
A Classification of Scientific Visualization Algorithms for
Massive Threading

Kenneth Moreland,‡ Berk Geveci,∗ Kwan-Liu Ma,† and Robert Maynard∗
‡Sandia National Laboratories

∗Kitware, Inc.
†University of California at Davis

ABSTRACT
As the number of cores in processors increase and accelerator
architectures are becoming more common, an ever greater
number of threads is required to achieve full processor uti-
lization. Our current parallel scientific visualization codes
rely on partitioning data to achieve parallel processing, but
this approach will not scale as we approach massive thread-
ing in which work is distributed in such a fine level that
each thread is responsible for a minute portion of data. In
this paper we characterize the challenges of refactoring our
current visualization algorithms by considering the finest
portion of work each performs and examining the domain
of input data, overlaps of output domains, and interdepen-
dencies among work instances. We divide our visualization
algorithms into eight categories, each containing algorithms
with the same interdependencies. By focusing our research
efforts to solving these categorial challenges rather than this
legion of individual algorithms, we can make attainable ad-
vancement for extreme computing.

1. INTRODUCTION
Processor clock and execution rates have flatlined. Instead,
successive generations of processors provide more parallel
threading capability [39]. Recent CPUs feature multiple
cores and hyperthreading technology to allow each core to
run concurrent threads. Furthermore, accelerator type ar-
chitectures, which have lightweight cores grouped to share
control, are becoming increasingly popular for their high ra-
tios of price and power to performance.

High performance computing is also seeing a remark-
able increase in the parallelism required on large-scale sys-
tems. Consider, for example, the last two generations of
leadership-class computers at the Oak Ridge Leadership
Computing Facility. The previous Jaguar-XT5 system had a
peak performance of about 2 petaflops using about 200 thou-
sand concurrent processes. The current Titan-XK7 system,
which incorporates GPU accelerators, has a peak perfor-
mance of over 20 petaflops but can require 70 to 500 million

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
Ultravis’13 November 17, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2500-4/13/11 ...$15.00.
http://dx.doi.org/10.1145/2535571.2535591

concurrent threads in order to achieve that. Building algo-
rithms that are implemented for new process architectures
and programming models and that support the massive par-
allelization they require is considered one of the top research
challenges for scientific visualization [9].

Production visualization products today achieve parallel
scalability using a data parallel method that relies on par-
titioning the data into independent domains for each pro-
cess [2]. Each domain is processed independently, so ghost
regions and overlap are required at domain boundaries so
that the interaction of work on parallel processes can be
ignored. However, this approach is infeasible when dealing
with massive amounts of threads on these emerging architec-
tures. We now need to design new algorithms with a key on
data interdependencies to process efficiently in a massively
threaded environment.

Unfortunately, to perform scientific visualization with
massive threading, we need to redesign our algorithms to
work effectively with fine-grained, independent operations.
There has already been significant work in making scien-
tific visualization algorithms work well with shared memory
threading and accelerator types of architectures [11, 22, 24–
26], but all these projects focus on the implementation of
a single or select fixed set of algorithms. Our goal in this
paper is to present commonalities among various algorithms
that share parallel-programming challenges. By addressing
these higher level challenges, we can make better progress
to ensure that our scalable scientific visualization needs are
met.

To identify these high level parallel-programming chal-
lenges, we first revisit the key principles on which we base
our current parallel visualization algorithms (Section 2) and
then categorize our current set of scientific visualization al-
gorithms based on behavior of the fundamental computation
(Section 3).

2. KEY PRINCIPLES
Our current scalable scientific visualization relies on a coarse
partitioning of data into domains that can often be processed
independently. Law et al. [20] provides the following three
key principles that must be satisfied for this independent
processing to behave correctly.

Data Separability The data can be broken into domains
in a way that is simple and efficient. Furthermore,
algorithms behave properly on independent domains.

Mappable Input Given an identification for a portion of
the output, the input domain responsible for this out-

(a) Serial Partitioning

Re
pe

at
ed

 V
er

tic
es

(b) Coarse-Parallel Partitioning (c) Massively-Threaded Partitioning

Figure 1: Partitioning with different levels of parallelism. In serial processing (a) geometry is fully connected. Partition-
ing for parallel processing introduces disconnected cells and repeated vertices (b), which become unmanageable in massive
threading (c).

put can be determined. The output portion can, and
often is, identified as simply piece i of N .

Result Invariant The output of the algorithm is equiva-
lent across all possible partitioning.

At first glance, it would appear that any algorithm abid-
ing by these key principles could be partitioned indefinitely.
However, there are two problems that arise when building
a massively threaded algorithm in which the data is parti-
tioned (potentially) down to domains of single elements.

The first problem is that many algorithms do not really
have a clear mapping from an algorithm’s output to its in-
put. For example, when computing a contour [23], it is
seldom practical a priori to know how large the output will
be, to know from what domain of the input each piece of
the output will originate, and to know what the distribu-
tion of elements in the output partitions will be. As long as
the data partitioning is coarse enough, managing uneven or
empty domains is inconsequential. Load imbalance in down-
stream processing can either be resolved by dynamic rebal-
ancing or, more commonly, simply tolerating it. However,
to achieve efficiency with massive threading, it is important
to know the precise elements on which to schedule the work-
ing threads. Thus, it is often more practical to determine
partitioning by mapping from input to output rather than
output to input.

The second problem is that although plenty of algorithms
are result invariant in that different partitioning results are
equivalent, the structures they build are not strictly isomor-
phic. Partitioning data often results in duplicate information
on domain boundaries. Consider for example the slice oper-
ation demonstrated in Figure 1. In serial (1a) it is straight-
forward to create a fully connected manifold surface. With
coarse level partitioning (1b), as is typically used in MPI
processing, partitioning creates gaps between domains and
replicated vertices at the boundaries. Massive threading (1c)
can result in a completely disconnected mesh. Although all
these results are equivalent with respect to the combined re-
sults, the different underlying data structures have different
properties and associated capabilities.

This duplication of results is a convenient mechanism to
avoid communication in parallel processing, and in coarse-
level parallelism the duplication is easily managed through
ghost regions. (Anecdotally this works best when each pro-
cess has on the order of 100 thousand to 10 million cells per
process [27]) However, if massive threading reduces each do-

main to every independent element, the duplication is dra-
matic and creating ghost regions is infeasible. It is there-
fore not practical to assume result invariance for most al-
gorithms. Instead we have to identify and characterize the
interdependence of the work where concurrent threads pro-
duce coincident data or the threads otherwise require collec-
tive operations. It is only then that we can design strategies
to manage the work interdependence.

With these issues in mind, we provide an analogous set
of key principles for the operation of scientific visualization
algorithms for massive threading.

Data Separability The data can be broken down to an el-
emental level fine enough to provide independent work
for sufficient threads.

Discoverable Input Mapping The existence of output
elements can be efficiently determined from the input.

Collective Work In the cases where work is not inde-
pendent, the overlap of responsibility can be resolved
through efficient collective operations.

3. CLASSIFICATION OF VISUALIZATION
ALGORITHMS

To better understand the effort involved with updating our
scientific visualization algorithms to massively threaded pro-
cessors, we look into the behavior of the algorithms we are
currently using in production tools. Specifically, we consider
those algorithms available in ParaView, a popular open-
source scalable scientific visualization application [4].

For each algorithm in ParaView, we apply the three key
principles defined at the end of Section 2: data separability,
discoverable input mapping, and collective work. To address
data separability, we consider the smallest unit of data on
which a single thread can independently operate, which we
call the separable element. To address discoverable input
mapping, we consider how the elements of the input data
map to the points and cells of the output geometry and the
output fields. Finally, we also identify any collective work
the algorithm must perform in a multithreaded environment.

From this information we derive classes of scientific vi-
sualization algorithms where the algorithms of each class
share the same input, output, and interdependence charac-
teristics. This classification is constructive because once we

Figure 2: Examples of Basic Mapping algorithms.

resolve the challenges of mapping input to output and man-
aging interdependence with collective operations, the algo-
rithms within each class are straightforward to implement
from their serial counterparts. A reference for all these clas-
sifications is given at the end of this paper in Table 1.

Basic Mapping
Separable Element Any
Point Mapping Identity
Cell Mapping Identity
Field Mapping 1 to 1
Collective Work None
Algorithms Append Attributes, Append

Datasets, Calculator, Elevation,
Generate Ids, Image/Rectilinear
Data to Point Set, Random Vectors,
Reflect, Surface Vectors, Texture
Map Coordinates, Transform, Warp

The Basic Mapping algorithms operate on an array of field
values and generate another array of field values. Each out-
put field value is computed independently using only the
associated input value (or values if there is more than one
input array).

The typical purpose of this type of algorithm is to gen-
erate a derived field of data. Some of these operate on the
coordinates of mesh points, for example the Transform fil-
ter moves and warps the data with an affine transformation.
However, when point coordinates are treated as a field, the
behavior characteristics are the same. Some examples of Ba-
sic Mapping algorithms are given in Figure 2. The example

shuttle data is courtesy of the NASA Advanced Supercom-
puting Division.

The Basic Mapping class is essentially just a parallel for
operation over input and output field arrays. As such, basic
mapping is essentially built in to many multi- and many-
core languages and APIs including OpenMP (parallel for
pragma [31]), CUDA (triple chevron notation [35]), Thrust
(for each generic algorithm [7]), and Intel Threading Build-
ing Blocks (parallel for generic algorithm [32]). Although
all of these systems use significantly different syntax, Baker
et al. [5] show how to simplify porting using a generic pro-
gramming interface over them.

Map by Cell
Separable Element Cell
Point Mapping Identity
Cell Mapping Identity
Field Mapping Points on cell to cell
Collective Work None
Algorithms Cell Centers, Cell Derivatives, Mesh

Quality, Point Data to Cell Data

The Map by Cell class is very similar to Basic Mapping with
the exception that the input field arrays are not a one-to-one
mapping to the output field arrays. Instead, these opera-
tions are performed using the information over a complete
cell and attached fields.

Operations of this class involve characterizing the shape
of the cell (as in the case of Cell Centers and Mesh Qual-
ity) or math operations over continuous function rather than
discrete values (as is the case for Cell Derivatives). Some ex-

Figure 3: Examples of Map by Cell algorithms.

Figure 4: Examples of Reconnect Cell algorithms.

Figure 5: Examples of Build Independent Topology algorithms.

amples of Map by Cell are given in Figure 3.
Although parallel threads generally do access overlapped

portions of the input data, the calculations computed by
each thread are independent and there is no overlap in the
output they produce and are thus easy to parallelize. The
EAVL library and Dax toolkit each provide a generic algo-
rithm to perform Map by Cell [26, 29].

Reconnect Cell
Separable Element Cell
Point Mapping 1 to 0 or 1
Cell Mapping 1 to 0 or more
Field Mapping Identity
Collective Work None
Algorithms Extract Cells by Region, Extract

Selection, Mask Points,
Tetrahedralize, Threshold,
Triangulate

There are several apparent patterns in algorithms that build
a topological structure, the first of which is Reconnect Cell.
The characteristics of these algorithms are that the output
topology uses the same points as (or a subset of the points
from) the input topology and that each output cell depends
on exactly one input cell. In essence the connectivity of
each cell is being redefined. Some examples of Reconnect
Cell algorithms are given in Figure 4.

Because each thread creates an independent list of cell
connections, Reconnect Cell algorithms have no interdepen-
dence. This makes them very similar to Map by Cell al-
gorithms with the important exception that most Reconnect
Cell algorithms have a variable number of outputs across the
threads that is not known at the onset of execution. Thus,
these algorithms must implement some form of stream com-
paction to build efficient packed arrays for the output. Also,
since some of these algorithms only use a subset of the input
points, it may be desirable to explicitly identify and extract
these points.

Each of the three SDAV many-core frameworks for visu-
alization [37] provides an example of Threshold, a Recon-
nect Cell algorithm, using a different approach. PISTON
uses a stream compaction algorithm to determine an effi-
cient output layout and then generates the output cells in
parallel [22]. New points are created in the output, which
implicitly removes points from the input at the expense of
replicating points in the output. Dax uses a similar stream
compaction but outputs a more compact array of connec-
tion identifiers [24]. Dax can also optionally extract the
subset of points used in the output at an added computa-
tional expense. EAVL provides a different approach wherein
the output data structure references the input structure and
the data management makes this behave as an independent
data structure [25]. This approach is much faster and mem-
ory efficient, but there is no explicit representation of the
result for use in other packages that might expect that and
it is not possible to remove the input structure from memory
as long as the output still references it.

Build Independent Topology
Separable Element Any
Point Mapping 1 element to many points
Cell Mapping 1 element to many cells (constant

number)

Field Mapping Identity
Collective Work None
Algorithms Glyph, Ribbon, Shrink, Tube

Algorithms that Build Independent Topology create new ge-
ometry requiring both new points and new cells that connect
these points. The geometry created by each thread in this
algorithm class is completely independent from that created
in any other thread; there are no topological connections
between them.

For example, consider the Glyph filter. Each thread in this
filter produces a small 3D object, like a scaled sphere or ori-
ented arrow, centered at the point assigned to the thread.
Each 3D object is completely disconnected (topologically)
from its brethren and thus can be created independently and
concurrently. Another example is the Shrink filter, which
contracts each cell toward its local center creating new points
and intentionally breaking connections. These and other ex-
amples of Build Independent Topology algorithms are shown
in Figure 5.

The behavioral characteristics of the Build Independent
Topology algorithms are very similar to the Basic Mapping
and Map by Cell algorithms. The only meaningful differ-
ence between them is the interpretation of the output data.
Instead of producing a single or set of field values, Build In-
dependent Topology algorithms produce topologies of cells,
vertices, and point coordinates; these data must be inter-
preted and managed as such.

Build Connected Topology
Separable Element Cell
Point Mapping 1 cell to 0 or more points
Cell Mapping 1 to 0 or more
Field Mapping Interpolated points
Collective Work Resolve duplicate points
Algorithms Clean, Clip, Contour, Extrusion,

Isovolume, Slice, Subdivision,
Tessellate

The most technically complicated class of algorithms we
find that generate geometry are those that Build Connected
Topology. Some examples are given in Figure 6. These al-
gorithms create new geometry requiring both new points
and new cells that connect these points. The points created
by each thread are coincident with points created by an-
other thread. These coincident points represent connections
across elements created by different threads; capturing these
connections creates an interdependence across threads.

The easiest solution to this problem is to simply ignore it
by letting coincident points exist and losing the topological
connections. Thus, the output of the algorithm is topologi-
cally a set of disconnected cells, often referred to as a soup.
We find this approach common, particularly in implementa-
tions of Contour for GPUs [11,19,22,30].

Producing a soup of cells may be an acceptable solution in
some situations, particularly if the result is to be rendered
and then forgotten, but can also be a problematic solution.
The first problem is that this redundancy causes an infla-
tion of the memory required. The second problem is that
subsequent algorithms, such as estimating smooth normals
on a contour, might require the lost topological connections.
Existing tools, particularly those built on VTK [36], expect
chains of algorithms of this nature to work.

Figure 6: Examples of Build Connected Topology algorithms.

Figure 7: Examples of Capture Cell Adjacencies algorithms.

A typical approach to finding coincident points in a se-
rial algorithm is to use an iterative locator structure to find
any coincident points that are already created [1]. However,
this approach is unlikely to work in a massively threaded
environment as constant updates to the locator will require
far too much synchronization. Bell [6] informally proposes
a vertex welding algorithm that can efficiently find these co-
incident points on massive threading after the fact, but a
solution working more closely to the algorithm might have
better results.

Capture Cell Adjacencies
Separable Element Point, edge, or face
Point Mapping Identity
Cell Mapping Identity
Field Mapping Interpolated incident fields
Collective Work Find incidence relationships
Algorithms Curvature, Cell Data to Point Data,

Extract Edges, Extract Surface
(external faces), Feature Edges,
Gradient, Normal Generation,
Smooth

The previously listed algorithms all operate on a single point
in the mesh or on a single cell and its incident features.
These data are quickly locatable in general data structures.
However, some algorithms need to Capture Cell Adjacencies.
They typically operate by considering the points, edges, or
faces in the mesh and examining the cells incident to them.
Some examples of such algorithms are given in Figure 7.

In some types of data, particularly structured data with
implicit topologies, enumerating the mesh elements and find-
ing incident cells is trivial. However, in unstructured data
represented by cell connection lists, this information is not
explicitly stored. Thus, although the computation of Cap-
ture Cell Adjacencies algorithms are completely independent,
they might require a collective operation to identify the do-
main of the input each thread needs.

Serial VTK algorithms support cell adjacencies by build-
ing a links array that lists which cells each point is incident
on [1]. A similar array could be used in a massively threaded
environment, but since a links array is not always available,
we first need an efficient massively threaded algorithm to
build one.

An alternate approach is to use a different cell repre-
sentation that does explicitly capture these incidence rela-
tionships. Such alternate representations include half-edge
structures [18], cellular data structures [3], and circular inci-
dent edge lists [21]. The drawback to these linked represen-
tations is that storing links to every desired incidence rela-
tionship is costly. Also, most existing data representations,
including CGNS [34], VTK [36], and XDMF to name a few,
use cell connection lists, so a links array would likely need
to be built to convert between the representations anyway.

Globally Reduce
Separable Element Any
Point Mapping None in output
Cell Mapping None in output
Field Mapping All to 1
Collective Work Global reduction
Algorithms Histogram, Integrate, Outline,

Statistics

Some scientific visualization algorithms perform an aggrega-
tion on the data, often performing an operation like sum or
average on a field or derived field in the data. Thus, these
algorithms Globally Reduce data into a single value or small
set of values.

Reduction is a common operation in general parallel com-
puting, and a reduction operation is ubiquitously supported
across parallel computing environments [7, 31, 32, 35, 38].
Consequently, once the reduction operation can be expressed
in terms of an associative binary operation, implementing
the reduction is straightforward. The reduction is compli-
cated slightly on a hybrid parallel machine with multiple
many-core machines clustered with an interconnect, but the
reduction can still be performed by first reducing locally
within the shared-memory many-core machine and then re-
ducing those values across the distributed-memory intercon-
nect [10].

Query Data
Separable Element Point, key, or query
Point Mapping Identity
Cell Mapping Identity
Field Mapping 1 query to 1 output
Collective Work Building query structure
Algorithms Particle Tracer, Probe Location,

Quadric Clustering, Resample with
Dataset, Stream Tracer, Streaklines

Most scientific visualization algorithms operate on a domain
that is easily identifiable by the enumeration of the work (i.e.
the point or cell identifier used to number threads). How-
ever, some algorithms must Query Data to find a region of
interest. Typically this means finding a cell containing a
given coordinate in space. This is part of the fundamen-
tal operation of algorithms such as those based on resam-
pling and particle advection. (Note that query only solves
the challenge of finding a single integration step in particle
advection, shown in Figure 8. It also needs to iterate, to
connect successive computations, and to find terminations,
but these can be straightforward extensions of existing algo-
rithms.) Although spatial queries are common, queries for
a more general set of attributes can also be needed when
performing query-based visualization [13–15,33].

Some queries, such as a spatial query on a uniform rec-
tilinear grid, are straightforward, but many will require a

Figure 8: An example of a Query Data algorithm.

Table 1: Overview of visualization algorithm classifications

Name Separable
Element

Point Mapping Cell Mapping Field Mapping Collective Work Example
Algorithm

Basic Mapping Any Identity Identity 1 to 1 None Generate
Ids

Map by Cell Cell Identity Identity Points on cell to
cell

None Cell Centers

Reconnect Cell Cell 1 to 0 or 1 1 to 0 or more Identity None Threshold

Build
Independent
Topology

Any 1 element to
many points

1 element to
many cells

Identity None Glyph

Build Connected
Topology

Cell 1 cell to 0 or
more points

1 to 0 or more Interpolated
points

Resolve duplicate
points

Contour

Capture Cell
Adjacencies

Point, edge,
or face

Identity Identity Interpolated
incident fields

Find incidence
relationships

Normal
Generation

Globally Reduce Any None in output None in
output

All to 1 Global reduction Histogram

Query Data Point, key,
or query

Identity Identity 1 query to 1
output

Building query
structure

Stream
Tracer

specialized search structure. Several spatial search struc-
tures are proposed [12, 16, 17, 40, 41], most for the purpose
of rendering, but there is yet little research on the building
and using of query structures on massive threading for the
purposes of scientific visualization.

Remaining Algorithms
The previous classification of algorithms contains the ma-
jority of algorithms in the ParaView application. There are
some algorithms we have left out of this list for a variety of
reasons, which we capture here.

A very small number of algorithms have complicated in-
teraction that appears to be unique to the nature of the op-
eration. The Connectivity algorithm needs to traverse large
neighborhood regions to find connected components. The
Delaunay algorithm needs to find all circles or spheres con-
taining exactly 3 or 4 points, respectively. The Halo Finder
algorithm identifies collections of points in mutual proxim-
ity. The Decimate algorithm reduces the size of geometry
by removing points based on an error metric. The Triangle
Strips algorithm finds connected strips in triangle meshes.

There may be commonalities among some of these algo-
rithms, but we are unsure if these similarities extend to
shared solutions for interdependence. Regardless, there are
few algorithms with unique thread interaction, so address-
ing these independently is much more tractable than reim-
plementing every algorithm in existence today.

We have left out one or more classes involving imaging
algorithms. These include algorithms involving kernel con-
volutions and FFT. Although this is generally an important
class of algorithms, it is not one that is extensively used
by ParaView users. The field of imaging algorithms is very
broad and of interest across many disciplines. It deserves its
own study, and thus we consider it out of the scope of this
paper.

Another algorithm we have left out is Extract Subset,
which extracts a region of interest and optionally regularly
subsamples structured data. The operation is similar to that

of Reconnect Cell except that the basic implementation of
copying subarrays is so simplistic we omit it.

There are several algorithms in ParaView that do not
translate to running on massive threads. Some of these algo-
rithms do trivial metadata manipulations like extracting a
block from an assembly. Other algorithms perform ordinary
operations while making temporal adjustments [8] or other
changes to pipeline execution management [28]. Also, al-
though the Distributed Data Decomposition (D3) and simi-
lar redistribution algorithms can be compute intensive, their
data partitioning makes little sense on the fine level dictated
by massive threading.

Finally, to avoid being overly pedantic, we omit several
algorithms that are variations of algorithms listed or spe-
cialized combinations of algorithms listed. For example,
ParaView contains seven different versions of Generate Ids
where each extracts information from different enumera-
tions. ParaView also has four different versions of Slice,
which have some optimizations for different data structures.
There are also several algorithms such as Material Interface
and Surface Flow that are each basically a conglomeration
of other algorithms listed here. It would be unnecessarily
distracting to enumerate each of these variations.

4. CONCLUSION
Although we have made progress in designing massively
threaded visualization algorithms for scientific visualization,
we have a long way to go to support production visualization
at extreme scale. Our current scientific and visualization
needs incorporate the inclusion of many algorithms includ-
ing those designed specifically for a specialized scientific do-
main. We as a community simply do not have the resources
to independently address all of these needs.

The development of our current petascale visualization
tools is made possible by observations that allow us to design
a general parallel capability that is then shared among many
visualization categories. If we cannot find a similar way to
localize and reuse the parallel portion of our algorithms, we

cannot succeed in supporting the next generation of parallel
computing.

In this paper we have identified eight categories of shared
features among these algorithms summarized in Table 1. By
addressing the group of algorithms in each category as one,
we can quickly achieve our goal of supporting extreme scale
computing.

5. ACKNOWLEDGMENTS
This work was supported in part by the DOE Office of Sci-
ence, Advanced Scientific Computing Research, under award
number 10-014707, program manager Lucy Nowell.

This work was supported in part by the Director, Office of
Advanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. 12-
015215, through the Scientific Discovery through Advanced
Computing (SciDAC) Institute of Scalable Data Manage-
ment, Analysis and Visualization.

Sandia National Laboratories is a multi-program labora-
tory operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Adminis-
tration.
SAND 2013-7493C

6. REFERENCES
[1] The VTK User’s Guide. Kitware Inc., 11th edition,

2010. ISBN 978-1-930934-23-8.

[2] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C.
Law, and M. Papka. Large-scale data visualization
using parallel data streaming. IEEE Computer
Graphics and Applications, 21(4):34–41, July/August
2001.

[3] T. J. Alumbaugh and X. Jiao. Compact array-based
mesh data structures. In Proceedings, 14th
International Meshing Roundtable, pages 485–504,
September 2005.

[4] U. Ayachit et al. The ParaView Guide: A Parallel
Visualization Application. Kitware Inc., 4th edition,
2012. ISBN 978-1-930934-24-5.

[5] C. G. Baker, M. A. Heroux, H. C. Edwards, and A. B.
Williams. A light-weight API for portable multicore
programming. In Proceedings of the 18th Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pages 601–606,
February 2010. DOI 10.1109/PDP.2010.49.

[6] N. Bell. High-productivity CUDA development with
the thrust template library, 2010.

[7] N. Bell and J. Hoberock. GPU Computing Gems, Jade
Edition, chapter Thrust: A Productivity-Oriented
Library for CUDA, pages 359–371. Morgan
Kaufmann, October 2011.

[8] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland,
and D. Thompson. Time dependent processing in a
parallel pipeline architecture. IEEE Transactions on
Visualization and Computer Graphics,
13(6):1376–1383, November/December 2007.
DOI 10.1109/TVCG.2007.70600.

[9] H. Childs, B. Geveci, W. Schroeder, J. Meredith,
K. Moreland, C. Sewell, T. Kuhlen, and E. W. Bethel.
Research challenges for visualization software. IEEE

Computer, 46(5):34–42, May 2013.
DOI 10.1109/MC.2013.179.

[10] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and
R. Thakur. Hybrid parallel programming with MPI
and unified parallel C. In Proceedings of the 7th ACM
International Conference on Computing Frontiers,
pages 177–186, 2010. DOI 10.1145/1787275.1787323.

[11] C. Dyken, G. Ziegler, C. Theobalt, and H.-P. Seidel.
High-speed marching cubes using HistoPyramids.
Computer Graphics Forum, 27(8):2028–2039, 2008.
DOI 10.1111/j.1467-8659.2008.01182.x.

[12] T. Foley and J. Sugerman. KD-tree acceleration
structures for a GPU raytracer. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware (HWWS ’05), pages 15–22, 2005.
DOI 10.1145/1071866.1071869.

[13] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu.
Visualizing temporal patterns in large multivariate
data using textual pattern matching. IEEE
Transactions on Visualization and Computer
Graphics, 14(6):1467–1474, November/December 2008.
DOI 10.1109/TVCG.2008.184.

[14] L. J. Gosink, J. C. Anderson, E. W. Bethel, and K. I.
Joy. Query-driven visualization of time-varying
adaptive mesh refinement data. IEEE Transactions on
Visualization and Computer Graphics,
14(6):1715–1722, November/December 2008.

[15] C. R. Johnson and J. Huang. Distribution-driven
visualization of volume data. IEEE Transactions on
Visualization and Computer Graphics, 15(5),
September/October 2009.
DOI 10.1109/TVCG.2009.25.

[16] J. Kalojanov, M. Billeter, and P. Slusallek. Two-level
grids for ray tracing on GPUs. Computer Graphics
Forum, 30(2):307–314, April 2011.
DOI 10.1111/j.1467-8659.2011.01862.x.

[17] J. Kalojanov and P. Slusallek. A parallel algorithm for
construction of uniform grids. In Proceedings of the
Conference on High Performance Graphics, pages
23–28, 2009. DOI 10.1145/1572769.1572773.

[18] L. Kettner. Designing a data structure for polyhedral
surfaces. In Proceedings of the Fourteenth ACM
Symposium on Computational Geometry, pages
146–154, 1998. DOI 10.1145/276884.276901.

[19] T. Klein, S. Stegmaier, and T. Ertl.
Hardware-accelerated reconstruction of polygonal
isosurface representations on unstructured grids. In
Proceedings of the 12th Pacific Conference on
Computer Graphics and Applications (PG’04), pages
186–195, October 2004.
DOI 10.1109/PCCGA.2004.1348349.

[20] C. C. Law, K. M. Martin, W. J. Schroeder, and
J. Temkin. A multi-threaded streaming pipeline
architecture for large structured data sets. In
Proceedings of IEEE Visualization 1999, pages
225–232, October 1999.

[21] B. Lévy, G. Caumon, S. Conreaux, and X. Cavin.
Circular incident edge lists: a data structure for
rendering complex unstructured grids. In Proceedings
of IEEE Visualization, pages 191–198, October 2001.

[22] L.-T. Lo, C. Sewell, and J. Ahrens. PISTON: A
portable cross-platform framework for data-parallel

visualization operators. Technical Report
LA-UR-12-10227, Los Alamos National Laboratory,
2012.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
Computer Graphics (Proceedings of SIGGRAPH 87),
21(4):163–169, July 1987.

[24] R. Maynard, K. Moreland, U. Ayachit, B. Geveci, and
K.-L. Ma. Optimizing threshold for extreme scale
analysis. In Visualization and Data Analysis 2013,
Proceedings of SPIE-IS&T Electronic Imaging,
February 2013.

[25] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros.
EAVL: The extreme-scale analysis and visualization
library. In Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV), pages 21–30,
2012. DOI 10.2312/EGPGV/EGPGV12/021-030.

[26] J. S. Meredith, R. Sisneros, D. Pugmire, and
S. Ahern. A distributed data-parallel framework for
analysis and visualization algorithm development. In
Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units
(GPGPU-5), pages 11–19, March 2012.
DOI 10.1145/2159430.2159432.

[27] K. Moreland. The ParaView tutorial, version 4.0.
Technical Report SAND 2013-6883P, Sandia National
Laboratories, 2013.

[28] K. Moreland. A survey of visualization pipelines.
IEEE Transactions on Visualization and Computer
Graphics, 19(3):367–378, March 2013.
DOI 10.1109/TVCG.2012.133.

[29] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma.
Dax toolkit: A proposed framework for data analysis
and visualization at extreme scale. In Proceedings of
the IEEE Symposium on Large-Scale Data Analysis
and Visualization, pages 97–104, October 2011.
DOI 10.1109/LDAV.2011.6092323.

[30] V. Pascucci. Isosurface computation made simple:
Hardware acceleration, adaptive refinement and
tetrahedral stripping. In Proceedings of the Sixth Joint
Eurographics - IEEE TCVG conference on
Visualization, pages 293–300, 2004.

[31] M. J. Quinn. Parallel Programming in C with MPI
and OpenMP. McGraw-Hill, 2004.
ISBN 978-0-07-282256-4.

[32] J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor Parallelism.
O’Reilly, July 2007. ISBN 978-0-596-51480-8.

[33] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith,
C. G. Geddes, E. Cormier-Michel, S. Ahern, G. H.
Weber, P. Messmer, H. Hagen, B. Hamann, and E. W.
Bethel. High performance multivariate visual data
exploration for extremely large data. In Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing,
November 2008.

[34] C. L. Rumsey, D. M. A. Poirier, R. H. Bush, and
C. E. Towne. A user’s guide to cgns. Technical Report
TM-2001-211236, NASA, October 2001.

[35] J. Sanders and E. Kandrot. CUDA by Example.
Addison Wesley, 2011. ISBN 978-0-13-138768-3.

[36] W. Schroeder, K. Martin, and B. Lorensen. The
Visualization Toolkit: An Object Oriented Approach to

3D Graphics. Kitware Inc., fourth edition, 2004. ISBN
1-930934-19-X.

[37] C. Sewell, J. Meredith, K. Moreland, T. Peterka,
D. DeMarle, L.-T. Lo, J. Ahrens, R. Maynard, and
B. Geveci. The SDAV software frameworks for
visualization and analysis on next-generation
multi-core and many-core architectures. In 2012 SC
Companion (Proceedings of the Ultrascale
Visualization Workshop), pages 206–214, November
2012. DOI 10.1109/SC.Companion.2012.36.

[38] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: The Complete Reference, volume 1,
The MPI Core. MIT Press, second edition, 1998.
ISBN 0-262-69215-5.

[39] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3), 2005.

[40] K. Zhou, M. Gong, X. Huang, and B. Guo.
Data-parallel octrees for surface reconstruction. IEEE
Transactions on Visualization and Computer
Graphics, 17(5):669–681, May 2011.
DOI 10.1109/TVCG.2010.75.

[41] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time
kd-tree construction on graphics hardware. ACM
Transactions on Graphics, 27(5), December 2008.
DOI 10.1145/1409060.1409079.

	Introduction
	Key Principles
	Classification of Visualization Algorithms
	Conclusion
	Acknowledgments
	References

