
ISOBAR Hybrid Compression-I/O Interleaving
for Large-scale Parallel I/O Optimization

Eric R. Schendel 1,2,+, Saurabh V. Pendse 1,2,+, John Jenkins 1,2, David A. Boyuka II 1,2,
Zhenhuan Gong 1,2, Sriram Lakshminarasimhan 1,2, Qing Liu 2, Hemanth Kolla 3,

Jackie Chen 3, Scott Klasky 2, Robert Ross 4, Nagiza F. Samatova 1,2,∗

1 North Carolina State
University, Raleigh, NC

27695, USA

2 Oak Ridge National
Laboratory, Oak Ridge, TN

37830, USA
3 Sandia National Laboratory,

Livermore, CA
94551, USA

4 Argonne National
Laboratory, Argonne, IL

60439, USA
∗ Corresponding author: samatova@csc.ncsu.edu

+ Authors contributed equally

ABSTRACT
Current peta-scale data analytics frameworks suffer from a
significant performance bottleneck due to an imbalance be-
tween their enormous computational power and limited I/O
bandwidth. Using data compression schemes to reduce the
amount of I/O activity is a promising approach to address-
ing this problem. In this paper, we propose a hybrid frame-
work for interleaving I/O with data compression to achieve
improved I/O throughput side-by-side with reduced dataset
size. We evaluate several interleaving strategies, present the-
oretical models, and evaluate the efficiency and scalability of
our approach through comparative analysis. With our theo-
retical model, considering 19 real-world scientific datasets
both from the public domain and peta-scale simulations,
we estimate that the hybrid method can result in a 12 to
46% increase in throughput on hard-to-compress scientific
datasets. At the reported peak bandwidth of 60 GB/s of
uncompressed data for a current, leadership-class parallel
I/O system, this translates into an effective gain of 7 to 28
GB/s in aggregate throughput.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Secondary storage—par-
allel data compression, file storage; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’12, June 18–22, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-0805-2/12/06 ...$10.00.

Keywords
ISOBAR; Hybrid Interleaving; Staging; High Performance
Computing; Lossless Compression; I/O

1. INTRODUCTION
As exascale computing comes closer to becoming reality

and more powerful High Performance Computing (HPC)
systems become available, the complexity of scientific sim-
ulations and analyses has grown commensurately. Unfortu-
nately, the level of disk I/O performance offered by these
systems has not kept up, leading to a serious bottleneck in
read and write performance in these applications. This prob-
lem is exacerbated by the increasing frequency of checkpoint
operations performed by such computations due to their in-
creasing vulnerability to node failures at this scale, which
further adds to the I/O overload.

Ideally, the solution to the I/O bottleneck will involve
both data reduction and parallel I/O access pattern op-
timization. Unfortunately, these two optimization meth-
ods have traditionally been in conflict. State-of-the-art I/O
middleware solutions, such as ADIOS [22], HDF5 [37], and
PnetCDF [20], have no native support for write compression
in a parallel context, due to the complexity of handling the
resultant non-uniform data, which requires synchronization
between all nodes performing shared-file I/O. Further con-
straining the problem is the fact that scientists cannot sacri-
fice simulation fidelity, especially at checkpoints, which rules
out lossy compression as a viable data reduction method.
And yet, typical lossless compression techniques are ineffec-
tive on hard-to-compress floating-point data generally pro-
duced by such simulations.

However, we argue that these goals can in fact be comple-
mentary. Our key insight is that, by dynamically identifying
a subset of highly-compressible data to process while asyn-
chronously writing the remainder to storage, we can effec-
tively hide the cost of compression and I/O synchronization
behind this transfer, thus rendering parallel write compres-
sion viable. This interleaving method is a natural fit for

data staging architectures, where various data transforma-
tions can occur while data is “in transit” or in-situ, from
compute nodes to disk. Traditionally, staging has been used
to compute statistical analyses or perform indexing opera-
tions [1, 2]. With interleaved compression and I/O, however,
we can augment this functionality by performing compres-
sion as an in-situ transfer and storage optimization, as well.

The problem of identifying a highly-compressible subset of
the original data is itself quite difficult, as scientific data is
usually hard-to-compress with typical compression libraries.
We argue that this is because I/O libraries optimized for sci-
entific applications tend to view multi-byte data elements,
such as floating-point values, as atomic units of data. In-
stead, by relaxing this notion and utilizing byte-level anal-
ysis of the scientific data, better results can be obtained.
ISOBAR, or In-Situ Orthogonal Byte Aggregate Reduction,
enables exactly this sort of analysis for lossless compression,
and has been shown to be effective on such datasets [30].
By modifying ISOBAR’s analysis methods to partition the
data into compressible and incompressible byte streams, we
form an effective basis for interleaving the usage of comput-
ing resources. By transmitting the incompressible data over
the network immediately, we can hide the cost of compress-
ing the remainder and synchronizing for non-uniform I/O to
write it to disk.

Although we demonstrate performance gains when using
our methodology in a leadership-class HPC system (the Cray
XK6 Jaguar cluster), it is impossible to evaluate our system
on every possible cluster configuration. For this reason, it
is also desirable to have an analytical performance model,
which would allow prediction of performance characteristics
on new hardware and software, and would aid application
developers in configuration choices.

Therefore, we present a hybrid compression-I/O method-
ology for data reduction and I/O optimization. By employ-
ing ISOBAR analysis within a data staging architecture and
incorporating the popular ADIOS I/O framework as our I/O
backend, we implement effective parallel compression with
state-of-the-art I/O performance. Furthermore, we develop
a resource interleaving strategy to process the compressible
and incompressible components of the data simultaneously,
as identified by ISOBAR-analysis. This enables immediate
asynchronous transfer and writing of incompressible data
while compression is applied concurrently to the remainder.
Additionally, we develop a performance model for our me-
thodology, which we demonstate to have a high degree of
accuracy through validation against empirical data.

Our system exhibits read and write performance gains
proportional to the degree of data reduction, which ranges
as high as 46% on scientific datasets. This would translate
into an effective increase of 28 GB/s bandwidth over the
peak aggregate throughput of 60 GB/s of uncompressed data
offered by the leadership-class Lustre parallel filesystem at
Oak Ridge National Labs [24]. Even under worst-case con-
ditions, where the dataset is highly entropic and difficult to
compress, we show that our system still maintains a gain in
throughput over the state-of-the-art.

2. BACKGROUND

2.1 ISOBAR
ISOBAR is a lossless compression method that we built

specifically for data that varies in compressibility on a byte-

by-byte basis [30]. A ubiquitous example of such data is sci-
entific floating-point data, where the exponent bits can be
highly similar while the significand bits are highly entropic.
To this end, ISOBAR first performs a preconditioner on the
linearized input data, selecting data to compress based on
its expected degree of compressibility. This is performed by
the ISOBAR-analyzer. The analyzer’s objective is to iden-
tify high-entropic content within a dataset that negatively
impacts the compression efficiency and reduces the burden
on the compressor from processing the components with low
compression potential. This enhances the compression algo-
rithm in terms of the compression throughput as well as the
compression ratio.

The input data is considered as a matrix of bytes, where
each row is an input value (e.g., a double-precision floating-
point) and each column is an individual byte of the input
value. The preconditioner counts the frequency of each byte
on a column basis and marks that column as compressible
if the distribution appears to be non-random. Once these
columns are identified, any general purpose compressor may
be used, but ISOBAR automatically chooses the best one
by user preference (compression ratio vs. speed).

2.2 ADIOS
High-performance computing applications leverage I/O li-

braries like HDF5 (Hierarchical Data Format), ADIOS (Adapt-
able I/O System), and PnetCDF (Parallel Network Common
Data Form) that allow scientists to easily describe the data
that needs to be written out and analyzed. These I/O li-
braries provide an enhanced I/O performance, by efficiently
handling synchronization, and meta-data generation during
shared-file writes. We choose to incorporate ADIOS for this
paper, since it has been shown to deliver performance im-
provements of up to 300% at scale [24, 27] on the Cray
Jaguar leadership-class computing facilities at ORNL.

ADIOS essentially provides an efficient componentization
of the HPC I/O stack. Through an XML file, it provides
the option to describe the data, and to choose the opti-
mal transport methods like POSIX and MPI-IO without the
need to recompile the application codes. The data written
using ADIOS is in the form of a native BP (Binary Packed)
file, comprising of “process groups,” which are variables de-
scribed in XML configuration, usually tagged according to
their functionality. For example, checkpoint and restart data
is written under a single process group, as is analysis data.

3. HYBRID COMPRESSION-I/O FOR DATA
STAGING ARCHITECTURES

The prevailing I/O strategy in current peta-scale systems
is to offload the burden of I/O to dedicated staging nodes,
as shown in Figure 1. This allows minimal idle time on the
compute nodes allocated for the simulation, as the I/O nodes
handle the rate-limiting disk writes and reads collectively
and network bandwidth is an order of magnitude faster than
disk bandwidth. However, given the trend of ever-increasing
simulation data sizes, combined with the need to checkpoint
simulation state to minimize data loss in the face of node
failure, the I/O offloading approach alone cannot keep up
with the computational throughput available.

3.1 Method
A promising approach to aid in mitigating this problem is

Figure 1: A peta-scale computing system with staging envi-
ronment.

to write compressed data to the disk [36]. This reduces the
aggregate amount of data to be written, which can allevi-
ate the I/O bottleneck to some extent. However, there are
a number of technical challenges in utilizing compression in
the scientific computing environment. Most state-of-the-art
compression algorithms do not provide enough compression
throughput to justify the data reduction, and those that do
sacrifice the compression ratio. Moreover, the target simula-
tion data is notoriously“hard-to-compress;” traditional com-
pression algorithms provide meager compression ratios [30].
In addition, compression brings up the non-trivial issue of
managing the writes of variable sized chunks of data. This
mandates a strategy to efficiently handle disk I/O, taking
into account appropriate data organization and writer node
synchronization while also keeping the overhead imposed by
the associated metadata in check.

Current state-of-the art I/O frameworks such as ADIOS
and HDF5 have no capability to compress and store sim-
ulation data when performing parallel writes to a parallel
filesystem. In this work, we utilize the data staging model,
based on the ISOBAR technology, to write and simultane-
ously compress simulation data. In addition to using the
data staging paradigm, interleaving compression and I/O
can also be directly integrated into I/O frameworks. ISO-
BAR was introduced as a high-throughput compressor built
specifically for hard-to-compress datasets [30]. Especially
important is the fact that we can use ISOBAR to produce
multiple streams of data that, once defined by the analysis
portion of ISOBAR, can be operated on independently. This
presents the perfect opportunity to hide the compression
costs by asynchronously writing streams (the incompress-
ible byte streams) while operating on the remaining streams
(compressing the compressible byte streams). We call this
the hybrid compression-I/O approach. The interleaving of
compression and I/O helps to hide the compression costs,
while the reduction in data size reduces disk costs.

Figure 2 illustrates our generic hybrid approach. ISOBAR
partitions the data into two streams: compressible and in-
compressible bytes, and incorporates a small, constant-sized

metadata block to each (containing the buffer size and the
analysis array, a bitfield of marking which bytes are com-
pressible). The compressible stream is compressed and then
written to disk, while the incompressible stream can be im-
mediately written to disk. There is no dependency between
the two streams, so we may choose to order the operations
how we wish. Thus, we issue an asynchronous write of the in-
compressible stream, then begin compressing the compress-
ible stream. Finally, we write the compressible stream. This
strategy has numerous benefits: we maximize resource uti-
lization by performing network and I/O operations while
compressing, and since compression throughput tends to be
much higher than I/O bandwidth, it is possible to eliminate
the compression costs entirely.

There are roughly two possible performance scenarios of
interleaving, based on the individual performance of com-
pression and file writing, shown in Figure 3. The worst case
occurs when the uncompressed data is written before the
remainder of the data is compressed. This is depicted in
Figure 3a. In this scenario, the compression time is the bot-
tleneck, and so is only partially hidden by the writing of the
incompressible data to disk. However, this case generally oc-
curs when most of the data is deemed compressible, in which
case the increased compression cost directly translates into
substantial data reduction; thus, overall time-to-disk is still
reduced due to a higher compression ratio.

The second scenario shown in Figure 3b occurs if data
compression finishes before the incompressible data has been
fully written, and must wait to write the compressed data
stream. In this scenario, compression time is completely hid-
den, and can be considered a “free” operation with respect
to time. Also, the idle time can be used for other activities,
such as running ISOBAR-analysis on another chunk if avail-
able. A related scenario to this is when data compression
and incompressible data writing finish at approximately the
same time resulting in full utilization of all resources. This
case also completely hides the compression costs.

3.2 Data Layout in ADIOS
The layout of our compressed and uncompressed data on

disk is managed by ADIOS’s self-describing file format (.bp),
which is specifically designed to attain scalable high perfor-
mance I/O, to support delayed consistency and data charac-
terization, and to maintain compatibility with standard file
formats. Also, since this file format is log-based [27], new
data can be appended without incurring any additional over-
head, irrespective of the number of processes or timesteps.
As a result, the performance improvements we report using
our hybrid framework over a single timestep can be main-
tained over multiple timesteps.

For our system, we define two ADIOS groups (or “data
containers”): one for the compressed data, and one for the
uncompressed data. Every writing process submits data to
each of the two groups. Depending on the transport method
chosen in the configuration file, ADIOS can store data from
all the writing processes into a single shared file using col-
lective MPI-IO or multiple files using POSIX I/O with a
separate file handle for each writing process. Fast access to
data for a specific process or timestep is supported via footer
indexes that avoid the known limitation of header-based for-
mats [29], where any change to the length of the file data
requires moving the index.

Figure 4 shows the ADIOS data layout specific to our ap-

Figure 2: The hybrid compression-I/O method; interleaved compression may occur at the compute nodes or the I/O nodes.

(a) Compression is the rate limiting
factor.

(b) Compression interleaving results
in free time usable for the analysis of
the next chunk.

Figure 3: Possible scenarios for compression and incompress-
ible data write times.

plication for a single timestep. ADIOS handles the data
organization among groups via local group headers and in-
dexes. The ISOBAR metadata is stored first within each
group, followed by the payload data. The metadata size is
dependent on the ADIOS system configuration, the chunk
size, and the compute-I/O node ratio. The relative order-
ing of groups is arbitrary, dependent on the order in which
the processes submit data and on synchronization among
them (via a coordination token) [23]. The global footer in-
dexes shown are used for query-driven data retrieval (ac-
cessing a specific timestep or process output). In this work,
we confine our focus to data layout for the write-all/read-all
paradigm, which is ubiquitous in HPC computing, especially
in checkpoint and restart operations. From the standpoint
of future work, however, our framework can be adapted for
the WORM paradigm by leveraging previous work [13] to
optimize the data layout on disk. In addition, support for
compression schemes [19, 18, 17] which offer up to 7 times re-
duction in datasizes can be extended. Together, these possi-
bilitie provide avenues for increasing throughput gains whilst
maintaining read performance.

Figure 4: Data layout (with associated metadata) for a sin-
gle timestep.

Table 1: Average metadata overhead for different interleav-
ing strategies.

Test Case

Average Metadata Overhead (%)

ISOBAR ADIOS

POSIX MPI POSIX MPI

Base 0.00002 0.00002 0.00321 0.00148

ISOBAR at
I/O nodes

0.00004 0.00004 0.00902 0.00417

ISOBAR at
compute nodes

0.00007 0.00007 0.00978 0.00471

Serial ISOBAR 0.00004 0.00004 0.00806 0.00358

The metadata required to support this format is very
small, requiring less than 0.01% overhead in the worst case,
as summarized in Table 1. If applied to 1 GB of data, this
translates into less than 100 KB of overhead. As shown
in the table, the metadata can be split into two categories:
that maintained specifically for ISOBAR, and that required
by ADIOS. The exact amount of metadata is dependent on
the transport method used (POSIX or MPI-IO) as well as

the location of the compressor (compute node or I/O node).
The overhead is minimal in the base case (no compression),
as expected, and maximal when compressing at the compute
nodes, which generates the most individual streams of data.
The metadata cost is also higher for the POSIX transport
method, since this allocates one file per writing process, as
opposed to the single shared file maintained by MPI-IO.

4. PERFORMANCE MODELING
While we demonstrate that our hybrid compression-I/O

methodology provides improved I/O performance in one test-
ing environment, there are many supercomputing systems,
each with widely-varying performance characteristics. Since
our optimization algorithms exhibit a strong dependence on
hardware parameters, it is important to devise an accurate
performance model, so that we can generalize the results col-
lected in Section 5 to other systems. This will enable appli-
cation designers to estimate the benefit of compression given
their particular hardware configuration, problem character-
istics, etc. We therefore develop such a performance model,
which we then validate against empirical data, as reported
in Section 5.4.

4.1 Model Preliminaries
Given our target cluster architecture, we make some un-

derlying assumptions in our model. We assume a fixed com-
pute node to I/O node ratio, ρ, consistent with the major-
ity of I/O staging frameworks currently in use. Further-
more, on each compute node, we assume fixed-size input
chunks of size (C), which are all written following the bulk-
synchronous parallel I/O model. This is a common mode of
operation when writing checkpoint and restart data, which
synchronously flushes the simulation state to file, then con-
tinues with the simulation. We also assume that the I/O
staging framework (e.g., ADIOS) and the network architec-
ture provide a relatively consistent I/O and transfer rate, re-
spectively. As shown in numerous experiments with ADIOS
[22, 23], this is a reasonable assumption to make. Finally,
we require some a priori information about the compression
performance in order to accurately predict overall system
performance. Fortunately, this can be gathered easily by
running the ISOBAR analysis stage on a small, representa-
tive set of data to predict overall performance [30].

To provide a complete model, there are three cases of writ-
ing from compute nodes to disk that we wish to consider for
comparative purposes. The first is when no compression
is performed, and data is written directly to disk (through
the I/O nodes). This forms our base case to compare the
other compression methods against, and allows us to check
the sanity of our model before looking at the more complex
compression models. The remaining cases use ISOBAR in-
terleaved compression, but in different locations. The second
case compresses at the compute-node level. If time-to-disk
is our sole optimization metric, then we expect the second
method of compute-node compression to perform best, ex-
hibiting the greatest aggregate compression throughput due
to the large number of compute cores utilized (by constrast,
compressing at the I/O nodes yields less aggregate compres-
sion throughput by a factor of ρ, which is 8 in our experi-
ments, but can be much higher). Our third and final case
is compressing at the I/O-node level. This case is impor-
tant as future staging architectures shift toward dedicating
compute nodes strictly to simulation work [21], relying on

asynchronous RDMA to offload data to I/O nodes and pre-
vent simulation stalls.

Table 2: Input symbols for the performance models.

Input
Symbol

Description

C The chunk size
ρ Compute to I/O node ratio

θ
Throughput of the collective network
between the compute and I/O nodes

δ Size of the metadata
µr Throughput of the disk reads
µw Throughput of the disk writes
α Fraction of the chunk that is compressible
σ Compression ratio (compressed vs original)

Tprec
Throughput of the ISOBAR
preconditioner

Tcomp Compression throughput
Tdecomp Decompression throughput

Table 3: Output symbols for the performance models.

Output
Symbol

Description

tprec
Time to run the ISOBAR preconditioner
on the data

tcompress
Time to compress the data (algorithm
dependent)

ttransfer Total transfer time 1

tcomp transfer Transfer time for compressible data 1

tincomp transfer Transfer time for incompressible data 1

twrite Time to write data to the disk

tcomp write
Time to write compressible data to the
disk

tincomp write
Time to write incompressible data to the
disk

twrite depend

Time for all the dependencies to complete
before writing the compressible byte
stream

tdecompress
Time to decompress the data (algorithm
dependent)

tincomp read
Time to read the incompressible data from
the disk

tcomp read
Time to read the compressible data from
the disk

tcombine
Time to reconstruct data from
compressible and incompressible portions

tcombine depend
Time until all data is ready to be
recombined into the original chunk

tcomp ion
Intermediate processing time for handling
compressible data at I/O nodes

tincomp cn
Itermediate processing time for handling
incompressible data at compute nodes

ttotal Total end-to-end data transfer time
τ Aggregate throughput

1Interpretation of transfer direction based on context of us-
age i.e., compute to I/O for writes and I/O to compute for
reads.

In this work, we refer to the I/O node as a staging node on
the system that receives the data from the compute nodes
and sends it to the OSS (Object Storage Servers), which

manage writing of the data to the Lustre File System. We
do not operate at these file system nodes.

We will build the models in increasing order of complexity:
the base case of no compression, compression at the I/O
nodes, and compression at the compute nodes. Tables 2
and 3 summarize the symbols for parameters and output
variables used in the model. In all scenarios, the aggregate
throughput τ is given by

τ =
ρ · C
ttotal

, (1)

where ρ is the number of compute nodes and C is the chunk
size.

4.2 Base Case: No Compression
In this scenario, we simply transfer the simulation data

from the compute nodes to the I/O nodes (ttransfer), fol-
lowed by writing the data to file (twrite), in a synchronous
manner. The end-to-end transfer time for a chunk of data
from the compute nodes to the disk (ttotal = ttransfer +
twrite) is similarly simple, given our assumptions on aggre-
gate network and disk bandwidths:

ttransfer =
C

θ
+
C · ρ
θ

(2)

twrite =
C · ρ
µw

(3)

ttotal =
C

θ
(1 + ρ) +

C

µw
ρ (4)

To reload the data from disk, the same operations occur
in reverse, except with read throughputs instead of write
throughputs.

4.3 I/O Node Compression Case
An overview of the compression-I/O workflow is shown in

Figure 5. The I/O nodes implement the ISOBAR precon-
ditioner and interleave the disk writes of the incompressible
byte-columns with compression.

The compute nodes merely forward the raw data to the
I/O nodes. In our design, we issue the I/O operation for
the incompressible bytes asynchronously, allowing us to con-
currently perform compression. Thus, the writing of the
compressed data waits (if necessary) on the incompressible
stream writing to complete. This can be captured more in-
tuitively with the task dependency graph shown in Figure 6.
Each vertex represents a task and directed edges represent
task dependencies. If each edge is weighted to be the comple-
tion time of the originating task, then the longest path from
the head vertex to the tail vertex, also known as the critical
path, gives the overall run time of the interleaved process.
Using this diagram, we can capture the overall runtime in a
single equation. First, we define the cost of each individual
task.

The total preconditioning time in this case is ρ times the
preconditioning time of a single chunk. Moreover, the par-
titioning has to be handled by the I/O node. The partition-
ing throughput is approximately equal to the preconditioner
throughput. Thus, the total preconditioning time is given

Figure 5: Compute-I/O interleaving strategy with compres-
sion at the I/O nodes.

Figure 6: Task dependencies for the I/O node compression
case.

by:

tprec = 2

(
ρC

Tprec

)
(5)

tcompress =
ραC

Tcomp
(6)

tincomp write =
ρ(1 − α)C

µw
(7)

tcomp write =
(ασC + δ)ρ

µw
(8)

Looking at Figure 6, we see that incompressible write
(tincomp write) and compression (tcompress) are interleaved.
Thus, the length of the critical path, and therefore the over-
all writing time, can be calculated as

ttotal = ttransfer + tprec

+ max(tcompress, tincomp write)

+ tcomp write. (9)

The reading stage of restoring the chunks into memory
from disk requires the dependency graph to be inverted (that
is, each directed edge reversed). This maintains the inter-
leaving property of decompression and reading of incom-
pressible byte-columns. The preconditioner task is replaced
with reconstruction, which reorders the decompressed byte
streams and the incompressible byte stream to their origi-
nal locations in memory. The overall reading time can be
calculated as

ttotal = tcomp read

+ max(tdecompress, tincomp read)

+ tcombine + ttransfer. (10)

4.4 Compute Node Compression Case
The integration of ISOBAR into the compute nodes is a

more nuanced task. Figure 7 shows the general workflow
of the interleaved compression and network-I/O, and Fig-
ure 8 shows the corresponding task-dependency graph for
this scenario.

Figure 7: Compute-I/O interleaving strategy with compres-
sion at the compute nodes.

After the preconditioner is run, the incompressible byte-
columns are sent asynchronously while the remaining byte-
columns are compressed. Once the incompressible byte-
columns are sent, the I/O nodes may immediately issue
its asynchronous writing operation. Once the compression
is complete, the compressed stream must wait for the in-
compressible network transfer to complete (if necessary) to
transfer its results. Finally, once the incompressible bytes
are written to disk, the compressed stream may be written.

Figure 8: Task dependencies for the compute node compres-
sion case.

Individually, these operations are modeled as:

tprec =
C

Tprec
(11)

tincomp transfer =
(1 − α)C

θ
(1 + ρ) (12)

tincomp write =
(1 − α)C

µw
ρ (13)

tcompress =
αC

Tcomp
(14)

tcomp transfer =
(ασC + δ)

θ
(1 + ρ) (15)

tcomp write =
(ασC + δ)

µw
ρ (16)

As discussed in Section 3 and seen in the dependency
graph in Figure 8, interleaving is achieved through the com-
pression and transfer/writing of network data. Addition-
ally, there may be interleaving of the transfer of compressed
byte-columns and the incompressible byte writing. Thank-
fully, given the structure of the graph and the residence of
the tasks on different nodes, we may define the critical path
using the following two quantities:

tcomp ion = max(tcompress, tincomp transfer)

+ tcomp transfer (17)

twrite depend = max(tcomp ion,

tincomp transfer + tincomp write) (18)

tcomp ion represents the time taken to compress and send the
compressible byte-columns to the I/O nodes, accounting for
stalls caused by a longer incompressible byte-column trans-
fer. twrite depend represents the time taken for all dependen-
cies to clear before writing the compressible byte stream,
including possible stalls at the second network-I/O inter-
leaving level. Adding in the preconditioner and the com-
pressible byte-column writing, the total time-to-disk can be
defined as follows:

ttotal = tprec + twrite depend + tcomp write (19)

Once again, the reading of hybrid-compressed data chunks
causes an inversion of the dependency graph, except that
write operations are replaced with read operations, the trans-
fers are reversed, the compressed byte-columns are decom-
pressed, and the preconditioner task is replaced with the
reconstruction task. In fact, in this particular instance, the

inverted task graph is isomorphic to the original task graph,
thus simplifying building the read model. The compress-
ible byte-columns are read and then asynchronously sent to
the compute nodes while the incompressible byte-columns
are read. Afterwards, the incompressible byte-columns are
transferred asynchronously while the decompression process
begins. Finally, the compressible and incompressible columns
are recombined. This is captured in the following model:

tcomp read =
(ασC + δ)ρ

µr
(20)

tcomp transfer =
ασC + δ

θ
(21)

tdecompress =
ασC

Tdecomp
(22)

tincomp read =
(1 − α)Cρ

µr
(23)

tincomp transfer =
(1 − α)C

θ
(24)

The reconstruction time is assumed to be constant for fixed
sized data chunks. Similar to the write case, the critical
paths are defined as follows:

tincomp cn = max(tincomp read, tcomp transfer)

+ tincomp transfer (25)

tcombine depend = max(tincomp cn,

tcomp transfer + tdecompress), (26)

where tincomp cn represents the time taken for the incom-
pressible byte stream to reach the compute nodes, taking
into account stalls as a result of the compressible byte stream
being sent first, and tcombine depend represents the time until
all data is ready to be recombined into the original chunk of
data. Thus, the total time to restore the data to its original
state is

ttotal = tcomp read + tcombine depend + tcombine. (27)

5. EXPERIMENTS AND RESULTS
In this section, we present the empirical evaluations of

our framework via a set of microbenchmarks to evaluate the
throughput performance for the writes as well as the reads.
We report the percentage improvement in performance ob-
tained using the hybrid compression-I/O framework (at the
compute as well as the I/O nodes) over the base case with-
out compression. We also report theoretical evaluations for
the interleaving strategies discussed in Section 4 via perfor-
mance model simulations. Lastly, we specify the parameters
used for the simulations and present a comparison between
the predicted and actual system performance.

5.1 Experimental Setup
Our experiments were conducted on the Cray XK6 Jaguar

cluster at the Oak Ridge Leadership Computing Facility
(OCLF). It consists of 18, 688 compute systems, each con-
taining a 16-core 2.2 GHz AMD Opteron 6724 processor and
32 GB of RAM. It uses the Lustre [31] file system for par-
allel I/O and a high performance Gemini interconnect for
communication. The compute-I/O node ratio for all experi-
ments is kept fixed at 8 : 1. The definitive choice of a single
optimal ratio is non-trivial, since it depends on the size of

the data being moved, the degree of inter-node communica-
tion, as well as the memory requirement of the staging nodes.
The study in this realm is the subject of future work.

We evaluated the system characteristics using a set of
micro-benchmarks to measure the network and disk I/O
throughputs. The aggregate network throughput for our
experiment cases was measured to be 530 MB/s on an av-
erage, while the read and write throughputs were measured
to be 62.6 MB/s and 15.6 MB/s per node, respectively. It
should be noted that for all our experiments, we refer to the
term “node” as a processing core on the Jaguar system.

We use the gts_chkp_zion, flash_velx and s3d_temp

datasets discussed in [11, 9, 30, 33] for our analyses. The
datasets are chosen so as to reflect the entire compressibil-
ity spectrum across a range of scientific datasets. The GTS
dataset consists of about 2.4 million double precision values
of the zion variable’s checkpoint and restart data for each
10th timestep of the GTS simulation. It consists of entirely
unique values. It has a high degree of apparent randomness
and is one of the most “hard-to-compress” scientific dataset.
Note that this is only apparent randomness; in reality, the
dataset contains patterns that are non-trivial to isolate, pre-
venting general-purpose compressors from leveraging them.

The FLASH dataset consists of about 68.1 million double
precision values of the velocity variable with entirely unique
values. It is also hard-to-compress and exhibits compress-
ibility characteristics similar to most scientific datasets dis-
cussed in [30]. Therefore, it is a good representative for a
large number of scientific datasets under consideration.

The S3D dataset, on the other hand, consists of about
20.2 million double precision values of the temperature vari-
able with 46% unique values. It is relatively less hard-to-
compress in comparision with the other two datasets.

The ISOBAR framework supports the use of any general
purpose byte-level compression algorithm. However, for our
evaluations, we use zlib [12], designed by Jean-loup Gailly
and Mark Adler. It is a lossless compression /decompression
algorithm that uses an LZ77 algorithm variant to compress
the data in a block sequence. In addition to scoring high
marks in general-purpose compression rate and compression
throughput, the memory usage of zlib is independent of any
input data.

In addition to the three interleaving strategies discussed
in Section 4, we also include a serial compression case for
completeness sake, wherein we apply ISOBAR compression
serially, i.e., we do not interleave compressible and incom-
pressible data processing. This is essentially an extension of
the base case, allowing us to directly evaluate the impact of
interleaving.

5.2 Write Performance
Figure 9 shows the results gathered from write micro-

benchmarks. For each dataset, the results are reported in
terms of the percent improvement in the write throughput
relative to the base case, measured for each of the four sce-
narios (i.e. the base case, interleaving at compute nodes,
and interleaving at I/O nodes, and the serial compression),
versus the number of compute nodes.

We observe that both interleaved approaches (compute
node and I/O node compression) yield an improvement in
performance over state-of-the-art I/O middleware framework
without compression (the base case). As expected, interleav-
ing using compute node compression results in the highest

10%

20%

30%

40%

50%

 8 32 128 512 2048In
c
re

a
s
e

 i
n

 I
/O

 T
h

ro
u

g
h

p
u

t
R

e
la

ti
v
e

to
 B

a
s
e

 C
a

s
e

 (
N

o
 C

o
m

p
re

s
s
io

n
)

S3D

Compute Node (Model)

I/O Node (Model)

Compute Node (Empirical)

I/O Node (Empirical)

Compress then Write

5%

10%

15%

20%

25%

30%

35%

 8 32 128 512 2048

Number of Compute Nodes (8 per I/O Node)

FLASH

0%

5%

10%

15%

 8 32 128 512 2048

GTS

Figure 9: Model and empirical end-to-end write throughput versus number of compute nodes (weak scaling).

performance gain, from around 12% over the base case for
the GTS dataset and to as high as 46% over the base case for
the S3D dataset. Improvements for the FLASH dataset are
31% over the base case. On the other hand, interleaving us-
ing I/O node compression yields improvements in the range
of about 8% for the GTS dataset, 37% for the S3D dataset,
and 25% for the FLASH dataset. Using ISOBAR serially
yields a modest 1% (GTS) to 16% (S3D) gain in through-
put performance, suggesting that a significant portion of the
performance boost comes from our compression-I/O inter-
leaving strategy, affirming the efficacy of this approach.

The experiments are conducted with weak scaling up to
2048 nodes on the Jaguar system. The stability of the results
over a varying number of cores suggests that the framework
is, indeed, scalable.

5.3 Read Performance
We carried out equivalent read micro-benchmark tests on

the disk data, evaluating the base case (without decompres-
sion) and each of the two interleaved decompression strate-
gies (decompression at the compute nodes and at the I/O
nodes).

The experimentation results of the read microbenchmarks
are shown in Figure 10 in the form of percent improvements
over the base case (i.e., direct reads without decompression).
Both the interleaved approaches for the reads exhibit perfor-
mance gains of the same order as reported for the writes for
all the datasets. This suggests that the hybrid framework is
symmetric with respect to reads as well as writes.

In order to support asynchronous processing of the com-
pressible and incompressible portions of the data for the
interleaved scenarios, we used a separate file per ADIOS
group. The reason for this is that ADIOS currently reads
data from all the groups upfront when using a single file and
this operation is inherently blocking, i.e., a request for the
read of only the compressed buffer requires the entire data
to be read. The two-file-approach does not affect the write
performance.

5.4 Performance Modeling
The performance models for evaluation were setup to use

the following parameter values. The compute-I/O node ra-
tio was chosen as ρ = 8 : 1. Compression efficiency is

sensitive to the chunk size for most lossless compression
techniques that adapt based on calculated statistics of the
subject data [35, 15]. We chose a chunk size C = 3 MB
taking into account the sensitivity of most lossless compres-
sion techniques to the input chunk size [35]. The ISOBAR
preconditioner operates at an approximate throughput of
Tprec = 500 MB/s. Other ISOBAR specific parameters were
chosen based on the statistical analyses of 24 different scien-
tific datasets [30], 19 of which were “hard-to-compress.” The
average values of these parameters based on the application
type (i.e., α, σ, Tcomp, Tdecomp from Table 2) are shown in
Table 4.

The predicted performance for the data writes and reads
for all the test scenarios and evaluation datasets are shown
in Figure 9 and 10, respectively. It is evident that the the-
oretical performance improvements are generally consistent
with the empirical results. Though some small overestimat-
ing bias is visible, it is itself relatively consistent, and can
therefore be readily factored out (as has been done in Ta-
ble 4). Additionally, the fact that the trends exhibited by the
model predictions are equivalent to those of the measured
results points to a mismeasured system parameter as the
likely culprit for the minor discrepency that exists. Thus,
the performance model can be used to closely approximate
the true behavior of the system.

In addition, we also performed theoretical evaluations of
our framework on other scientific datasets from various ap-
plication domains. These include the MSG [7], OBS [7],
and NUM [8, 28] datasets, all of which normally produce a
reasonable amount of data per process. The results for the
best strategy (interleaving at the compute nodes) for reads
as well as writes are shown in the Table 4.

We observe that the expected theoretical performance gains
for these more typical datasets are as high as 32%, even af-
ter accounting for the observed model bias. This shows that
our framework improves significantly on less harder to com-
press datasets and that the performance gains are directly
proportional to the compression ratio of datasets.

6. RELATED WORK
The ISOBAR hybrid compression framework utilizes the

the I/O forwarding paradigm [3], which is a common tech-

25%

30%

35%

40%

45%

50%

 8 32 128 512 2048In
c
re

a
s
e

 i
n

 I
/O

 T
h

ro
u

g
h

p
u

t
R

e
la

ti
v
e

to
 B

a
s
e

 C
a

s
e

 (
N

o
 C

o
m

p
re

s
s
io

n
)

S3D

Compute Node (Model)

I/O Node (Model)

Compute Node (Empirical)

I/O Node (Empirical)

Read then Decompress

15%

20%

25%

30%

35%

 8 32 128 512 2048

Number of Compute Nodes (8 per I/O Node)

FLASH

0%

5%

10%

15%

 8 32 128 512 2048

GTS

Figure 10: Model and empirical end-to-end read throughput versus number of compute nodes (weak scaling).

nique for alleviating the I/O bottleneck in super-computing
environments, and is the subject of active research. The
multithreaded ZOID architecture [16], developed under the
ZeptoOS [4] project on the IBM BlueGene/P, is a state-of-
the-art data staging system. LambdaRAM [32] is an asyn-
chronous data staging system which mitigates WAN latency
via dedicated staging nodes. IODC [26] is a portable MPI-
IO layer implementing a caching framework wherein certain
tasks, such as file caching, consistency control, and collective
I/O optimization, are delegated to a small set of I/O Dele-
gate nodes. Recent work in ADIOS includes the DataStager
component [2], which focuses on I/O performance through
data staging via network rate limiting and I/O phase pre-
diction, and JITStaging [1], which provides a framework for
placing data filter, analysis and organization code in the
data pipeline to reduce overall time-to-data.

SCR [6] and PLFS [5] are well-known middleware ap-
proaches designed specifically for single (N-N) and shared
(N-1) checkpointing, respectively. While SCR provides ef-
ficient checkpoints and improves system reliability by shift-
ing checkpoint I/O workload to hardware better suited for
the job, it is not suitable for applications that need process-
global access to checkpoint files. Moreover, hardware and file
system support is required to cache checkpoint files. PLFS,
on the other hand, transparently rearranges shared check-
point patterns into single patterns, thereby decreasing the
checkpoint time by taking advantage of the increased band-
width. However, this requires managing the overwhelming
pressure resulting from the simultaneous creation of thou-
sands of files within a single directory. Also, since PLFS is

specifically a checkpoint file system and not a general pur-
pose file system, certain usage patterns may suffer a signifi-
cant performance hit [5].

Our approach differs in that we focus on optimizing data
staging I/O throughput via compression and resource in-
terleaving. Some recent work has examined compression in
a data staging context [36]; however, only traditional com-
pression algorithms are explored, which do not function well
on the hard-to-compress scientific data we consider, and re-
source interleaving is not used to hide the compression and
I/O synchronization costs.

Previous work on data deduplication can also be consid-
ered a form of compression, detecting and eliminating du-
plication in data with a goal to improving disk utilization.
State-of-the-art deduplication systems include HYDRAstor
[10], MAD2 [34], and others [14]. Deduplication can oper-
ate at either sub-file or whole-file scale; the relative merits
of these aproaches have been explored [25]. Although these
systems are scalable, provide a good deduplication efficiency,
and attain near-optimal throughput for common filesystem
data, they are unfortunately less effective when dealing with
peta-scale scientific data. Unlike typical file system data,
scientific data exhibits very few duplicate non-contiguous
patterns, nullifying much of the effectiveness of the dedu-
plication approach. Furthermore, the possibility of running
compression in-situ remains desirable for performance rea-
sons, which is not possible with filesystem-bound algorithms
such as deduplication.

Table 4: Dataset evaluations for the best strategy of interleaving at the compute nodes.

Application α σ Tcomp Tdecomp Avg. write gain (%)* Avg. read gain (%)*

GTS † 0.25 0.527 90 414 11.26 13.40

FLASH † 0.25 0.019 149 127 30.87 32.53

S3D † 0.375 0.152 186 457 45.43 46.64
MSG 0.375 0.361 140 560 31.61 31.84
OBS 0.25 0.203 43 172 24.55 24.99
NUM 0.25 0.231 163 652 23.51 23.93

†Validated by experimental results. *Adjusted for model bias.

7. CONCLUSION
The I/O staging paradigm has arisen to cope with the

growing gap between computing power and I/O bandwidth
in current peta-scale HPC environments. While providing
increased and more consistent performance, the sheer scale
of the data necessitates lossless compression as a data reduc-
tion methodology, leaving the technical challenge of absorb-
ing the costs of compression and overhead in parallel I/O
performance on nonuniform chunk sizes.

To meet these challenges, we presented the ISOBAR hy-
brid compression-I/O framework. The ISOBAR precondi-
tioner allows us to separate the high-entropy components of
the data from the low-entropy components, forming inde-
pendent streams that may be interleaved. The high-entropy
components are sent across the network and to disk asyn-
chronously while the low-entropy data is compressed, hid-
ing the compression costs and fully utilizing all compute,
network, and I/O resources. Placement of the compression
routine itself is an important issue, so we implement a hy-
brid approach where the compression phase may be placed
either on the compute nodes or the I/O nodes, trading off
between aggregate compression throughput and leaving the
compute nodes free to run the application at hand. Finally,
each of the implementations are accurately modeled by a
set of performance metrics, allowing a generalization of our
methodology’s performance past the experimental environ-
ment.

We demonstrated the efficiency of compression-I/O inter-
leaving, improving end-to-end I/O throughput by predicted
values ranging from 12 to 46% on datasets that are con-
sidered particularly hard-to-compress. We therefore believe
that data compression can be used effectively within an HPC
environment to help bridge the computational and I/O per-
formance gap.

8. ACKNOWLEDGEMENTS
We would like to thank ORNL’s and ANL’s leadership

class computing facilities, OLCF and ALCF respectively, for
the use of their resources. We would also like to acknowl-
edge the use of those scientific data sets at Flash Center
for Computational Science. This work was supported in
part by the U.S. Department of Energy, Office of Science
and the U.S. National Science Foundation (Expeditions in
Computing). Oak Ridge National Laboratory is managed
by UT-Battelle for the LLC U.S. D.O.E. under contract no.
DEAC05-00OR22725

9. REFERENCES
[1] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and

S. Klasky. Just in time: Adding value to the IO
pipelines of high performance applications with
JITStaging. In Proceedings of the 20th International
Symposium on High Performance Distributed
Computing, HPDC ’11, pages 27–36. ACM, 2011.

[2] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng. DataStager: Scalable data
staging services for petascale applications. In
Proceedings of the 18th International Symposium on
High Performance Distributed Computing, HPDC ’09,
pages 39–48. ACM, 2009.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang,
R. Latham, R. Ross, L. Ward, and P. Sadayappan.

Scalable I/O forwarding framework for
high-performance computing systems. In International
Conference on Cluster Computing and Workshops,
CLUSTER ’09, pages 1–10. IEEE, 2009.

[4] P. Beckman, K. Iskra, K. Yoshii, and H. Naik. The
ZeptoOS project. http://www.zeptoos.org/.

[5] J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate.
PLFS: a checkpoint filesystem for parallel
applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, SC ’09, pages 21:1–21:12. ACM, 2009.

[6] G. Bronevetsky and A. Moody. Scalable I/O systems
via node-local storage: Approaching 1 TB/sec file I/O.
Technical report, Lawrence Livermore National
Laboratory, 2009.

[7] M. Burtscher and P. Ratanaworabhan. FPC: a
high-speed compressor for double-precision
floating-point data. IEEE Transactions on Computers,
58:18–31, 2009.

[8] M. Burtscher and I. Szczyrba. Numerical modeling of
brain dynamics in traumatic situations - Impulsive
Translations. In Mathematics and Engineering
Techniques in Medicine and Biological Scienes, pages
205–211, 2005.

[9] J. H. Chen, A. Choudhary, B. Supinski, M. DeVries,
E. Hawkes, S. Klasky, W. Liao, K. Ma,
J. Mellor-Crummey, N. Podhorszki, R. Sankaran,
S. Shende, and C. Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D.
Computational Science and Discovery, 2(1):015001,
2009.

[10] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,
W. Kilian, P. Strzelczak, J. Szczepkowski,
C. Ungureanu, and M. Welnicki. HYDRAstor: a
scalable secondary storage. In Proccedings of the 7th
Conference on File and Storage Technologies, pages
197–210. USENIX Association, 2009.

[11] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes,
M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner,
J. W. Truran, and H. Tufo. FLASH: an adaptive mesh
hydrodynamics code for modeling astrophysical
thermonuclear flashes. The Astrophysical Journal
Supplement Series, 131:273–334, Nov. 2000.

[12] J. Gailly and M. Adler. Zlib general purpose
compression library. http://zlib.net/, Jan. 2012.

[13] Z. Gong, S. Lakshminarasimhan, J. Jenkins, H. Kolla,
S. Ethier, J. Chen, R. Ross, S. Klasky, and N. F.
Samatova. Multi-level layout optimization for efficient
spatio-temporal queries on ISABELA-compressed
data. In Proceedings of the 26th IEEE International
Parallel & Distributed Processing Symposium, IPDPS
’12, 2012.

[14] F. Guo and P. Efstathopoulos. Building a
high-performance deduplication system. In Proceedings
of the 2011 USENIX Annual Technical Conference,
2011.

[15] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang,
and Z. Xu. RCFile: a fast and space-efficient data
placement structure in MapReduce-based warehouse
systems. In Proceedings of the 27th IEEE

International Conference on Data Engineering, ICDE
’11, pages 1199–1208, 2011.

[16] K. Iskra, J. M. Romein, K. Yoshii, and P. Beckman.
ZOID: I/O-forwarding infrastructure for petascale
architectures. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 153–162, 2008.

[17] Y. Jin, S. Lakshminarasimhan, N. Shah, Z. Gong,
C. Chang, J. Chen, S. Ethier, H. Kolla, S.-H. Ku,
S. Klasky, R. Latham, R. Ross, K. Schuchardt, and
N. F. Samatova. S-preconditioner for multi-fold data
reduction with guaranteed user-controlled accuracy. In
Proceedings of the IEEE 11th International Conference
on Data Mining, ICDM ’11, pages 290–299, 2011.

[18] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar,
Z. Gong, H. Kolla, S.-H. Ku, S. Ethier, J. Chen,
C. Chang, S. Klasky, R. Latham, R. Ross, and N. F.
Samatova. ISABELA-QA: Query-driven data analytics
over ISABELA-compressed scientific data. In
Proceedings of the 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 31:1–31:11. ACM, 2011.

[19] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky,
R. Latham, R. Ross, and N. Samatova. Compressing
the incompressible with ISABELA: In-situ reduction
of spatio-temporal data. In Proceedings of the 17th
International European Conference on Parallel and
Distributed Computing, Euro-Par ’11, pages 366–379,
2011.

[20] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. Parallel netCDF: a high-performance
scientific I/O interface. In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, SC ’03,
page 39. ACM, 2003.

[21] J. Liu, J. Wu, and D. Panda. High performance
RDMA-based MPI implementation over InfiniBand.
International Journal of Parallel Programming,
32:167–198, 2004.

[22] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin. Flexible IO and integration for scientific codes
through the adaptable IO system (ADIOS). In
Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed
Environments, CLADE ’08, pages 15–24. ACM, 2008.

[23] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rich IO methods for portable
high performance IO. In Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed
Processing, IPDPS ’09, pages 1–10, 2009.

[24] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,
T. Kordenbrock, K. Schwan, and M. Wolf. Managing
variability in the IO performance of petascale storage
systems. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10,
pages 1–12, 2010.

[25] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. ACM Transactions on Storage,
7(4):1–20, Feb. 2012.

[26] A. Nisar, W.-K. Liao, and A. Choudhary. Scaling
parallel I/O performance through I/O delegate and

caching system. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’08, pages 1–12,
2008.

[27] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan,
M. Wingate, and M. Wolf. ...and eat it too: high read
performance in write-optimized HPC I/O middleware
file formats. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, PDSW ’09,
pages 21–25. ACM, 2009.

[28] J. M. Prusa, P. K. Smolarkiewicz, and A. A.
Wyszogrodzki. Simulations of gravity wave induced
turbulence using 512 PE CRAY T3E. International
Journal of Applied Mathematics and Computational
Science, 11(4):883–898, 2001.

[29] R. Rew and G. Davis. NetCDF: an interface for
scientific data access. IEEE Computer Graphics and
Applications, 10(4):76–82, July 1990.

[30] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. Chang,
S.-H. Ku, S. Ethier, S. Klasky, R. Latham, R. Ross,
and N. F. Samatova. ISOBAR preconditioner for
effective and high-throughput lossless data
compression. In Proceedings of the 28th International
Conference on Data Engineering, ICDE ’12. IEEE,
2012.

[31] P. Schwan. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
Symposium, pages 400–407, July 2003.

[32] V. Vishwanath, R. Burns, J. Leigh, and M. Seablom.
Accelerating tropical cyclone analysis using
LambdaRAM, a distributed data cache over wide-area
ultra-fast networks. Future Generation Computer
Systems, 25(2):184–191, 2009.

[33] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee,
S. Ethier, J. L. V. Lewandowski, G. Rewoldt, T. S.
Hahm, and J. Manickam. Gyro-kinetic simulation of
global turbulent transport properties in tokamak
experiments. Physics of Plasmas, 13:092505, 2006.

[34] J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2: a
scalable high-throughput exact deduplication
approach for network backup services. In Proceedings
of the IEEE 26th Symposium on Mass Storage Systems
and Technologies, MSST ’10, pages 1–14, 2010.

[35] T. A. Welch. A technique for high-performance data
compression. Computer, 17(6):8–19, June 1984.

[36] B. Welton, D. Kimpe, J. Cope, C. Patrick, K. Iskra,
and R. Ross. Improving I/O forwarding throughput
with data compression. In International Conference on
Cluster Computing, CLUSTER ’11, pages 438–445.
IEEE, 2011.

[37] M. Yang, R. E. McGrath, and M. Folk. HDF5 - a high
performance data format for earth science. In 21st
International Conference on Interactive Information
Processing Systems (IIPS) for Meteorology,
Oceanography and Hydrology, 2005.

