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Abstract. Modern time-varying flow visualization techniques that rely
on advection are able to convey fluid transport, but cannot provide an
accurate insight into local flow behavior over time or locally correspond-
ing patterns in unsteady vector fields. We overcome these limitations
of purely Lagrangian approaches by generalizing the concept of function
fields to time-varying flows. This representation of unsteady vector-fields
as stationary function fields, where every position in space is a vector-
valued function supports the application of novel analysis techniques
based on function correlation, and allows to answer data analysis ques-
tions that remain unanswered with classic time-varying vector field anal-
ysis techniques. Our results demonstrate how analysis of time-varying
flow fields can benefit from a conversion into function field representa-
tions and show the robustness of our presented clustering techniques.

1 Introduction

In areas such as meteorology or aerodynamics complex flow fields are being
produced whose analysis and interpretation requires the development of suitable
visualization techniques. There are flow analysis problems, e.g., in meteorology,
that are, unlike many modern flow analysis approaches, not only concerned with
the transport behavior of flow, but with the detection, and analysis of (repeating)
local flow behavior. Previously, this important task has rarely played a role
during the design process of unsteady flow visualization techniques.

We develop new methods that aim at supporting this task by visualizing
flow similarity and allowing analysis and discovery of similar or relevant local
behaviors in the flow field. For this matter, we interpret unsteady flow fields as
stationary function fields. With this notion we are able to apply function pro-
cessing and cross-correlation concepts and develop meaningful flow similarity
metrics. These novel metrics are used for automatic flow domain clustering and
manual flow behavior querying and prove to be valuable in answering relevant
flow analysis questions that are hard to answer with existing techniques. Our
visualization solution reduces the visual complexity of multi-temporal flow visu-
alization that often suffers from the presence of features with a spatio-temporal
character, such as path-lines. For the first time, it is now possible to identify
regions that yield similar flow behavior over time, a notion that is of central
importance in location based flow analysis such as in meteorology or geome-
try optimization in aerodynamics and industrial mixing. Furthermore, our novel
techniques support interactive querying in vector-valued function fields.
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Section 2 summarizes related work and provides a motivation. Section 3
introduces function fields, before novel flow similarity metrics are presented in
Section 4. Visualization and analysis techniques are detailed in Section 5, whereas
concrete results are presented in Section 6. Section 7 concludes this work.

2 Motivation and Related Work

Most modern unsteady flow analysis techniques focus on the analysis of mate-
rial transport and the extraction of flow trajectories [1, 2], mimicking physical
experiments such as dye advection in a Lagrangian setting. Even in combination
with querying [3–6], these analysis techniques neglect a large field of application
areas, where recurring patterns [7–9] and local flow behavior is of central impor-
tance. In such contexts, a Eulerian perspective of the flow field is more suitable
for effective visual analysis.

In meteorology, for example, the behavior of wind directions in town X in a
given month may be compared to wind behavior at a different location during the
same time period. Alternatively, wind behavior may be studied at the same lo-
cation for different seasons. In combination, this requires a multi-temporal, local
analysis of flow. Physically, such Eulerian flow measurements may be obtained
e.g., by means of Doppler Velocimetry [10]. Here, no longer is fluid transport the
focus of interest, but characteristics of local flow behavior over time and space.

Changing the representation of an unsteady vector field into a different form
(cf. FTLE [11] or scalar function fields [12]) has long known to make certain anal-
ysis and visualization tasks feasible or computationally more straight-forward.
We therefore choose to represent unsteady flow as vector-valued function fields.
This localized representation supports the use of flow pattern recognition, track-
ing, and querying of similar local flow behaviors. These techniques are related to
research [13–15, 5] on time-series, where 2D graphs [16] still dominate the field.
For the first time, the presented techniques allow automatic time-varying flow
similarity analysis, straight-forward identification of ’dead’ mixing regions and
interactive behavior querying. Thus, we regard function field representations as
suitable solutions to local flow analysis problems. The workflow structure of the
remainder of this paper is illustrated in Figure 1.

Fig. 1. Workflow of flow similarity evaluation. Definition of similarity measures sup-
ports clustering and querying of similar flow behavior in a function field.
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3 Function Fields

3.1 Definitions and Concepts

A time-varying 3D flow field v : R3 × R → R
3 is a continuous representation of

velocity vectors at positions x ∈ R
3 and time t ∈ R. An equivalent notion of such

a flow field can be obtained by modifying the role of an independent variable:

F : R3 → (R → R
3) (1)

F (x) = v(x, .) (2)

F contains a vector-valued function at every position in space and is therefore
called a function field. An individual vector-valued function at position x ∈ R

3 in
F is denoted by fx and called a local flow pattern in the following. A normalized

flow pattern corresponds to a normalized v with unit vectors. Note that there
may be equivalent flow patterns at different positions in the flow field, for which
reason the position index may be dropped. This representation is comparable
to feature-space representations used in visualization as it represents a set of
(independent) functions. For scalars, such a notation was used by Anderson et
al. [12]. A flow motif is obtained by restricting the parameter space of a flow
pattern to an interval [t0, t1] ⊂ R. We denote such a flow motif as (fx, [t0, t1]).

3.2 Function Field Creation

The conversion of an unsteady flow field into its numerical representation as a
function field requires finding an appropriate sampling strategy for the place-
ment of local flow functions. We propose the use of three alternative sampling
strategies. The first and most simple strategy uses a regular grid [17] to position
local flow patterns. This is fast to compute and facilitates flexible user control
along with level-of-detail sampling. Since the visual output of the techniques
presented in this paper does not directly depend on the density and uniformity
of the chosen sampling, we can make use of further techniques. The second strat-
egy places a flow function at every node of the original computational grid of the
flow field. This technique has a more optimal sampling resolution, but is only
applicable to fields that maintain a static mesh. The third approach adaptively
samples the flow field. In this approach we construct a octtree representation
of the flow field whose cells are subdivided if they span a region with a large
variance in velocity direction at any point in time (see Figure 2a). In all cases, a
single local flow pattern fx represents the flow direction of a constrained region
C ⊂ R

3 (cell) of the flow field. Numerically, a flow pattern fx is stored as a
series of average vector values [v(x, t0), . . . , v(x, tn)] together with standard de-
viations of velocity [SD(C, t0), . . . , SD(C, tn)] computed from discrete velocity
histograms per cell C and time step. Note that standard deviations for strate-
gies whose grid cells correspond to less than a cell in the original resolution
evaluate to zero. In the course of this paper we normalize all flow patterns to
fx(.)/‖fx(.)‖. Flow patterns with a standard deviation magnitude above 1 are
considered non-representative and dissimilar to all other patterns.
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Fig. 2. (a) Cell subdivision in octree sampling is based on time-varying velocity de-
viation. If velocities within a cell are too dissimilar in a time step, it is subdivided.
(b) Illustration of 2D flow radar glyphs as introduced in [17]. Our motif similarity
extraction supports the detection of similar flow behavior as highlighted in blue.

4 Flow Similarity

Consisting of a set of independent, local flow patterns, the function field rep-
resentation is a suitable tool for local, domain centered flow analysis. Through
pattern clustering, the identification of dead regions, recurring flow patterns, and
distinct flow behaviors may be achieved. Metrics for the efficient, manual and
automatic local flow pattern similarity evaluation are presented in the following.

4.1 Visual Similarity

With a direct function visualization technique, similarity evaluation in a function
field may be performed visually. An example of such a technique are flow radar
glyphs that map flow directions to curves on a radial glyph [17]. While the
proposed glyphs (Figure 2b) are a step towards analysis of unsteady flow, there
are limits w.r.t. accurate similarity evaluation and expressiveness as the number
of time-steps is increased. In this work we devise methods to effectively display
and analyze flow behavior similarity in unsteady 3D flow.

4.2 Similarity Metrics

The key to efficient clustering and similarity analysis in function space is the
definition of mathematical distance measures d for any two flow motifs f and g
that allow efficient and meaningful comparison of flow patterns. In the context of
this work we identify the following key characteristics of flow distance measures:

– Efficiency: d should be fast to compute to facilitate interactive querying.
– Robustness: Influence of small scale noise from the simulation on the value

of d is to be reduced.
– Flexibility: d should be invariant w.r.t. selected linear transformations such

as rotation or scaling of patterns.

The flexibility criterion exists to support not only analysis of direct similarity
between flow functions (i.e., d(f, g) = 0 iff f = g), but also facilitate similarity
comparison with respect to abstract flow behaviors (i.e., oscillation along an
arbitrary direction, d(f, g) = 0, iff f = Rg, with linear transformation R).
Thus, similarity of local flow patterns is defined on multiple levels of abstraction.
In the following we provide details about similarity measures on two levels of
abstraction. In the remainder of this work we assume normalized flow motifs.
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Relative Similarity A low-level similarity comparison only requires direct
comparison of functions. Ideally, behavioral similarity that includes linear trans-
formations is computed by maximizing similarity with respect to a linear trans-
formation matrix R. Function similarity or (cross-)correlation is commonly based
on application of the inner product over the range of two functions. We therefore
adopt a modified version of the discrete maximum norm

d(f, g) = minR(maxt(1− < f(t), Rg(t) > ·s(t))), (3)

where Euclidean distances in standard deviations are used to modify the value
of the inner product in the form of s(t) = 1− |atan(‖SDf (t)−R · SDg(t)‖)

2

π
)|.

Numerically the arctangent is approximated by a second order polynomial. For
computational efficiency, we approximate this similarity by first computing av-
erage flow direction of f and g: f̄ and ḡ, which are used to align f and g, such
that f̄ = ḡ. Finally, we rotate g around ḡ until d(f, g) is minimal. This rotation
is performed in 20 degree angles and uses angle bisection to iterate to maxima.
Note that simply choosing R = I violates the flexibility criterion, but still allows
for simple function comparison. This distance measure identifies flow behaviors
that are identical under rotational transformation and returns overall maximal
angular deviation between velocities present in flow patterns.

Behavioral Similarity A more abstract measure compares similarity of ab-
stract flow behaviors. For this matter, a vector-valued function has to be con-
verted into a behavior-sequence description. We exploit the fact that a range
of typical flow behaviors can be described mathematically and be used to clas-
sify flow motifs. We identify these typical flow behaviors B (see Figure 2b for
backflow) as boolean predicates on flow motifs (f, [t0, tn]) = (f(t0), . . . , f(tn)):

– P(Constant) = true iff time-variation of flow direction is minimal.
f(t) · f̄ < ǫ for all t ∈ [t0, tn], f̄ average flow direction of the motif.

– P(Oscillation) = true iff velocity directions oscillate along a direction.
|∠(f(ti)− f(ti−1), f(ti+1)− f(ti))| ≪

π
2
for subsequent i.

– P(Backflow) = true iff flow direction is inverted.
f(t) · f̄ ≪ 0 for at least one t ∈ [t0, tn]

– P(Rotation) = true iff flow directions rotate around a center direction c.
∠(f(ti−1)− c, f(ti)− c) · ∠(f(ti)− c, f(ti+1)− c) > 0∑

∠(f(ti)− c, f(ti+1)− c) > 2π, |∠(f(ti)− f(ti−1), f(ti+1)− f(ti))| < ǫ.
– P(Swirling) = true iff flow performs planar rotation.

Same as rotation, but f̄ ≈ 0

Note that behaviors based on velocity magnitude, such as pulsation are ex-
cluded from this paper and are subject to future research. Every one of these
behaviors B may hold for a given flow motif. Thus, a local flow pattern shows
a selected behavior B for a length t1 − t0 if it contains a flow motif (f, [t0, t1])
with P (B) = true. This allows for behavior querying and distance computation.
A flow pattern is converted into a sequence of flow behaviors by performing a
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sliding-window search with varying window length according to user specified
minimal and maximal window lengths. This creates flow motifs for the eval-
uation of behavior predicates. At every point in time, the B that holds for a
maximal window length is selected. For equal lengths, priorities are Constant <
Oscillation < Backflow < Rotation < Swirling. If no pattern matches, behavior is
assumed to be chaotic. Two flow patterns are considered similar if they represent
the same sequence of flow behaviors. The distance function then evaluates to the
Euclidean distance between the behavior-length vectors of the two functions.

4.3 Improvements

In combination, the presented similarity measures satisfy all key requirements
listed in the last section with exception of robustness with respect to noise in
the spatial and time dimension. We implement a scale space representation along
with a time-shift similarity measure to allow for robust similarity evaluation.

The representation of flow patterns as vector-valued functions allows the ap-
plication of concepts from scale space theory. Thus, we represent individual flow
patterns as one parameter family of low-pass filtered [13] curves. Consequently,
we do not use f and g in (3), but the resulting curves after Gaussian filtering
with different kernel widths. This reduces the impact of small scale variations in
matching and allows robust scale-based matching with a user-specified scale.

The time-varying nature of our problem can cause different locations in the
flow field to show very similar flow behavior at slightly different times. Thus,
a rigid comparison based on flow pattern entries at corresponding times (static
inner-product in (3)) is inferior to time shift matching methods. Consequently,
we implement the Dynamic Time Warping (DTW) [18] method to provide a
time-shift tolerant similarity measure between flow patterns.

5 Function Field Analysis and Visualization

Clustering of function fields based on the presented distance measures can help
identify similar and relevant behaviors automatically. However, in flow analysis,
interactive exploration of flow properties is often superior to automatic feature
detection, making the definition of suitable operators necessary. Thus, we allow
the application of feature space querying techniques [19, 6] to function fields. We
make use of semantically linked visualizations of the function field along with
its domain geometry and a visualization of function space for efficient querying
and cluster representation as described in the following.

Function Space Visualization We use a spherical representation for the visu-
alization of function space that maps flow motifs to radial curves in a sphere [20,
15]. Goal of this visualization is to plot all or a selection of normalized patterns
in a common space in a manner that allows a concise overview of the behavior of
the set of patterns with respect to time and orientation. Additionally, we facili-
tate brushing operations such as pattern selection and region of interest selection
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on the surface of the sphere. The user is enabled to draw on the sphere to mark
and filter individual behaviors. The visualization of this potentially vast amount
of functions, as well as temporal components require special attention.

As a first step, we create curve geometry on the GPU to allow interactive
framerates in the presence of a large number of curves. The resulting curve
geometry, projected polygon strips, are color coded by t, and blended together
in order to emphasize behaviors that are present in multiple flow patterns. While
this gives a good impression of the distribution of orientations throughout the
parameter space of the flow field, it still lacks an expressive notion of time,
even when the rendered curves are color-coded. Radially scaling these functions
according to time allows efficient perception of temporal characteristics, similar
to generalized flow radar glyphs. For joint behavior analysis, we offer the option
to rotate all flow patterns such that all average flow pattern directions line up,
giving a better insight into backflow, rotation and overall constant behavior.
We optionally visualize clusters of flow motifs or subsets of function space as
separate spherical plots by filtering out flow patterns that do not belong to a
cluster.

Function Field Visualization Clustering, similarity evaluation, and query-
ing results in the selection of (possibly disconnected or overlapping) flow motifs,
i.e., spatio-temporal selections in the function field domain. Visualization of these
function sets requires the simultaneous display of individual and compound func-
tion properties. On an individual function level, we draw a single generalized flow
radar glyph at the position of flow patterns. If only a specific time range of the
function (i.e. a flow motif) is selected, the corresponding glyph is faded out if
the currently displayed time step is outside of the range of the motif.

To highlight the shape and geometry of the current position of a cluster of
motifs, we extract a metaball based [21] isovolume for each cluster, thus giving
an insight into positions of selected function sets. Metaballs are scaled according
to the selected function cell size. We provide the user with a region-of-interest
selection tool that allows the selection of a set of local flow patterns in space
followed by a specification of the relevant time interval. This effectively selects
flow motifs in the function field. Furthermore, the user can query for behaviors
B in the flow field by composing a sequence of behaviors.

6 Results

We demonstrate the efficiency and applicability of function field analysis with the
help of selected data sets that were generated by flow simulations and converted
into function field representation by uniform sampling with up to 10000 flow
patterns. Functions are represented at 10 scales, around 30 time steps were
processed per simulation.
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6.1 Performance

During pre-processing, the field is evaluated and converted into function field
representation. The speed of these operations is directly dependent on the field
evaluation method, number of time-steps, and sampling strategy/density. These
computations took less than a minute for all presented data sets on a 64 bit Intel
Corei7 at 2.2 Ghz with 8 GB of memory.

In Figure 3b we present average computation times for automatic clustering
of the function field for different numbers of clustered flow observers and two
different clustering techniques. The distance times denote time spent to compute
a full similarity matrix for all patterns. Note that distance computation, as
is used during interactive querying as well, is fast even for large numbers of
flow patterns, which clustering techniques with quadratic or higher complexity
become unfeasable for very large numbers of patterns. In practice this can be
avoided by restricting function field analysis locally.

6.2 Clustering and Querying

We perform automatic clustering of flow regions by k-means or QT-clustering
[22] with (3). QT-clustering, a method that creates a clustering given a spec-
ified maximal intra-cluster distance, of an extraction column data set reveals
large sets of similar flow behavior and produces a decomposition into regions
with persistent flow behavior. Sphere-plot visualizations of the user selection
and the 11 largest clusters are shown in Figure 3a. Clustering reveals regions
with distinct flow behaviors as indicated by a range of different cluster variances
and oscillation patterns. This shows how the local effects of boundary proper-
ties like corners or flow obstacles onto the flow field can efficiently be detected,
visualized, and analyzed as indicated by pockets of turbulent flow behind flow
obstacles. The mixing column example hints at possible applications in medical
areas, where the effect of blood-vessel anomalies on local blood flow have to be
studied. As demonstrated in this figure, function field analysis can answer the
abstract question ”Where in this data set do similar ’flow events’ happen?” in
time-varying flow fields. Furthermore, flow pattern clustering is able to reveal
symmetries in the flow field. The shown flow-fields are virtually symmetric along
their x-axis (z-axis), as shown by extracted pattern outlines. This represents a
novel way of analyzing time-varying flow symmetries, which could not be cap-
tured by previous visualization methods. Automatic clustering of flow fields in a
spatio-temporal setting has potential application areas in flow field compression
or acceleration of trajectory computation. In our given example, we can clearly
distinguish different constant and unsteady flow behaviors, i.e., regions where
time plays a minor vs. a major role.

Function space visualization and brushing is useful, if overall flow behaviors
in the data set are to be visualized or analyzed. We have implemented proof-
of-concept techniques for the described brushing operations in function-space.
We use interactive sphere brushing for pattern selection on the sphere plot, per-
forming brushing in time-varying space of flow patterns and orientations. We
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Fig. 3. (a) Result of QT clustering on an extraction column data set. Visualization
shows user selection (top left) and the 11 largest clusters produced by QT clustering.
The four largest clusters are rendered in the data set (top). The different flow behaviors
in these regions is clearly depicted in the spherical plots. The 3D visualization facilitates
analysis of similar, low, and high turbulence regions, supporting analysis of mixing
properties. A cluster obtained by querying for constant flow is shown at the bottom
along with vector splats indicating flow direction. (b) Constant flow selection shown
in function space.Comparatively low variance in the green, blue and purple regions
indicate large regions with linear, homogeneous flow behavior. (c) Computation times
for clustering.

employ a simple combination of ray-sphere intersection and stencil-buffering to
allow selection of regions on the sphere. Selected flow patterns are found by col-
lecting vertices of the projected flow pattern representation on the sphere that
lie within the selected region-of-interest. Such brushing queries can reach from
simply selecting regions that have backflow behavior at a certain point in time
over to querying flow patterns that have comparable turbulence or oscillation
properties. Figure 4 shows the effect of function rotation and possible manual
selections. In the shown cross-flow data-set, distinct rotating backflow behavior
can be identified as the flow passes sharp corners. Virtually all other flow re-
gions are covered by constant flow, as indicated by generalized flow radar glyph
visualization and metaball-based selection outlining. The given function space
visualization indicates locations, time, and extend of backflow in different regions
of the data set and enable direct filtering or highlighting of such flow patterns.
Direct manual function space operations together with metaball visualization are
able to discover small scale boundary effects on the flow field that are hidden
with glyph-based rendering techniques.

A jet stream data set is displayed in Figure 5. Function space display in such
a turbulent data set becomes challenging if no flow patterns are pre-filtered by
automatic clustering. Automatic and manual clustering highlights relevant flow
behaviors and emphasizes a point-symmetry present throughout the complete
evolution of the data set.

We recorded motifs by region-of-interest selection in the function field domain
close to vortex cores in a simulated Kármán vortex street. Similarity evaluation
highlights flow motif sets in other regions in space and time of the data set that
behave similarly to the recorded motif set, see Figure 6. The results of such motif
recording are promising for two reasons: They can be applied to detect and track
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flow anomalies in flow fields and to uncover error sources such as faults in the
simulation code or mesh.

Fig. 4. (a) Feature space visualization without average direction alignment and with
average direction alignment. Note the four distinct flow directions in the non-rotated
rendering. (b) Manual selection of flow patterns with constant flow behavior. Metaball
outlining gives a look at set outlines, revealing a small region around the bottom left
inner corner, were non-linear flow occurs. (c) Manual selection of pattern with backflow
behavior. A close-up illustrates, how different flow patterns as glyphs may appear
despite having similar flow behaviors. This illustrates, why pure visual comparison of
flow glyphs is not sufficient for accurate similarity analysis.

Fig. 5. Analysis of a short sequence of a jet flow data set reveals multiple orthogonal
flow behaviors. Automatic clustering produces homogeneous constant backflow and
forward (at the front and center) flow clusters and emphasizes point-symmetry of the
data set. Note that function space display alone without cluster information is not
expressive for this data set. Manual querying in function space allows the extraction
of flow details, such as the main jet core shown from the side and front.

7 Conclusions and Future Work

In this work we have presented techniques to create and utilize a function field
definition for unsteady flow fields. This conversion allowed the definition of ef-
fective function space similarity measures that support novel unsteady vector-
field analysis and visualization techniques based on flow behavior similarity and
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Fig. 6. (a) Flow pattern recording in a Kármán vortex street. Distinct flow behaviors
are reliably tracked over time. An interesting property made evident by this visualiza-
tion is the fact that these features are born on both sides of the obstacle and merge
after passing the region with prominent backflow behavior. (b) Results from automatic
clustering (top) reveal the spatial frequency of recurring flow behavior. Constant and
backflow behavior querying (bottom) show regions unaffected by turbulent vortex core
paths.

clustering. Function field representations and processing techniques allow un-
steady flow field analysis that is not possible with transport based Lagrangian
approaches. A set of presented querying and visualization techniques facilitates
interactive function field analysis in a wide number of potential application ar-
eas. A drawback of the presented methods is their limitation to normalized flow
patterns, while this is can be compensated by taking spatial variation of velocity
vectors into account, it cannot model behaviors based on velocity magnitude.
Future work is focused on the creation and evaluation of further interaction
techniques, such as interactive flow observer placement and the evaluation of
function field techniques in concrete application areas.
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