/(2048+6144). Each computation task of the data produc-

ing applications (i.e., CAP1 and SAP1) inserted 16MB of data

into the space. Each computation task of CAP2 application

retrieves 128MB data from CoDS, and each computation task

of SAP2 and SAP2 retrieves 64MB, 22MB data from CoDS

respectively.

0

50

100

150

200

250

300

350

512/64 1024/128 2048/256 4096/512 8192/1024

512/(128+384) 1024/(256+768) 2048/(512+1536) 4096/(1024+3072) 8192/(2048+6144)

tr
a

n
s
fe

r
ti
m

e
 o

f
th

e
 c

o
u

p
lin

g
 d

a
ta

(m
s
)

number of CPU cores for CAP1, CAP2

number of CPU cores for SAP1, SAP2 and SAP3

data retrieve time of CAP2
data retrieve time of SAP2
data retrieve time of SAP3

Fig. 16. Weak scaling of the time to retrieve coupled data with increasing
numbers of cores. On the X axis, the bottom part represents the number of
cores used in the concurrent coupling scenario, and the top part represents
the number of cores used in the sequential coupling scenario.

The results in Figure 16 show good overall scalability

with increasing number of application computation tasks and

transferred data sizes. The total amount of transferred data was

increased 16-fold between the small and large scale cases,

from 8GB to 128GB for the concurrent coupling scenario,

and 16GB to 256GB for the sequential coupling scenario. The

data retrieve time for the three applications CAP2, SAP2 and

SAP3 had only small increase, i.e., less than 150 ms. This

increase in transfer time is mainly due to the contention on

the shared network links, which is caused by the increasing

number of concurrent data transfers at larger application scale.

Furthermore, as shown in Figure 16, the rate of increase in the

transfer time for SAP2 and SAP3 at larger scales is higher than

CAP2. Although each single computation task of SAP2 and

SAP3 gets less data than CAP2, the total number of concurrent

data retrieve queries in the sequential coupling scenario is

double of that in the concurrent coupling scenario, and SAP2

and SAP3 request data simultaneously in this case, which

caused the observed behavior.

VI. RELATED WORK

This section summarizes previous research efforts related to

our work.

Scientific workflow management systems: Scientific work-

flow engines such as Pegasus [9] and KEPLER [11] are

used to automate resources (i.e. data, compute nodes) man-

agement and execution of the loosely coupled applications.

Data sharing between the different component applications

are usually performed by reading data files stored in the

distributed file systems, thus the performance is affected by

the system IO performance. Our framework targets at more

tight coupling workflow scenario, employs the direct memory-

to-memory approach to transfer data between concurrently

coupled applications, and implements a distributed in-memory

storage to facilitate sequential data sharing. Compared to the

file-based approach, our framework provides faster and more

scalable data sharing service.

Distributed tasks scheduling and execution frameworks:

Several recent projects provide runtime systems to improve

performance of computation tasks scheduling and execution

on emerging distributed multicore architecture. DAGuE [12]

proposes a generic engine to express numerical algorithm

as a DAG of tasks at a finer granularity, and dynamically

schedule the tasks execution at runtime. StarPU [13] provides

a unified execution model and runtime system to support

execution of parallel tasks over heterogeneous hardware. These

frameworks provides programming interface and runtime sys-

tem for development of numerical computation kernels (i.e.

BLAS routines, FFT) that exploit the heterogeneous multicore

architecture. Task scheduling and execution in our framework

focuses on mapping tasks (or processes) from multiple data

parallel programs to multi-core processors to increase data

locality and reuse between the coupled applications within a

scientific workflow.

Data coupling software tools: The M×N working group

in the Common Component Architecture (CCA) [14] forum

provides a package of software tools to perform parallel data

redistribution between coupled simulation codes, including

Meta-Chaos [15], InterComm [16], MCT [17], Parallel Ap-

plication Work Space (PAWS) [18]. CCA forum defines a

set of standard interfaces to promote interoperability between

tools developed by different organizations. These software

libraries are often integrated into simulation code to perform

inter-application data communications with other simulations.

Our framework additionally provides interface to compose

tightly coupled workflow and enables in-situ placement of

applications tasks to decrease network-based data transfers.

In-situ data analytics and visualization: The increasing

performance gap between computing and IO, and the cost

of moving large volume of data to/from disks, motivates

computational scientists to propose a new approach to per-

form scientific data processing - in-situ data analysis and

visualization [19], [20], [21]. The key idea is to move data

analytic operations or visualization computation to data where

the simulation is running. Existing implementations of in-situ

visualization [22] tightly integrate analysis or visualization

libraries into simulation code. Our framework’s capability to

run in-situ concurrent coupling workflow, can also be applied

to in-situ data analysis and visualization. Moreover, our work

provides a generic framework to compose and execute in-situ

workflow in a flexible and customized way.

Staging area based data sharing and exchange: The data

staging area, a set of additional compute nodes allocated

by users when launching the parallel simulations, and the

application of staging area has been investigated to add

values to simulation’s IO pipeline [10], [23], [24], [25].

DataSpace [10] project builds a distributed in-memory storage

in the staging area to support data sharing between coupled

applications. During the execution of a workflow, scientific

data is asynchronously extracted from one simulation, stored

and indexed in the staging area, and then accessed by other

simulations. This approach requires coupled data to be shared

indirectly through the staging area, which would result two

data movements (i.e., data producing application to the space,

then space to data consuming application) and cause extra cost

for tightly coupled scientific workflow. The direct application-

to-application in-memory data sharing in our framework pro-

vides a faster mechanism to move data between tightly coupled

applications.

VII. CONCLUSION AND FUTURE WORK

This paper explored the in-situ execution of the coupled

components of a scientific application workflow so as to

maximize on-chip exchange of data. This work is motivated

by the observation that the movement of large volumes data

over the communication fabrics is significantly impacting

the performance of coupled scientific application workflows.

Specifically, we presented the design and implementation of

a distributed data sharing and task execution framework that

(1) employs data-centric task placement to map computations

from the coupled application components onto processor cores

so that a large portion of the data exchanges can be per-

formed using the on-node shared memory, and (2) provides

a shared space programming abstraction that supplements

existing parallel programming models (e.g., message passing)

with DAG-based workflow descriptions and specialized one-

sided asynchronous data access operators and can be used to

express coordination and data exchanges between the coupled

components. The presented in-situ execution approach can be

applied to a range of application scenarios such as online data

analysis and visualization, multiphysics coupled simulations,

and to a wide range of applications domains.

We also presented the implementation of the framework

and its experimental evaluation on the Jaguar Cray XT5 at

Oak Ridge National Laboratory. The evaluation used two cou-

pled workflow scenarios motivated by real-world applications,

and demonstrated the effectiveness and performance of the

proposed data-centric task mapping. In addition, the paper

analyzed the trade-off of using the framework, and evaluated

the scalability of CoDS data sharing substrate.

Our directions for future work include extending the frame-

work to enable task mapping and execution on emerging

heterogeneous multicore platforms with accelerators (i.e.,

GPUs). While the current implementation targets at parallel

applications developed with message passing programming

model (e.g., MPI), we will also explore supporting other pro-

gramming models such as Partitioned Global Address Space

(PGAS) and MapReduce.

ACKNOWLEDGMENT

The research presented in this paper is supported in part by

National Science Foundation via grant numbers IIP 0758566

and DMS-0835436, by Department of Energy via the grant

number DE-FG02-06ER54857, and by an IBM Faculty Award,

and was conducted as part of the Center for Autonomic

Computing at Rutgers University.

REFERENCES

[1] W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S.
Bretherton, J. A. Carton, P. Chang, S. C. Doney, J. J. Hack, T. B.
Henderson, J. T. Kiehl, W. G. Large, D. S. McKenna, B. D. Santer,
and R. D. Smith, “The Community Climate System Model Version 3
(CCSM3),” Journal of Climate, vol. 19, no. 11, pp. 2122–2143, 2006.

[2] J. Cummings, J. Lofstead, K. Schwan, A. Sim, A. Shoshani, C. Docan,
M. Parashar, S. Klasky, N. Podhorszki, and R. Barreto, “EFFIS: An
End-to-end Framework for Fusion Integrated Simulation,” in Proc.

18th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP’10), Feburary 2010.

[3] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, Metadata
Rich IO Methods for Portable High Performance IO,” in Proc. 23th

IEEE International Parallel and Distributed Processing Symposium

(IPDPS’09), May 2009.

[4] A. Bhatele and, G. Gupta, L. Kale and, and I.-H. Chung, “Automated
Mapping of Regular Communication Graphs on Mesh Interconnects,”
in Proc. International Conference on High Performance Computing

(HiPC’10), December 2010.

[5] T. Agarwal, A. Sharma, A. Laxmikant, and L. Kale, “Topology-aware
Task Mapping for Reducing Communication Contention on Large Paral-
lel Machines,” in Proc. 20th IEEE International Parallel and Distributed

Processing Symposium (IPDPS’06), April 2006.

[6] F. Bertrand, R. Bramley, A. Sussman, D. Bernholdt, J. Kohl, J. Larson,
and K. Damevski, “Data Redistribution and Remote Method Invocation
in Parallel Component Architectures,” in Proc. 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS’05), April 2005.

[7] C. Docan, M. Parashar, and S. Klasky, “DART: A Substrate for High
Speed Asynchronous Data IO,” in Proc. of 17th International Symposium
on High Performance Distributed Computing (HPDC’08), June 2008.

[8] G. Karypis and V. Kumar, “METIS - Unstructured Graph Partitioning
and Sparse Matrix Ordering System, Version 2.0,” Dept. of Computer
Science, Univ. of Minnesota, Tech. Rep., 1995.

[9] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and
D. S. Katz, “Pegasus: A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems,” Sci. Program., vol. 13, pp. 219–
237, July 2005.

[10] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows,” in Proc.

of 19th International Symposium on High Performance and Distributed

Computing (HPDC’10), June 2010.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific Workflow Management and
The Lepler System: Research Articles,” Concurrency and Computation

: Practical and Experience, vol. 18, pp. 1039–1065, August 2006.

[12] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, H. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra, “Distributed-Memory Task Execution and Dependence
Tracking within DAGuE and the DPLASMA Project,” Innovative Com-
puting Laboratory, University of Tennessee, Tech. Rep., 2010.

[13] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures,” Concurrency and Computation: Practice and Experience,

Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, 2011.

[14] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski, “Toward a Common Component Archi-
tecture for High-Performance Scientific Computing,” in Proc. of 8th

International Symposium on High Performance Distributed Computing

(HPDC’99), August 1999.

[15] G. Edjlali, A. Sussman, and J. H. Saltz, “Interoperability of Data Parallel
Runtime Libraries,” in Proc. of the 11th International Symposium on

Parallel Processing (IPPS’97), April 1997.

[16] J.-Y. Lee and A. Sussman, “High Performance Communication between
Parallel Programs,” in Proc. of the 19th International Parallel and

Distributed Processing Symposium (IPDPS’05), April 2005.

[17] J. Larson, R. Jacob, and E. Ong, “The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models,”
International Journal of High Performance Computing Applications

(IJHPCA), vol. 19, pp. 277–292, August 2005.

[18] P. Fasel and S. Mniszewski, “PAWS: Collective Interactions and Data
Transfers,” in Proc. of the 10th International Symposium on High

Performance Distributed Computing (HPDC’01), August 2001.

[19] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In Situ Visualization
for Large-Scale Combustion Simulations,” IEEE Computer Graphics

and Applications, vol. 30, no. 3, pp. 45–57, 2010.
[20] K.-L. Ma, “In Situ Visualization at Extreme Scale: Challenges and

Opportunities,” IEEE Computer Graphics and Applications, vol. 29,
no. 6, pp. 14–19, 2009.

[21] H. Childs, “Architectural Challenges and Solutions for Petascale Post-
processing,” Journal of Physics: Conference Series, vol. 78, no. 1, p.
012012, 2007.

[22] J.-M. F. Brad Whitlock and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in Proc. of

11th Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV’11), April 2011.
[23] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,

M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA -
preparatory data analytics on peta-scale machines,” in Proc. of 24th

IEEE International Parallel and Distributed Processing Symposium

(IPDPS’10), April 2010.
[24] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just

In Time: Adding Value to The IO Pipelines of High Performance
Applications with JITStaging,” in Proc. 20th International Symposium

on High Performance Distributed Computing (HPDC’11), June 2011.
[25] C. Docan, M. Parashar, J. Cummings, and S. Klasky, “Moving the Code

to the Data - Dynamic Code Deployment Using ActiveSpaces,” in Proc.

25th IEEE International Parallel and Distributed Processing Symposium

(IPDPS’11), May 2011.

