Chapter 19

The ViSUS Visualization Framework

V. Pascucci, G. Scorzelli, B. Summa, P.-T. Bremer

University of Utah

A. Gyulassy, C. Christensen, S. Philip, S. Kumar
University of Utah

19.1 Introductionciiiiiiiii e 49
19.2 ViSUS Software Architecture, 50
19.3 ApPPLCAtionSoini 55

Bibliographycoiii 59

The ViSUS software framework! has been designed as an environment that
allows the interactive exploration of massive scientific models on a variety of
hardware, possibly over platforms distributed geographically. This chapter is
devoted to the description of the scalability principles that are at the basis of
the ViSUS design and how they can be used in practical applications, both
in scientific visualization and other domains such as digital photography or
exploration of geospatial models.

19.1 Introduction

The ViSUS software framework was designed with the primary philosophy
that the visualization of massive data need not be tied to specialized hardware
or infrastructure. In other words, a visualization environment for large data
can be designed to be lightweight, highly scalable and run on a variety of plat-
forms or hardware. Moreover, if designed generally such an infrastructure can
have a wide variety of applications, all from the same code base. Figure 19.1
details example applications and the major components of the ViSUS infras-
tructure. The components can be grouped into three major categories. First,
a lightweight and fast out-of-core data management framework using multi-
resolution space filling curves. This allows the organization of information in
an order that exploits the cache hierarchies of any modern data storage ar-
chitectures. Second, a dataflow framework that allows data to be processed

For more information and software downloads see http://visus.co and
http://visus.us

49

50 High Performance Visualization

VisUS Convert
(command line)

Comy
Dependency (A requires B)

Visus ELHE

/ framework

W Optional Dependency
:

) v
ViSUS Kernel VisUs OpenGl * .
; ; ; $ external [ﬂ A
'Imm;:wn”tnm&wlm“wm“ Threading l m,? | M::e«) W&ﬂ:ef" libraries

FIGURE 19.1: The ViSUS software framework. Arrows denote external and
internal dependences of the main software components. Additionally we show
the relationship with several example applications that have been successfully
developed with this framework.

ViSUS Apps
I withGul

during movement. Processing massive datasets in their entirety would be a
long and expensive operation which hinders interactive exploration. By de-
signing new algorithms to fit within this framework, data can be processed
as it moves. Third, a portable visualization layer which was designed to scale
from mobile devices to powerwall displays with same code base. In this chapter
we will describe the ViSUS infrastructure, as well as give practical examples
of its use in real world applications.

19.2 ViSUS Software Architecture

Figure 19.1 provides a diagram of the ViSUS software architecture. In
this section we will detail ViSUS’s three major components and how they
are used to achieve a fast, scalable, and highly portable data processing and
visualization environment.

Data Access Layer The ViSUS data access layer is a key component al-
lowing immediate, efficient data pipeline processing that otherwise would be
stalled by traditional system I/O cost. In particular, the ViSUS I/O compo-
nent (and its generalized Data Base component) are focused on enabling the
effective deployment of Out-of-Core and data streaming algorithms. Out-of-
core computing [11] specifically addresses the issues of algorithm redesign and
data layout restructuring. These are necessary to enable data access patterns
having minimal performance degradation with external memory storage. Al-
gorithmic approaches in this area also yield valuable techniques for parallel
and distributed computing. In this environment, one typically has to deal
with the similar issue of balancing processing time with the time required

The ViSUS Visualization Framework 51

for data access and movement amongst elements of a distributed or parallel
application.

The solution to the out-of-core processing problem is typically di-
vided into two parts: (1) algorithm analysis, to understand data ac-
cess patterns and, when possible, redesign to maximize data local-
ity; (2) storage of data in secondary memory using a layout consis-
tent with the access patterns of the algorithm, amortizing the cost
of individual I/O operations over several memory access operations.

To achieve real-time rates for vi-
sualization and/or analysis of ex-
treme scale data, one would com-
monly seek some form of adaptive
level of detail and /or data streaming.
By traversing simulation data hier-
archically from the coarse to the fine
resolutions and progressively updat-
ing output data structures derived
from this data, one can provide a
framework that allows for real-time
access of the simulation data that
will perform well even on extreme scale data. Many of the parameters for in-
teraction, such as display viewpoint, are determined by users at run time and
therefore precomputing these levels of details optimized for specific queries is
infeasible. Therefore to maintain efficiency, a storage data layout must satisfy
two general requirements: (i) if the input hierarchy is traversed in coarse-
to-fine order, data in the same level of resolution should be accessed at the
same time, and (ii) within each level of resolution, the regions in close spatial
proximity are stored in close proximity in memory.

Space filling curves [9] have been used successfully to develop a static
indexing scheme that generates a data layout satisfying both the above re-
quirements for hierarchical traversal, see Figure 19.2. The data access layer
of ViSUS employs a hierarchical variant of a Lebesgue space filling curve [5].
The data layout of this curve is commonly referred to as HZ order in the liter-
ature. This data access layer has three key features that make it particularly
attractive. First, the order of the data is independent of the out-of-core block
structure, so that its use in different settings (e.g. local disk access or transmis-
sion over a network) does not require any large data reorganization. Second,
conversion from the Z-order indexing [4] used in classical database approaches
to ViSUS’s HZ-order indexing scheme can be implemented with a simple se-
quence of bit-string manipulations. Third, since there is no data replication,
we avoid the performance penalties associated with guaranteeing consistency
especially for dynamic updates, as well as increased storage requirements typ-
ically associated with most hierarchical and out-of-core schemes.

FIGURE 19.2: (A-E) The first five lev-
els of resolution of the 2D Lebesgue’s
space filling curve. (F-J) The first
five levels of resolution of the 3D
Lebesgue’s space filling curve.

52 High Performance Visualization

Parallel I/0 for Large Scale Simulations The multi-resolution data lay-
out of ViSUS discussed above is a progressive, linear format and therefore has
a write routine that is inherently serial. During the execution of large scale
simulations, it would be ideal for each node in the simulation to be able to
write its piece of the domain data directly into this layout. Therefore a paral-
lel write strategy must be employed. Figure 19.3 illustrates different possible
parallel strategies that have been considered. As shown in Figure 19.3 (A),
each process can naively write its own data directly to the proper location
in a unique underlying binary file. This is inefficient due to the large number
of small granularity, concurrent accesses to the same file. Moreover, as the
data gets large, it becomes disadvantageous to store the entire dataset as a
single, large file and typically the entire dataset is partitioned into a series of
smaller more manageable pieces. This disjointness can be used by a parallel
write routine. As each simulation process produces a portion of the data, it
can store its piece of the overall dataset locally and pass the data on to an
aggregator process.

These aggregator processes can W N
be used to gather the individual ‘ / et
pieces and composite the entire D
dataset. Figure 19.3 (B) shows this
strategy, where each process trans-

mits a contiguous data segment to an pIGURE 19.3: Parallel T /O strategies:
mtermedla’te aggregator. Once the (a) Naive approach where each process
aggregator’s buffer is complete, the 500 its data in the same file, (a)
data is written to d_lSk usImg & S~ alternative approach where contiguous
gle la'urge I/O operation. Figure 19.3 data segment to an intermediate aggre-
(C), illustrates a strategy where sev- gator that writes to disk, (c) commu-
eral noncontiguous memory accesses | ..oiio ducing approach with bun-

fl.*om each process are bundled into a deling of noncontiguous accesses into a
single message. This approach also single message

reduces the overhead due to the

number of small network messages needed to transfer the data to the aggrega-
tors. This strategy has been shown to exhibit good throughput performance
and weak scaling for S3D combustion simulation applications when compared
to standard Fortran I/O benchmark [2, 3]. In particular, recent results® have
shown empirically how this strategy scales well for a large number of nodes
(currently up to 32,000) while enabling real-time monitoring of high resolution
simulations (see Section 19.3).

s FormingIndered detatype € MPIFilewites <= = = = MpIFuts @) MPlindesed Data type @ Datachurs

LightStream Dataflow and Scene Graph. Even simple manipulations
can be overly expensive when applied to each variable in a large scale dataset.
Instead, it would be ideal to process the data based on need by pushing data
through a processing pipeline as the user interacts with different portions of

2Execution on the Hopper 2 system at NERSC.

The ViSUS Visualization Framework 53

FIGURE 19.4: The LightStream Dataflow used for analysis and visualization
of a 3D combustion simulation (Uintah code). (left) Several dataflow modules
chained together to provide a light and flexible stream processing capability.
(right) One visualization that is the result from this dataflow.

the data. The ViSUS multi-resolution data layout enables efficient access to
different regions of the data at varying resolutions. Therefore different com-
pute modules can be implemented using progressive algorithms to operate on
this data stream. Operations such as binning, clustering, or rescaling are triv-
ial to implement on this hierarchy given some known statistics on the data,
such as the function value range, etc. These operators can be applied to the
data stream as-is, while the data is moving to the user, progressively refin-
ing the operation as more data arrives. More complex operations can also be
reformulated to work well using the hierarchy. For instance, using the lay-
out for 2-dimensional image data produces a hierarchy which is identical to a
sub-sampled image pyramid on the data. Moreover as data is requested pro-
gressively, the transfer will traverse this pyramid in a coarse-to-fine manner.
Techniques such as gradient-domain image editing can be reformulated to use
this progressive stream and produce visually acceptable solutions [10, 7, 8].
These adaptive, progressive solutions allow the user to explore a full resolution
solution as if it was fully available, without the expensive, full computation.
ViSUS LightStream facilitates this steam processing model by providing
definable modules within a dataflow framework with a well understood API.
Figure 19.4 gives an example of a dataflow for the analysis and visualization
of a scientific simulation. This particular example is the dataflow for a Uintah
combustion simulation used by the Center for the Simulation of Accidental
Fires and Explosions (C-SAFE) at the University of Utah. Each LightStream
module provides streaming capability through input and output data ports
that can be used in a variety of data transfer/sharing modes. In this way,
groups of modules can be chained to provide complex processing operations
as the data is transferred from the initial source to the final data analysis and
visualization stages. This data flow is typically driven by user demands and
interactions. A variety of “standard” modules, such as data differencing (for
change detection), content based image clustering (for feature detection), or
volume rendering with multiple, science-centric transfer functions, are part of

Sy el]

1

54 High Performance Visualization

FIGURE 19.5: The same application and visualization of a Mars panorama
running on an iPhone 3G mobile device (left) and a powerwall display (right).
Data courtesy of NASA.

the base system. These can be used by new developers as templates for their
own progressive streaming data processing modules.

ViSUS also provides a scene graph hierarchy for both organizing objects in
a particular environment, as well as the sharing and inheriting of parameters.
Each component in a model is represented by a node in this scene graph and
inherits the transformations and environment parameters from its parents. 3D
volume or 2D slice extractors are children of a data set node. As an example
of inheritance, a scene graph parameter for a transfer function can be applied
to the scene graph node of a data set. If the extractor on this data set does
not provide its own transfer function, it will be inherited.

Portable Visualization Layer - ViSUS AppKit. The visualization com-
ponent of ViSUS was built with the philosophy that a single code base can be
designed to run on a variety of platforms and hardware ranging from mobile
devices to powerwall displays. To enable this portability, the the basic draw
routines were designed to be OpenGL ES compatible. This is a limited subset
of OpenGL used primarily for mobile devices. More advanced draw routines
can be enabled if a system’s hardware can support it. In this way, the data vi-
sualization can scale in quality depending on the available hardware. Beyond
the display of the data, the underlying GUI library can hinder portability
to multiple devices. At this time ViSUS has made use of the Juce 2 library
which is lightweight and supports mobile platforms such as iOS and Android
in addition to major operating systems. ViSUS provides a demo viewer which
contains standard visualizations such as slicing, volume rendering and iso-
surfacing. Similarly to the example LightStream modules, these routines can
be expanded through a well-defined API. Additionally, the base system can
display 2D and 3D time- varying data. As mentioned above, each of these
visualizations can operate on the end result of a LightStream dataflow. The

Shttp://www.rawmaterialsoftware.com

The ViSUS Visualization Framework 55

) (o r b Vg 2 E—

FIGURE 19.6: The ViSUS software framework visualizing and processing
medical imagrey. (left) The Neurotracker application providing the segmen-
tation of neurons from extremely high resolution Confocal Fluorescence Mi-
croscopy brain imagery. This data courtesy of the Center for Integrated Neu-
roscience and Human Behavior at the Brain Institute, University of Utah.
(middle) An application for the interactive exploration of an electron mi-
croscopy image of a slice of a rabbit retina. This dataset is courtesy of the
MarcLab at the University of Utah. (right) A 3D slicing example using the
Visible Male dataset.

system considers a 2D dataset as a special case of a slice renderer and there-
fore the same code base is used for 2D and 3D datasets. Combining all of
the above design decisions allows the same code base to be used on multiple
platforms seamlessly for data of arbitrary dimensions. Figure 19.5 shows the
same application and visualization running on an iPhone 3G mobile device
and a powerwall display.

19.3 Applications

As shown in the upper and right portions of the infrastructure diagram
in Figure 19.1, ViSUS has the versatility to be used in a wide range of appli-
cations. Below we will highlight a representative subset of these applications.
The general philosophy behind ViSUS applications is the deployment of light
tools that are task driven as a complement to general purpose solutions pro-
vided by other existing systems.

Neurotracker and Other Medical Applications. The Neurotracker is
an application built on the ViSUS framework that targets the segmentation
of neurons from extremely high resolution Confocal Fluorescence Microscopy
brain imagery 4. The core data processing of the Neurotracker uses the ViSUS
I/0O library to get fast access to the brain imaging data combined with multi-
resolution topological analysis used to seed the segmentation of neurons. A
marching image segmentation routine extracts filament structures from the

4Data is courtesy of the Center for Integrated Neuroscience and Human Behavior at the
Brain Institute, University of Utah (http://brain.utah.edu/)

56 High Performance Visualization

topological seeds. The user interface of the the Neurotracker is built with the
ViSUS GUI components specialized for segmentation.

Figure 19.6 also highlights two additional medical imaging applications. In
Figure 19.6 (center), an example of the ViSUS framework is used for interac-
tive exploration of an electron microscopy image of a slice of a rabbit retina.
In all, this 2D dataset is over 3.4 gigapixels in size®. Figure 19.6 (right) is a 3D
data slicing example for Visible Male® dataset comprised of over 4.6 billion
color voxels.

Web-server and plug-in ViSUS has been extended to support a client-server
model in addition to the traditional viewer. The ViSUS server can be used as a
standalone application or a web server plugin module. The ViSUS server uses
HTTP (a stateless protocol) in order to support many clients. A traditional
client/server infrastructure, where the client established and maintained a
stable connection to the server, can only handle a limited number of clients
robustly. Using HT'TP, the ViSUS server can scale to thousands of connections.
The Visus client keeps a number (normally 48) of connections alive in a pool
using the “keep-alive” option of HT'TP. The use of lossy or lossless compression
is configurable by the user. For example, ViSUS supports JPEG and EXR for
lossy compression of byte and float data respectively. The ViSUS server is an
open client/server architecture, therefore it is possible to port the plugin to
any web server which supports a C++ module (i.e. apache, IIS). The ViSUS
client can be enabled to cache data to local memory or to disk. In this way,
a client can minimize transfer time by referencing data already sent, as well
as having the ability to work offline if the server becomes unreachable. The
ViSUS portable visualization framework (Appkit) also has the ability to be
compiled as a Google Chrome, Microsoft Internet Explorer, or Mozilla Firefox
web browser plugin. This allows a ViSUS framework based viewer to be easily
integrated into web visualization portals.

Remote Climate Analysis and Visualization The ViSUS software frame-
work has been used in the climate modeling community to visualize climate
change simulations comprised of many species over a large number of time
steps. This type of data provides the opportunity to both build high quality
data analysis routines and challenge the performance of the data manage-
ment infrastructure. Figure 19.7, shows ViSUS rendering 10TB of data used
by a finalist in the data transfer challenge of Supercomputing 2009. This work
showed the possibility of transferring, transforming, analyzing, and render-
ing a large dataset on geographically distributed computing resources [1]. At
the same time, this work involved was used to introduce analysis and visu-
alizations providing novel insights into the dynamics of global carbon cycle,
atmospheric chemistry, land and ocean ecological processes and their coupling

5Data is courtesy of the MarcLab at the University of Utah
(http://prometheus.med.utah.edu/ “marclab/)
Shttp://www.nlm.nih.gov/research /visible/visible_human.html

The ViSUS Visualization Framework 57

{PCMDI
1000

FIGURE 19.7: Remote climate visualization with ViSUS. (left) The ViSUS
framework providing a visualization for a temperature change ensemble simu-
lation for the Earth’s surface for the December 2009 climate summit meeting
in Copenhagen. (right) A visualization of global cloud density for a more re-
cent climate simulation.

FIGURE 19.8: (left) A visualization of a 2D panorama dataset of Mount
Rushmore (500 megapixel). Dataset courtesy of City Escapes Photography.
(middle) The color shift between images in a panorama mosaic. (right) An
application using a Lightstream dataflow to provide approximate gradient
domain solution as a user interacts with the data.

with climate. In particular, this work was also used to present recent findings
regarding the Earth’s temperature change based on historical and projected
simulation data at the December 2009 climate summit meeting in Copenhagen
(Denmark). In Figure 19.7 (right), we see the ViSUS framework providing a
visualization of global cloud density for a more recent simulation.

Panorama Multiscale Processing and Viewer The ViSUS frame-
work along with the Lightstream Dataflows can be used for real-time, large
panorama processing and visualization. In Figure 19.8 (left) we have the visu-
alization of a 500 megapixel 2D image of Mount Rushmore”. In this fattened
image, you can detect color shifts due the fact that it is a mosaic of many
individual images. Figure 19.8 (middle) provides a visualization of the origi-
nal picture data for a panorama of Salt lake City, which is comprised of over
600 individual images for a total image mosaic size of 3.2 gigapixel. As men-
tioned in Section 19.2, the Lightstream Dataflow can be used to operate on
the multi-resolution data as the panorama is being viewed and provide an
approximate gradient domain solution [10, 7, 8] for each viewpoint. In this
way, a user can explore the panorama as if the full gradient domain solution

"Data is courtesy of City Escapes Photography (http://www.cityescapesphotography.com)

58 High Performance Visualization

G

SCl

FIGURE 19.9: Remote visualization and monitoring of simulations. (left) An
S3D combustion simulation visualized from a desktop in the SCI institute
(Slat Lake City, Utah) during its execution on the HOPPER, 2 high perfor-
mance computing platform in Lawrence Berkeley National Laboratory (Berke-
ley, California). (right) Two ViSUS demonstrations of LLNL simulation codes
(Miranda and Raptor) visualized in real-time while executed on the Blue-
Gene/L prototype installed at the IBM booth of the Supercomputing exhibit.

was available without it ever being computed in full. This preview is shown
in Figure 19.8 (right).

Real-Time Simulation Monitoring Ideally, a user-scientist would like to
view a simulation as it is computed, in order to steer or correct the simulation
as unforeseen events arise. Simulation data is often very large. For instance, a
single field of a time-step from the S3D combustion simulation in Figure 19.9
(left) is approximately 128 GB in size. In the time needed to transfer this
single time-step, the user-scientist would have lost any chance for significant
steering/correction of an ongoing simulation or at least take the opportunity
to save computing resources by early termination of a job that is not useful
anymore. By using the parallel ViSUS data format in simulation checkpoint-
ing [2, 3], we can link this data directly with an Apache server using a ViSUS
plug-in running on a node of the cluster system. By doing this, user-scientists
can visualize simulation data as checkpoints are reached. ViSUS can handle
missing or partial data, therefore the data can be visualized even as it is being
written to disk by the system.

ViSUS’s support for a wide-variety of clients (a stand-alone application, a
web-browser plug-in, or an iOS application for the iPad or iPhone) allows the
application scientist to monitor a simulation as it is produced, on practically
any system that is available without any need to transfer the data off the
computing cluster. As mentioned above, Figure 19.9 (left) is an S3D large-
scale, combustion simulation visualized remotely from an HPC platform?®.

This work is the natural evolution of the ViSUS approach of targeting

8Data is courtesy of Jackie Chen at Sandia National Laboratories, Combustion Research
Facility http://ascr.sandia.gov/people/Chen.htm

The ViSUS Visualization Framework 59

practical applications for out-of-core data analysis and visualization. This ap-
proach has been used for direct streaming and real-time remote monitoring
of the early large scale simulations such as those executed on the IBM BG/L
supercomputers at LLNL [6] shown in Figure 19.9 (right). This work continues
its evolution towards the deployment of high performance tools for in-situ and
post-processing data management and analysis for the software and hardware
resources of the future including exascale DOE platforms of the next decade®.

Bibliography

[1] Rajkumar Kettimuthu and Others. Lessons learned from moving earth
system grid data sets over a 20 gbps wide-area network. In SC, pages
194-198. ACM, Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC 2010).

[2] S. Kumar, V. Pascucci, V. Vishwanath, P. Carns, R. Latham, T. Peterka,
M. Papka, and R. Ross. Towards parallel access of multi-dimensional,
multiresolution scientific data. In Proceedings of 2010 Petascale Data
Storage Workshop, November 2010.

[3] S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V. Pascucci,
R. Ross, J. Chen, H. Kolla, and R. Grout. Pidx: Efficient parallel i/o for
multi-resolution multi-dimensional scientific datasets. In Proceedings of
IEEFE Cluster 2011, September 2011.

[4] J. K. Lawder and P. J. H. King. Using space-filling curves for multi-
dimensional indexing. Lecture Notes in Computer Science, 1832:20, 2000.

[5] Valerio Pascucci and Randall J. Frank. Global static indexing for real-
time exploration of very large regular grids. In SC, page 2, 2001.

[6] Valerio Pascucci, Daniel E. Laney, Ray J. Frank, F. Gygi, Giorgio
Scorzelli, Lars Linsen, and Bernd Hamann. Real-time monitoring of large
scientific simulations. In SAC, pages 194-198. ACM, 2003.

[7] Sujin Philip, Brian Summa, Peer-Timo Bremer, and Valerio Pascucci.
Parallel Gradient Domain Processing of Massive Images. In Torsten
Kuhlen, Renato Pajarola, and Kun Zhou, editors, Furographics Sympo-
sium on Parallel Graphics and Visualization, pages 11-19, Llandudno,
Wales, UK, 2011. Eurographics Association.

9Center for Exascale Simulation of Combustion in Turbulence (ExaCT)
http://science.energy.gov/ascr/research/scidac/co-design/

60 High Performance Visualization

[8] Sujin Philip, Brian Summa, Valerio Pascucci, and Peer-Timo Bremer.
Hybrid cpu-gpu solver for gradient domain processing of massive images.
In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th Inter-
national Conference on, pages 244 —251, dec. 2011.

[9] Hans Sagan. Space-Filling Curves. Springer-Verlag, New York, NY, 1994.

[10] B. Summa, G. Scorzelli, M. Jiang, P.-T. Bremer, and V. Pascucci. In-
teractive editing of massive imagery made simple: Turning atlanta into
atlantis. ACM Trans. Graph., 30:7:1-7:13, April 2011.

[11] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, March 2000.

