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Abstract. Sizes of compressed bitmap indexes and compressed data are
significantly affected by the order of data records. The optimal orders of
rows and columns that minimizes the index sizes is known to be NP-hard
to compute. Instead of seeking the precise global optimal ordering, we de-
velop accurate statistical formulas that compute approximate solutions.
Since the widely used bitmap indexes are compressed with variants of the
run-length encoding (RLE) method, our work concentrates on comput-
ing the sizes of bitmap indexes compressed with the basic Run-Length
Encoding. The resulting formulas could be used for choosing indexes to
build and to use. In this paper, we use the formulas to develop strategies
for reordering rows and columns of a data table. We present empirical
measurements to show that our formulas are accurate for a wide range of
data. Our analysis confirms that the heuristics of sorting columns with
low column cardinalities first is indeed effective in reducing the index
sizes. We extend the strategy by showing that columns with the same
cardinality should be ordered from high skewness to low skewness.

1 Introduction

Bitmap indexes are widely used in database applications [4, 16, 25, 30, 34]. They
are remarkably efficient for many operations in data warehousing, On-Line An-
alytical Processing (OLAP), and scientific data management tasks [6, 10, 22, 26,
28, 29]. A bitmap index uses a set of bit sequences to represent the positions of
the values as illustrated in Figure 1. In this small example, there is only a single
column X in the data table, and this column X has only seven distinct values 0,
1, . . . , 5. Corresponding to each distinct value, a bit sequence, also known as a
bitmap, is used to record which rows have the specific value. This basic bitmap
index requires C×N bits for a column with C distinct values and N rows. In the
worst case, where every value is distinct, the value of C is N , this basic bitmap
index requires N2 bits, which is exceedingly large even for modest datasets. To
reduce the index sizes, a bitmap index is typically compressed [4, 23,30].
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bitmaps
RID X b0 b1 b2 b3 b4 b5

=0 =1 =2 =3 =4 =5

1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 1 0 1 0 0 0 0
4 2 0 0 1 0 0 0
5 3 0 0 0 1 0 0
6 4 0 0 0 0 1 0
7 4 0 0 0 0 1 0
8 5 0 0 0 0 0 1

Fig. 1. The logical view of a sample bitmap index with its seven bitmaps shown as the
seven columns on the right. In this case, a bit is 1 if the value of X in the corresponding
row is the value associated with the bitmap.

The most efficient compression techniques for bitmap indexes are based on
run-length encoding (RLE) [3, 30], which can be significantly affected by order-
ing of the rows [21, 28]. The best known strategy for ordering the columns is
to place the column with the lowest cardinality first [21]. However, much of the
earlier work only analyze the worst case scenario and is only applicable to uni-
form random data. In this work, we provide an analysis strategy that works for
non-uniform distributions and therefore provide more realistic understanding of
how to order the columns. We demonstrate that our formulas produce accurate
estimates of the sizes. Our analysis also leads to a new ordering strategy: for
columns with the same cardinality order the columns with high skew first.

2 Related Work

The size of a basic bitmap index can grow quickly for large datasets. The meth-
ods for controlling index sizes mostly fall in one of the following categories,
compression [3, 7, 30], binning [19, 33] and bitmap encoding [9, 27, 32]. In this
paper, we concentrate on compression. More specifically, how column and row
ordering affects the sizes of compressed bitmap indexes. In this section, we pro-
vide a brief review of common compression techniques for bitmap indexes, and
reordering techniques for minimizing these index sizes.

2.1 Compressing bitmap indexes

Any lossless compression technique could be used to compress a bitmap index.
However, because these compressed bitmaps need to go through complex com-
putations in order to answer a query, some compression methods are much more
effective than others. In a simple case, we could read one bitmap and return
it as the answer to a query, for example, the bitmap b1 contains the answer to
query condition “0 < X < 2.” However, to resolve the query condition “X > 2,”
we need to bring bitmaps b3 through b6 into memory and then perform three



bitwise logical OR operations. In general, we may access many more bitmaps
and perform many more operations.

To answer queries efficiently, we need to read the bitmaps quickly and perform
the bitwise logical operations efficiently. We can not concentrate on the I/O
time and neglect the CPU time. For example, the well-known method LZ77 can
compress well and therefore reduce I/O time, however, the total time needed
with LZ77 compression is much longer than with specialized methods [17,31].

Among the specialized bitmap compression methods, the most widely used
is the Byte-aligned Bitmap Code (BBC) [3], which is implemented in a popu-
lar commercial database management system. In tests, it compresses nearly as
well as LZ77, but the bitwise logical operations can directly use the compressed
bitmaps and therefore require less memory and less time [2,17]. Another method
that works quite well is the Word-Aligned Hybrid (WAH) code [30, 31]. It per-
forms bitwise logical operations faster than BBC, but takes up more space on
disk. This is because WAH works with 32-bit (or 64-bit) words while BBC works
with 8-bit bytes. Working with a larger unit of data reduces the opportunity
for compression, but the computations are better aligned with the capability
of CPUs. Due to its effectiveness, a number of variations on WAH have also
appeared in literature [11,12,14].

The key idea behind both BBC and WAH is Run-Length Encoding (RLE)
that represents a sequence of identical bits with a count. They represent short
sequences of mixed 0s and 1s literally, and BBC and the newer variants of WAH
also attempt to pack some special patterns of mixed 0s and 1s. In the literature,
each sequence of identical values is called a run. To enable a concise analysis,
we choose to analyze the bitmap index compressed with RLE instead of BBC or
WAH. In a straightforward implementation of RLE, one word is used to record
each run. Therefore, our analysis focuses on the number of runs.

The commonly used bitmap compression methods such as BBC and WAH
are more complex than RLE, and their compressed sizes are more difficult to
compute. The existing literature has generally avoided directly estimating the
compressed index sizes [18, 20, 21, 28]. In this work, we take a small step away
from this general practice and seek to establish an accurate estimation for the
sizes of RLE compressed bitmap indexes. We will show that our formulas are
accurate and amenable to analysis.

2.2 Data Reordering Techniques

Reordering can improve the compression for data and indexes [1, 21]. Some of
the earliest work on this subject was designed to minimize the number of disk
accesses needed to answer queries by studying the consecutive retrieval prop-
erty [13, 15]. Since the bitmap index can be viewed as a bit matrix, minimizing
the index sizes is also related to the consecutive ones property [8]. These proper-
ties are hard to achieve and approximate solutions are typically used in practice.

A widely used data reordering strategy is to sort the data records in lexi-
cographical order [5, 20, 24]. Many alternative ordering methods exist, one well-
known example is the Gray code ordering. No matter how sorting is done, a



common question is which column to use first. There is a long history of publi-
cations on this subject. Here is a brief review of a few of them.

One of the earliest publications on this subject was by Olken and Rotem [24].
In that paper, the authors investigated both deterministic and probabilistic mod-
els of data distribution and determined that rearranging data to optimize the
number of runs is NP-Complete via reduction to the Traveling Salesman Prob-
lem (TSP). Under a probabilistic model, the optimal rearrangement for each at-
tribute has the form of a double pipe organ. The key challenge for implementing
their recommendation is that the computational complexity grows quadratically
with N , the number of rows in the dataset.

Pinar et al. [28] similarly converted the problem of minimizing the number of
runs into a Traveling Salesman Problem. They suggested Gray code ordering as
an efficient alternative to the simple lexicographical ordering or TSP heuristics,
and presented some experimental measurements to confirm the claim.

Apaydin et al. considered two different types of bitmap indexes under lex-
icographical ordering and Gray code ordering [5]. They found that Gray code
ordering gives slightly better results for the Range encoded bitmap index.

In a series of publications, Lemire and colleagues again proved that minimiz-
ing the number of runs is NP hard and affirmed that sorting the columns from
the lower cardinality is an effective strategy [18,20,21].

All these analyses focus on the bit matrix formed by a bitmap index and
consider essentially the worst case scenario, therefore are mostly applicable to
uniform random data. In real word applications, the data is hardly ever uni-
form random numbers. Our work address this nonuniformity by developing an
accurate approximation that can be evaluated analytically.

3 Theoretical Analysis

To make the analysis tasks more tractable, we count the number of runs, which
is directly proportional to the size of a RLE compressed bitmap index. The
key challenge is this approach is that even though the definition of a run only
involves values of each individual column, the number of runs for one column
depends on the columns sorted before it. To address this challenge, we develop
the concept of leading k-tuple to capture the dependency among the columns. As
we show next this concept can capture the expected number of runs and allows
us to evaluate how the key parameters of data affects the expected number of
runs and the index sizes.

3.1 Counting k-tuples

Without loss of generality, we concentrate our analysis of a table of integers
with N rows and M columns. To avoid the need to construct a bitmap index
and count the number of runs, we introduce a quantity that can be directly
measured as follows.



X Y Z

10 20 30
10 22 33
11 20 31
11 21 30
11 21 32

Z Y X

30 20 10
30 21 11
31 20 11
32 21 11
33 22 10

A) Sort X first B) Sort Z first

Fig. 2. A small data table sorted in two different ways.

Definition 1. A chunk is a sequence of identical values of a column in consec-
utive rows.

For the examples shown in Figure 2, in the version that sorted X first, the values
of X form two chunks, one with the value 10 and the other with the value 11. In
the version sorted Z first, the values of X form three chunks, two chunks with
the value 10 and a chunk with the value 11. Note that a chunk always includes
the maximum number of consecutive identical values. We do not break the three
consecutive values into smaller chunks.

The two tables shown in Figure 2 are sorted with different column orders and
have different number of chunks. To capture this dependency on column order,
we introduce a concept called leading k-tuple.

Definition 2. A leading k-tuple is a tuple of k values from the first k columns
of a row.

Depending how the columns are ordered, the leading k-tuples will be different.
For example, the first leading 2-tuple in Fig. 2A is (X=10, Y=20) and the
second leading 3-tuple in Fig. 2B is (Z=30, Y=21, X=11). In this paper, when
we refer to a k-tuple, we only refer to a leading k-tuple, therefore we usually use
the shorter term.

Without loss of generality, we refer to the first column in our reordering as
column 1 and the kth column as column k. In Fig. 2A, column 1 is X, while in
Fig. 2B, column 1 is Z. Similarly, we refer to the jth smallest value of column k
as the value j without regards to its actual content.

An critical observation is captured in the following lemma.

Lemma 1. The number of chunks for column k is bounded from above by the
number of distinct leading k-tuples Tk.

Typically, Tk−1 is much smaller than Tk and the number of chunks for column
k is very close to Tk. For this reason, we count the number of k-tuples instead of
counting the number of chunks. We will discuss the difference between Tk and
the number of chunks in Section 3.2.

Assume that the data table was generated through a stochastic process and
the probability of a leading k-tuple (j1, j2, . . . , jk) appearing in the data table
is pj1j2...jk . After generating N such rows, the probability that a particular k-
tuple (j1, j2, . . . , jk) is missing from the data table is (1 − pj1j2...jk)N . Let C1



denote the number of possible values for column 1, and Ck denote the number of
possible values for column k. The total number of distinct k-tuples is C1C2 . . . Ck.
Summing overall all possible leading k-tuples, we arrive at the number of missing
k-tuples as

∑
j1j2...jk

(1− pj1j2...jk)N , and the number of distinct k-tuples in the
data table as

Tk =

k∏
i=1

Ci −
∑

j1j2...jk

(1− pj1j2...jk)
N
. (1)

Note that the above formula works with the probability of k-tuples and
is applicable to any data set, even where the columns exhibit correlation. In
most cases, the probability of the k-tuples pj1j2...jk is harder to obtain than the
probability of an individual column. To make use of the probability distribu-
tion of the columns, we assume the columns are statistically independent, and
pj1j2...jk = pj1pj2 . . . pjk. The above expression of Tk can be rewritten as:

Tk =

k∏
i=1

Ci −
∑

j1j2...jk

(1− pj1pj2 . . . pjk)
N

(2)

Our goal is to count the number of runs in the bitmap index for each column
of the data table. For the bitmaps shown in Fig. 1, roughly each chunk in the
values of X leads to two runs in some bitmaps. We can generalize this observation
as follows.

Lemma 2. For a column with Tk chunks and Ck distinct values, the number of
runs in the bitmap index is 2Tk + Ck − 2.

Proof. For each chunk in column k, the corresponding bitmap in the bitmap
index will have a sequence of 0s followed by a sequences of 1s. This leads to the
term 2Tk runs for Tk chunks. For most of the Ck bitmaps in the bitmap index,
there is a sequences of 0s at the end of the bitmap. Altogether, we expect 2Tk+Ck
runs. However, there are two special cases. Corresponding the first chunk in the
values of column k, there is no 0 before the corresponding 1s. Corresponding to
the last chunk, there is no 0s at the end of the bitmap. Thus, there are two less
runs than expected. The total number of runs is 2Tk + Ck − 2.

3.2 Accidental chunks

As a sanity check, we next briefly consider the case where all columns are uni-
formly distributed. This also helps us to introduce the second concept we call
the accidental chunks which captures the error of using the number of leading
k-tuples to approximate the number of chunks for column k.

Assuming the probability of each value is the same, i.e., pji = C−1i , we can
significantly simplify the above formula as

Tk =

1−

1−
k∏
j=1

C−1j

N
 k∏
j=1

Cj (3)



Table 1. Example of sorting 1 million rows (N=1,000,000) with column cardinality
from lowest to highest.

C Max chunks Exp chunks Max runs Exp runs Actual runs Error (%)

10 10 10 28 28 28 0
20 200 200 418 418 418 0
40 8000 8000 16038 16038 16038 0
60 480000 420233 960058 840524 841142 0.074
80 38400000 987091 76800078 1974260 1966758 -0.38

100 3840000000 999869 7680000098 1999836 1980078 -1.00

Table 2. Example of sorting 1 million rows (N=1,000,000) with column cardinality
from highest to lowest.

C Max chunks Exp chunks Max runs Exp runs Actual runs Error (%)

100 100 100 298 298 298 0
80 8000 8000 16078 16078 16078 0
60 480000 420233 960058 840524 840584 0.007
40 19200000 974405 38400038 1948848 1934192 -0.0075
20 384000000 998699 768000018 1997416 1898906 -4.93
10 3840000000 999869 7680000008 1999746 1800250 -9.976

We generated one million rows of uniform random numbers and actually
counted the number of chunks and number of runs; the results are shown in
Tables 1 and 2. The actual observed chunks include identical values appearing
contiguously crossing the k-tuple boundaries. Even though two k-tuples may
be different, the values of the last column, column k, could be the same. For
example, in Fig. 2B, the three row in the middle all have X=1, even though the
corresponding 3-tuple are different. This creates what we call accidental chunks.

Definition 3. An accidental chunk in column k is a group of identical values
for column k where the corresponding k-tuples are different.

In general, we count a chunk for column k as an accidental chunk, if the val-
ues of the kth column are the same, but the leading (k− 1)-tuples are different.
After sorting, the leading (k− 1)-tuples are ordered and the identical tuples are
in consecutive rows. Since the column k is assumed to be statistically indepen-
dent from the first (k − 1) columns, we can compute the number of consecutive
identical values as follows.

Starting from an arbitrary row, the probability of the column k being jk is
pjk and the probability that there is only a single jk (followed by something
else) is pjk(1 − pjk). The probability that there are two consecutive rows with
jk is p2jk(1 − pjk), and the probability for q consecutive jk is pqjk(1 − pjk). The
numbers of time jk appears together is:



pjk(1− pjk) + 2p2jk(1− pjk) + 3p3jk(1− pjk) + . . .+ (N − 1)pN−1jk
(1− pjk) +NpNjk∼= pjk(1− pjk)

∑∞
i=1 ip

i−1
jk

= pjk(1− pjk)(1− pjk)−2 = pjk(1− pjk)−1,

where3
∑∞
i=1 ip

i−1 =
∑∞
i=1

∂pi

∂p =
∂(
∑∞

i=1
pi)

∂p = ∂(1−p)−1

∂p = (1 − p)−2. The

average times a value of column k repeats is µk =
∑
j1j2...jk

pjk
1−pjk

.

The set of consecutive values in column k must span beyond the group of
identical (k−1)-tuples in order to be counted as an accidental chunk. When the
majority of the chunks for the first (k−1) columns have only 1 row, the number
of chunks for column k is reduced by a factor 1/µk.

For uniform random data, we can estimate the values of µk and check whether
they agree with the observations from Tables 1 and 2. These tables show an
example of sorting 1 million tuples with column cardinality ordered from the
lowest to the highest and from the highest to the lowest, respectively. In Table 1,
we see that about 99% of 5-tuples are distinct, more precisely, there are 987091 5-
tuples for 1 million rows. This suggests that there might be a noticeable number
of accidental chunks for column 6 shown in the last row in Table 1. In this case,

the cardinality of column 6 is 100, pj6 = 1/100 and µ6 =
∑100
j6=1

1/100
1−1/100 = 100

99 .

The number of chunks observed should be T6/µ6, which is 1% less than the
expected value of T6. The number of runs in the bitmaps is 1% less the expected
value in Table 1, which agree with our analysis. Similarly, in Table 2 about
97% of the 4-tuples are distinct, which suggests that there might be noticeable
number of accidental chunks for columns 5 and 6. The cardinality of the last two
columns are 20 and 10 respectively, and our formula suggests that the observed
number of chunks would be 5% and 10% less than the expected value of T5, T6.
In Table 2, we again see a good agreement with the predictions4.

3.3 Asymptotic case

Assume the value of each pj1j2...jk to be very small, say pj1j2...jk � 1/N . In this
case, we can approximate the probability that the k-tuple (j1, j2, . . . , jk) not
appearing in our dataset as (1− pj1j2...jk)N ≈ 1−Npj1j2...jk . This leads to the
following approximation for the number of distinct k-tuples.

Tk ≈
∏k
i=1 Ci −

∑
j1j2...jk

(1−Npj1j2...jk)

=
∏k
i=1 Ci −

∑
j1j2...jk

1 +N
∑
j1j2...jk

pj1j2...jk
= N

∑
j1j2...jk

pj1j2...jk = N.

3 http://mathworld.wolfram.com/PowerSum.html
4 Lemma 1 seems to suggest that the errors in Tables 1 and 2 can only be negative

or zero, however there are a few positive numbers. The reason for this is that the
number of chunks and runs given are based on the expected number of leading
k-tuples, not the number of leading k-tuple observed in the particular test dataset.



In other word, every k-tuple will be distinct. If the probability of each indi-
vidual k-tuple is very small, we intuitively expect all the observed tuples to be
distinct. We generalize this observation and state it more formally as follows.

Definition 4. A tuple (j1j2 . . . jk) in a dataset with N tuples is a rare tuple if
pj1j2...jk < 1/N .

In most discussions, we will simply refer to such a tuple as a rare tuple,
without referring to the number of rows, N .

Conjecture on rare tuples: A rare tuple in a dataset will appear exactly once
if it does appear in the dataset.

In a typical case, there is a large number of possible tuples and many of them
with very small probabilities while a few tuples with larger probabilities. There-
fore, we cannot apply the above estimate to the whole dataset. The implication
from the above conjecture is that the rare tuples that do appear in a data set
will be different from others. To determine the total number of distinct tuples,
we can concentrate on those tuples that appear more frequently, which we call
common tuples.

Definition 5. A tuple (j1j2 . . . jk) in a dataset with N tuples is a common tuple
if pj1j2...jk ≥ 1/N .

In most discussions, we will simply refer to such a tuple as a common tuple,
without referring to the number of rows, N .

3.4 Zipfian Data

In the preceding sections, we have demonstrated that our formulas predict the
numbers of runs accurately for uniform data and rare tuples. Next, we consider
the more general case involving data with non-uniform distribution and a mix-
ture of rare tuples and common tuples. In order to produce compact formulas, we
have chosen to concentrate on data with Zipf distributions. We further assume
that each column of the data table is statistically independent from others.

Following the above analysis on rare tuples, we assume that all rare tuples
that do appear in a dataset are distinct. A common tuple may appear more than
once in a dataset, we say that it has duplicates. More specifically, if a k-tuple
appears q times, then it has (q − 1) duplicates. Let Dk denote the number of
duplicates, the number of distinct k-tuples in the dataset is Tk = N −Dk. This
turns the problem of counting the number of distinct values into counting the
number of duplicates. To illustrate this process, let us first consider a case of
1-tuple, i.e., one column following the Zipf distribution pj1 = α1j

−z1
1 , where

α1 =
(∑C1

j1=1 j
−z1
1

)−1
and z1 is a constant parameter known the Zipf exponent.

By definition of pj1 , the value j1 is expected to appear Npj1 times in that
dataset. The common values are expected to appear at least once, i.e., Npj1 =
Nα1j

−z1
1 ≥ 1. Since pj1 is a monotonically decreasing function of j1, common

values are smaller than rare ones. Let β1 ≡ (Nα1)1/z1 , we see that all j1 values



less than C1 and bβ1c (where b.c is the floor operator) are common values. The
number of duplicates can be expressed as

D1 =

min(C1,bβ1c)∑
j1=1

(
Nα1j

−z1
1 − 1

)
. (4)

For the convenience of later discussions, we define two functions

s1 =

min(C1,bβ1c)∑
j1=1

j−z11 , r1 =

C1∑
min(C1,bβ1c)+1

j−z11 .

By the definition of α1, we have α1 = r1 + s1. Furthermore, the number of
common values is Nα1s1, the number of rare values is Nα1r1, and the number
of distinct values is T1 = min(C1, bβ1c) + Nα1r1. Among all possible values of
β1, when β1 < 1, there is no common value and T1 = N ; when β1 ≥ C1, all
values are common values and T1 = C1.

In the more general case where the kth column has cardinality Ck and Zipf
exponent zk, we have αk = 1/

∑Ck

jk=1 j
−zk
k , the number of distinct k-tuples and

the number of duplicate k-tuples are given by the following expressions,

Tk = N −Dk, Dk =
∑

Npj1...jk
>1

(Npj1...jk − 1), pj1...jk =

k∏
i=1

pi =

k∏
i=1

αij
−zi
i . (5)

Since the Zipf distribution is a monotonic function, it is straightforward to
determine the bounds of the sum in Equation (5) as illustrated in the one-
column case above. Given j1, . . . , jk−1, the upper bound for jk is given by(
Nαk

∏k−1
i=1 αij

−zi
i

)1/zk
. In many cases, there are a relatively small number of

common tuples, which allows us to evaluate the above expression efficiently.
From this expression, we can compute the number of k-tuples and therefore the
number of runs in the corresponding bitmap indexes.

Theorem 1. Let C1, C2, . . . , CM denote column cardinalities of a data table.
Assume all columns have the same skewness as measured by the Zipf exponents.
To minimize the total number of runs in the bitmap indexes for all columns with
sorting, the lowest cardinality column shall be sorted first.

Proof. Let’s first consider the case of 1-tuple. Given z1, the summation
∑C1

j1
j−z11

increases as C1 increases. The values of α1 decreases as C1 increases (as il-
lustrated in Fig. 3A) which can be expressed as ∂α1/∂C1 < 0. This leads to

∂β1/∂C1 = 1
z1

(Nα1)(
1
z1
−1)N ∂α1

∂C1
< 0, which means that β1 decreases as C1 in-

creases (as shown in Fig. 3B). In the expression for D1, the upper bound of the
summation is the minimal of C1 and bβ1c.

When C1 ≤ bβ1c, all C1 values are common values. In these cases, by defini-

tion of the Zipfian distribution
∑C1

j1=1Nα1j
−z1
1 = N , the number of duplicates

D1 = N − C1 (see Eq. (4)) and the number of distinct values is C1.
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Fig. 3. How the values vary with column cardinality with fixed skewness (assuming 1
million rows).

In cases where C1 > bβ1c, the number of distinct values may be less than
C1. Because both α1 and β1 decrease with the increase of C1, each term in the
summation for D1 decreases and the number of terms in the summation may
also decrease, all causing D1 to decrease as C1 increases, as shown in Fig. 3C. In
other words, as C1 increases, there are fewer duplicates and more distinct values.
As shown in Fig. 3D, the value of T1 increases with C1.

Now, we consider the case of k-tuple. In this case, the probability for a k-
tuple is pj1j2...jk = α1α2 . . . αkj

−z
1 j−z2 . . . j−zk , the common tuples are those with

α1α2 . . . αkj
−z
1 j−z2 . . . j−zk ≥ 1/N , or alternatively, j1j2 . . . jk ≤ (α1α2 . . . αkN)1/z.

Note that the values j1j2 . . . jk are positive integers.
Along with the conditions that 1 ≤ j1 ≤ C1, . . . , 1 ≤ jk ≤ Ck, the number of

duplicate tuples can be expressed as follows (βk ≡ (α1α2 . . . αkN)1/z):

Dk =

min(C1,bβ1c)∑
j1=1

min(C2,bβ2j
−1
1 c)∑

j1=1

. . .

min(Ck,bβkj
−1
1 j−1

2 ...j−1
k−1
c)∑

j1=1

(
Nα1α2 . . . αkj

−z
1 j−z2 . . . j−zk − 1

)
. (6)

In the above expression, the order of the column among the k-tuple does not
change the number of distinct tuples. Therefore, when all columns are considered
together, i.e., k = M , it does not matter how the columns are ordered. However,
as soon as one column is excluded, say, k = M−1, it does matter which columns
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Fig. 4. How the values vary with skewness with fixed column cardinality (assuming 1
million rows).

are excluded. Assume that we have two columns to choose from, say columns
A and B; and the only different between them is their column cardinalities, CA
and CB . Without loss of generality, assume CA > CB , consequently, αA < αB
and βA < βB . In the formula Dk, a smaller βA value indicates that the number
of terms in the summation would be no more than that with a larger βB . For
each term, replacing the value of αk with αA will produce a smaller value than
replacing it with αB . Therefore, choosing the higher cardinality column decreases
Dk, increases the number of distinct tuples and increases the number of runs in
the corresponding bitmap index. Thus, sorting the lowest cardinality column
first reduces the number of distinct k-tuples and minimizes the number of runs.

Theorem 2. Let C1, C2, . . . , CM denote the column cardinalities of a data table.
Assume C1 = C2 = . . . = CM . To minimize the total number of runs in the
bitmap indexes by sorting, the column with the largest Zipf exponent shall be
ordered first.

Proof. Instead of giving a complete proof here, we will outline the basic strategy.
Based on the information shown Fig. 4, particularly Fig. 4B, we need to handle
the cases with C > N and z < 1 separately from the others. In the normal
cases, α1, β1, D1 and T1 are all monotonic functions and it is clear that sorting
columns with larger Zipf exponents first is beneficial.

In the special case with C > N and z < 1, where the possible values to use is
large and the differences among the probabilities of different values are relatively
small, the number of runs for a column is the same as that of a uniformly random



A) Columns with the same skew-
ness ordered from low cardinality
to high cardinality

B) Columns with the same skew-
ness ordered from high cardinality
to low cardinality

Fig. 5. Predicted numbers of runs (lines) and the observed numbers of runs (as sym-
bols) plotted against the column cardinality (10 million rows). The symbols are very
close to their corresponding lines indicating that the predictions agree well with the
observations.

column. In which case, which column comes first does not make a difference, and
we can follow the general rule derived for the normal cases. Thus, we always sort
the column with the largest Zipf exponent first.

4 Experimental Measurements

In the previous section, we took the expected number of distinct k-tuple as an
estimate of the number of chunks and therefore the number of runs in a bitmap
index. In this section, we report a series of empirical measurements designed to
address two issues: (1) how accurate are the formulas for predicting numbers of
runs for Zipf data and (2) do the reordering strategies actually reduce index sizes?
In these tests, we use a set of synthetic Zipfian data with varying cardinalities
and Zipf exponents. The column cardinalities used are 10, 20, 40, 60, 80, and
100; the Zipf exponents used are 0 (uniform random data), 0.5, 1, and 2 (highly-
skew data). The test data sets contain 10 million rows, which should be large
enough to avoid significant statistical errors.

4.1 Number of runs

The first set of measurements are the numbers of runs predicted by Eq. (5) and
the numbers of runs actually observed on a set of Zipf data. We also collected the
expected and the actual numbers of runs with different ordering of the columns.
We first organize the synthetic data into four tables where all columns in each
table have the same Zipf exponent. In Fig. 5, we display the numbers of runs
for each bitmap index (for an individual column) with the data table sorted in
two different column orders, the lowest cardinality column first or the highest
cardinality column first. In this figure, the discrete symbols denotes the observed



A) Columns with the same cardi-
nalities are ordered from small Zipf
exponent to large Zipf exponent

B) Columns with the same cardi-
nalities are ordered from large Zipf
exponent to small Zipf exponent

Fig. 6. Predicted numbers of runs (lines) and observed numbers of runs (symbols)
plotted against the Zipf exponents (10 million rows). The symbols are very close to their
corresponding lines indicating that the predictions agree well with the observations.

Table 3. Total number of runs (in thousands) of columns with the same skew in two
different orders (N=10,000,000).

Skew Total numbers of runs

z Low cardinality first High cardinality first
(Small per Thm 1)

predicted observed predicted observed

0 38,559 38,382 56,281 53,545
0.5 38,506 35,266 55,904 48,988

1 25,254 22,328 35,629 29,523
2 2,065 1,639 2,557 1,892

values and the lines depict the theoretical predictions developed in the previous
section. The number of runs vary from tens to tens of millions. In this large
range of values, our predictions are always very close to the actual observations.

Fig. 6 shows similar predicted numbers of runs against observed values for
data tables containing columns with the same column cardinality. Again we see
that the number of runs vary from tens to millions, and the observed values
agree with the predictions very well.

To see exactly how accurate are our predictions, in Table 3 and 4, we listed
out the total number of runs for each of the data tables used to generate Fig. 5
and 6. In these two tables, the total numbers of runs are reported in thousands.
As we saw in Table 1 and 2 for uniform random data, the predictions are gener-
ally slightly larger than the actually observed values. The discrepancy appears
to grow as the skewness of the data grows or the column cardinality grows.
We believe this discrepancy to be caused by the accidental chunks discussed in
Section 3.2. We plan to verify this conjecture in the future.

Since the actual number of runs are different from the expected values, a
natural question is whether the predicted advantage of column ordering still



Table 4. Total number of runs (in thousands) of columns with the same column
cardinality ordering in two different ways (N=10,000,000).

Cardinality Total numbers of runs

C Low skew first High skew first
(Small per Thm 2)

predicted observed predicted observed

10 22 22 22 22
20 326 301 326 301
40 1864 1636 1860 1622
60 3767 3335 3638 3173
80 6016 5274 5472 4776

100 8706 7274 7353 6331

Table 5. The total sizes (KB) of compressed bitmap indexes produced by FastBit under
different sorting strategies. Each data table has 10 million rows and four columns with
the same column cardinality but different skewness.

C 10 20 40 60 80 100

Low skew first 168 1,540 6,911 11,188 15,146 19,487
High skew first 166 1,393 6,125 11,870 17,913 23,878

observed. In Table 3, we see that the total number of runs of tables sorted
with the lowest cardinality column first is always smaller than the same value
for the same table sorted with the largest cardinality column first. This is true
even for highly-skew data (with z = 2), where the predicted total number of
runs is nearly 35% higher than the actual observed value (2065/1639 = 1.26,
2557/1892 = 1.35). In this case, sorting the the highest cardinality column first
produces about 15% more runs than sorting the lowest cardinality column first
(1892/1639 = 1.15). The predicted advantage is about 24% (2557/1639 = 1.24).
Even though it may be worthwhile to revisit the source of error in our predictions,
the predicted advantage from Theorems 1 and 2 are clearly present.

From our analysis, we predicted that ordering the columns with the highest
skew first is the better than other choices. In Table 4, we show the total numbers
of runs from two different sorting strategies, one with the highest skew first and
the other with the least skew first. For the columns with relative low column car-
dinalities, there are enough rows to produce all possible tuples. In this case, the
prediction is exactly the same as the observed values. As the column cardinality
increases, there are larger differences between the predictions and observations.
With each column having 100 distinct values, the difference is almost 20%. How-
ever, even in this case, the predicted advantage of sorting the column with the
largest Zipf exponent first is still observable in the test.



A) Columns with the same cardi-
nalities ordered from small Zipf ex-
ponent to large Zipf exponent

B) Columns with the same cardi-
nalities ordered from large Zipf ex-
ponent to small Zipf exponent

Fig. 7. Sizes of FastBit indexes (N = 10, 000, 000)

4.2 FastBit index sizes

Even though commonly used bitmap compression methods are based on RLE,
they are more complex than RLE and therefore our predictions may have larger
errors. To illustrate this point, we show the sizes of a set of bitmap indexes
produced by an open-source software called FastBit [29] in Fig. 7 and Table 5.
In these tests, our test data is divided into six tables with four columns each to
produce the sizes shown in Fig. 6 and Table 4. According to Theorem 2, ordering
highly-skewed column first is expected to produce smaller compressed bitmap
indexes. In Table 5, we see that the prediction is true for three out of the six
data tables, those with C = 10, C = 20, and C = 40.

For data tables with high column cardinalities, the predictions are wrong and
the values shown in Fig. 7 offers some clues as why. In general, the last column to
be sorted is broken into more chunks, the corresponding bitmap index has more
runs and requires more disk space. This index typically requires significantly
more space than those of the earlier columns, and therefore dominates the total
index size. In Fig. 7B, we see that the index sizes grow steadily from the column
being sorted first to the column being sorted last. However, in Fig. 7A, we see
the index size for column sorted last did not grow much larger than the previous
columns. This is especially noticeable for C = 100, C = 80 and C = 60. More
work is needed to understand this trend.

5 Conclusions

In this paper, we developed a set of formulas for the sizes of Run-Length Encoded
bitmap indexes. To demonstrate the usefulness of these formulas, we used them
to examine how to reorder the rows and columns of data table. Our analysis
extends the reordering heuristics to include non-uniform data. We demonstrated
that the formulas are indeed accurate for a wide range of data. We also discussed
the limitations of the proposed approach. In particular, because the practical
bitmap compression methods are not simple Run-Length Encoding methods,



their index sizes deviate from the predictions in noticeable ways. We plan to
explore options to capture these deviations in a future study.
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