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Abstract—As the amount of memory per core decreases in
post-petascale machines, the memory footprint of any libraries
and middleware used by HPC applications must be reduced.
While scientific data can contain a great deal of entropy and
require specialized compression techniques, the descriptions of
scientific data layouts, as opposed to contents, turn out to be
highly compressible. In this paper we present two approaches to
compressing scientific data layout descriptions. We also describe
two data structures for managing the compressed data. We incor-
porated our approach into the ROMIO MPI-IO implementation
to reduce the memory consumption, observing an 89x reduction
in memory overhead with a 25% increase in CPU overhead.

I. INTRODUCTION

“Limited amounts of memory and low memory/flop
ratios will make processing virtually free. In fact, the
amount of memory is relatively decreasing, scaling
far worse than computation.” — Horst Simon [1]

Sites are procuring and deploying machines with an as-
tounding amount of parallelism, but these large numbers of
cores will have access to relatively little memory. Applications
using these machines are going to consume as much memory
as available and will appreciate any steps taken to reduce the
memory footprint of middleware, such as the MPI library.

The ROMIO MPI-IO implementation [17], part of MPICH
and many other MPI implementations, provides scalable, high-
performance routines for MPI applications. ROMIO’s 20-year-
old design continues to provide powerful optimizations, but
some choices need to be revisited as problem sizes scale up.
In particular we have identified an area of the ROMIO MPI-10
implementation that can, for certain classes of MPI datatypes,
consume large amounts of memory.

Our goal in this paper is to present data structures for
managing random, partial access to compressed data with
reasonable CPU costs. ROMIO provides an attractive and
relevant context to evaluate our approaches though we have
designed our approach to be a general solution and not tied
specifically to ROMIO.

A. ROMIO and MPI Datatypes

The ROMIO datatype flattening code processes an MPI
datatype to generate two arrays, one listing the “indices”
(offsets of data regions relative to the address of the first
element) and the other listing the “blocklens” of the type
(size of each data region). Figure 1 depicts a small example.
An MPI_Type_vector is created with five elements, each

C code describing type:

MPI Type vector(5, 2, 10,
MPI INT, &vec type);

notional flattened representation:
(0,8),(40,8),(80,8),(120,8),(1660,8)
C library representation:

indices[] = {0, 40, 80, 120,
blocklens[] = {8, 8, 8, 8, 8}

160}

Fig. 1. ROMIO’s model for representing MPI types; example using a vector
type.

element being composed of 2 integers. The starting addresses
of two consecutive elements are separated by 10 integers (40
bytes). This type presents a very high regularity: values in the
array of indices are increasing by steps of 40, and all values
are identical in the array of blocklens. The generated arrays
for vector types always demonstrate this regularity. Generated
arrays for indexed-based descriptions, however, may not do
so, as we will discuss in Section IV-C.

Codes can call MPI-IO routines directly with handwritten
datatype descriptions. Typically these handwritten versions
are not elaborate. We also see library-generated datatype
descriptions. The datatypes generated by HDF5 or Parallel-
NetCDF, for example, tend to describe much more data and
result in much larger flattened representations. One of these
library-generated types [2] drew our attention to ROMIO’s
memory usage.

Other approaches to handling datatypes have been studied
([19], [14]), but the ROMIO flattening code still lives on,
largely because it has seen 20 years of testing and bug fixes.
Even in these other approaches, however, cases exist where
the original user input must be maintained. For example,
INDEXED and other types constructed from a list of user-
provided arguments need to maintain those arguments: the
MPI standard dictates that the type inspection routines (CON-
TENTS and ENVELOPE) must return the original parameters
provided by the user.

We developed two approaches that dramatically reduce
ROMIO’s memory consumption with minimum impact on
ROMIO’s implementation. Since the data structures ROMIO
uses to maintain datatype descriptions (simple arrays of 64-bit
values) turn out to present low entropy, we use compression to
lower their memory footprint. We developed an array-oriented
interface allowing applications to store data in an abstract



Workload | Original | Compressed | Ratio

coll_perf 9.562 MiB | 176.0 KiB 1.798%

mbconvert 3200 Bytes | 657 Bytes 20.5%

bigio (subset) | 15.00 MiB | 101.7 KiB .6623%
TABLE I

EFFECTIVENESS OF BLOSC-LZ COMPRESSION ON FLATTENED DATA

Workload | Original | Compressed | Ratio
coll_perf 9.562 MiB 336 Bytes ~0.0%
mbconvert 3200 Bytes | 4736 Byte 148%
bigio (subset) | 15.00 MiB 48 Bytes "0.0%
TABLE II
EFFECTIVENESS OF GRAMMAR-BASED COMPRESSION ON FLATTENED
DATA

arraylike form. Under the abstraction, data is compressed,
possibly with a smaller decompressed working set. We exploit
our knowledge of ROMIQ’s access patterns: by introducing a
small cache of uncompressed data, ROMIO needs to consult
the underlying compressed data structure less frequently. Our
approaches reduce ROMIO’s peak memory use and one of our
approaches comes close to matching unmodified ROMIO’s run
time.

B. Preliminary Analysis

Before integrating any kind of compression strategy into
ROMIO, we first confirmed our hypothesis that ROMIO
flattening data was indeed compressible. We instrumented
ROMIO to dump out in binary form the (offset, blocklength)
pairs it generated after flattening a datatype. We used three
codes generating datatypes: mbconvert, bigio, and coll_perf.
For more information about mbconvert and bigio and their
datatypes, see Section IV. Since the full bigio datatype dump
was 64 GiB, we looked only at a representative subset
(15 MiB). The coll_perf benchmark is one of ROMIO’s
internal tests and constructs a 3D DARRAY type with a
(BLOCK, BLOCK, BLOCK) distribution. After capturing
ROMIO’s representation, we compressed these binary dumps
with the Blosc [3], [4] framework. Table I shows our results.
The data compresses to a tiny fraction of original size, except
for mbconvert. This mesh-oriented utility generates many
short, highly irregular indexed-based datatypes; but, even so,
a general-purpose compressor can shrink the data by 80%.

While the internal ROMIO arrays may contain billions of
elements, these arrays were generated from routines that in
most cases take only a few parameters. A grammar-based
approach captures the structure of the data and shrinks the
representation even further in these cases. However, if there is
no regularity, as in the mbconvert case, the grammar approach
is unable to reduce the data, as shown in Table II.

II. RELATED WORK

Wilson et al. [21] and Douglis [9] looked at compressing
virtual memory pages, allowing the system to keep more
(compressed) memory pages resident and to avoid disk access.
Our approach more closely focuses on a user-space workload
where data is known to be highly-compressible and need not

provide the complexity of a fully general approach required
of the virtual memory subsystem.

Our approach here is distinctly different from compressing
scientific datasets. Scientific datasets generally contain a great
deal of entropy and so are not well suited for general-
purpose compressors such as gzip or bzip2. Preconditioners
such as ISOBAR [15] can separate high-entropy blocks from
low-entropy blocks. Special-purpose compressors can operate
better on floating point data [12].

We are not the first group to recognize and exploit regu-
larity of I/O access patterns. PLFS speeds up log replay by
identifying patterns, then replacing large metadata logs with a
more concise record [10].

Whereas we are studying compression to work around
memory limitations, other groups have used compression to
work around storage bandwidth limitations. Zou et al. [22]
used compression to mitigate data movement costs between
simulation and analytics components. Likewise, Welton et
al. [20] improved observed network bandwidth by compressing
messages between compute nodes and I/O forwarding nodes.
Similarly, Bui et al. [5] applied compression to scientific
datasets to improve transfer rates. We are not operating on
scientific data, but we did incorporate the Blosc compression
framework into our design in part because of how well Blosc
performed in Bui’s work.

To be clear, we are making no claims to increased perfor-
mance: outperforming an array access in C would be quite a
feat. Rather, we are using compression to make possible what,
because of system constraints, was not possible.

III. IMPLEMENTATION

When dealing with compressed data, one can decide to
apply a general-purpose compression algorithm able to han-
dle most workloads reasonably well or a more specialized
algorithm able to handle a specific workload with superior
efficiency. We explored both approaches in this work. For
the general purpose compression algorithm we used the blosc
compression framework [3] with the blosc-1z compressor.

The ROMIO flattened representation can often have a great
deal of regularity. A grammar-based approach can capture
that regularity and compress certain classes of arbitrarily long
arrays into a few bytes worth of grammar rules. We cover both
techniques in more detail in subsequent subsections.

A. Access Pattern

In addition to the kind of data stored in these ROMIO
arrays, we also know how these data structures will be
accessed. ROMIO has two behaviors: one for creating the
flattened representation and one when using the representation
to compute I/O and memory access patterns.

When creating the representation, the access will be append-
only writes mixed in with reads of prior elements: the flatten-
ing code processes the types essentially linearly (a STRUCT-
based type can exhibit more complexity, but in practice that
is uncommon). In no cases are elements overwritten. ROMIO
does read prior elements to compute the new elements (typical



/* initialize comparray library and dependencies x/
void comparray_init ();

/* clean up */
void comparray_finalize();

/+ create a comparray container that stores data
of size ’type_size’ in chunks consisting of a
’chunk_size’ number of elements =/

comparray comparray_create(size_t chunk_size,

size_t type_size);

/+* given an array ’‘value’ of ’count’ items, store in
compressed array ’‘array’ at index ’index’ */
int comparray_set_n (comparray array, inté64_t index,
int64_t count, wvoid xvalue);

/+ provide an array ’dest’
it fill it with ’count’
index ’index’ */

int comparray_fill_n(comparray array,

int64_t index, int64_t count, wvoid * dest);

to comparray and have
items beginning from

/% deallocate everything associated with ‘id’ =*/
void comparray_free (comparray id);

Fig. 2. Key routines of “compressed array” API

C-code examples would look like index[i] = index[i — 1] *
stride or block[i] = block|0]).

During I/O operations, ROMIO switches to a read-only
workload. ROMIO will walk through the flattened represen-
tation in a linear fashion. This walk, however, is not strictly
sequential. An I/O access can be larger than the type describing
the MPI file views. In that situation, the type is “tiled,” and
ROMIO will start over from the beginning, adding the number
of prior filetypes to the offset of the (offset, length) tuple.

B. Compressed Arrays

When designing a data structure to manage compressed
data in ROMIO, an arraylike interface provides a good fit for
how ROMIO accesses the flattened representation. While we
could simply generate the flattened representation, compress
it, and then decompress it as needed, operating on the entire
representation negates our goals of limiting peak memory
consumption. At the same time, ROMIO’s access patterns do
not need random access to every element. We can keep a
smaller working set decompressed while the majority of the
data remains compressed.

We call this approach compressed-arrays. The compressed-
arrays data structure partitions an array into chunks and applies
compression to each of those chunks. To manage the collection
of compressed chunks, we record the low and high index
of each chunk and store the annotated chunks in an interval
tree [6]. When accessing a single element of the array, an entire
block is decompressed and kept in a cache. ROMIO tends to
process the index and blocklength arrays from start to finish,
with only a little back tracking, making such a chunk-at-a-
time approach a good fit. Figure 2 provides the API. Note
the option of operating on multiple values, helping to reduce
overhead. The full code is available online [11].

Creates a gramarray. The result will be stored in
g. gramtype should be either GRAMARRAY ABSOLUTE or
GRAMARRAY RELATIVE. ABSOLUTE indicates that
values will be stored "as is". RELATIVE

indicates that differences between consecutive
values are stored. #/

Ok % % % %

int gramarray_create (gramarrayx g, int gramtype);
/+Frees the gramarray. +*/
int gramarray_free(gramarray g);

/% Appends an item at the end of the stream.
* This will invalidate all the iterators that have
* been built before. #*/

int gramarray_append(gramarray g, gramtype Xx);

/% Creates an iterator to navigate the grammar.

* If direction = 1, the iterator points to the beginning
* of the array and will move forward.

x If direction = -1, the iterator points to the end of

* the array and will move backward. */

int gramarray_iterator_create(gramarray g,
gramiterx it, int direction);

/% Frees an iterator. +/
int gramarray_iterator_free(gramiter it);

/* Get the current value pointed by the iterator. */
int gramarray_iterator_value (gramiter it,
gramtypex* val);

/+Increments the iterator. «*/
int gramarray_iterator_next (gramiter it);

Fig. 3. Key routines of “gramarray” API

C. Grammar-Based Approach

Since datatypes are naturally hierarchical structures because
of the way they are created, one can expect to find such
hierarchical structures in the list of indices and blocklens as
well. Grammar-based approaches, such as Sequitur [13], have
been proposed to find such hierarchical structures. In [8] we
proposed the StarSequitur algorithm, which improves the Se-
quitur algorithm by more compactly representing repetitions of
sequences. For the present work, we implemented StarSequitur
as a C library called gramarray [7]. Its API is presented in
Figure 3.

In the gramarray library’s design, writing can be done only
by appending new elements. The gramarray structure does
not support the modification or deletion of already inserted
elements. Contrary to the compressed arrays presented in the
preceding section, in which blocks of elements have to be
decompressed before being read, the gramarray structure offers
constant-time sequential access (forward or backward) without
requiring decompression. However, it does not provide random
read access. In the ROMIO context, such limitations are fine:
ROMIO writes proceed sequentially through the array, and
ROMIO reads are either from the very beginning or looking
back a few elements.

When integrated in ROMIO, gramarray compresses sepa-
rately the array of indices and the array of blocklens. Indices
are compressed in a relative manner; that is, after the first
index is stored, differences of consecutive indices (,,—1 — i)
are stored. Hence, the list of indices {0, 4, 12, 16, 24, 28} is



stored as {0, 4, 8, 4, 8, 4}, which compresses into the grammar
S —0,A%4

1
A—48 M

(exponents here represent iterations over a value or a pattern).
Arrays of blocklens are compressed in an absolute manner.

The StarSequitur algorithm has a linear complexity in
the number of symbols being encoded. While experiments
presented in the following section show that the grammar
approach can be very efficient in terms of compression ratio,
they also show that such a compression can be very costly in
performance. This is mainly due to the fact that the Sequitur
algorithm’s implementation is based on pointer arithmetic to
navigate in a graph (the grammar) of small elements that are
frequently allocated and freed.

D. Cache Design

The compressed-arrays library contains a simple one-block
cache under the hood, but with our knowledge of ROMIO’s
access patterns we can tailor a (simple) cache design to match
ROMIO’s needs. A ROMIO-level cache has the additional ad-
vantage of assisting both the compressed-array and gramarray
approaches. The caching mechanism consists of two caches
for each array.

o A write-back cache consisting of a single block to ab-
sorb updates and allow us to update multiple entries in
one batch. An N-element cache will then write to the
compressed data structure only once before every Nth
append, resulting in a write cache miss rate of 1/N.

e An N-element readahead cache providing a simple
prefetch mechanism to exploit ROMIO’s read access
patterns. ROMIO has two behaviors with respect to
accessing its datatype metadata. ROMIO will either re-
peatedly consult an item at the beginning of the array, as
when constructing a VECTOR datatype, or will consult
the previous element, as when constructing a DARRAY
type. A least-recently used cache with a small number
of entries might be sufficient, but for simplicity we
maintained an N-element readahead cache. We expect low
miss rates for this read cache as well.

The read and write cache also fits well with the grammar-
based limitations, since every append to the grammar invali-
dates any iterators. Keeping a cache of recently read blocks
prevents the need to recreate an invalidated iterator on every
read, but instead only when a read access misses the cache.

IV. EVALUATION

We measured the peak memory usage of ROMIO. Ex-
periments were conducted on a Linux workstation (4-core
Intel Xeon E5430). On Linux (and other systems with the
necessary low-level system calls), the GNU “time” utility (not
the shell built-in) can report a variety of resource metrics in
addition to elapsed time. In these studies we report “maximum
resident set size,” as our goal is to reduce the peak memory
utilization. The time utility does not understand MPI and will
dump one report per process. We report the maximum value

across all processes. When we report “unmodified MPICH,”
we are comparing with the master branch of MPICH (v3.2-
418-gc5b844ad)

A. Degree of Noncontiguity

We wrote a simple benchmark to produce VECTOR types
of increasing noncontiguity. The benchmark constructs a VEC-
TOR MPI type with one block of 16 million integers, then 2
blocks of 8 million integers, and so on until we constructed
16 million blocks of one integer. For each type, we measured
the maximum resident set size (as reported by the getrusage
system call) and the time (as reported by the MPI_Wtime
function) to construct the type and set an MPI file view.
Figure 4 shows our results, comparing unmodified MPICH
with our “compressed array” approach.

Our compressed representation keeps memory utilization
under control. Figure 4b suggests that some additional tuning
may be needed when processing the most highly noncontigu-
ous types. We could, for example, use more memory and
increase the cache and intermediate block size when types
are highly noncontiguous.

Figures 4c and 4d focuses on small-degree noncontiguity.
We plot vector count on a log scale and zoom in on the smaller
counts. Immediately one can see how unmodified MPICH
memory use escalates quickly once an MPI datatype contains
10,000 or more pieces. The compressed representation is using
much less memory while imposing a small CPU overhead.
The chart suggests that a dynamic approach, which we have
not implemented, should use a compressed representation only
when a type description exceeds 10,000 items.

B. HDFS5 biglO

The HDFS5 library [18] sits on top of MPI-1O, providing to
developers an interface based on multidimensional arrays of
typed data. It constructs types not usually seen by handwritten
codes and hence provides an excellent test bed for MPI
type processing implementations. Our HDF5 collaborators
reported being able to exhaust memory when trying out a
new feature [2]. Their MPI datatype was not too aggressive: a
VECTOR with a single block consisting of a billion RESIZED
items. ROMIQ’s flattened representation of this type, however,
consumed 8 GiB of memory.

To highlight the behavior of compressing ROMIO’s flat-
tened representation, we focused solely on the creation of
that representation. To compare our approach with unmodified
MPICH, we had to cut the number of items in the vector
block by a fourth in order to fit the problem in memory. We
also reduced the benchmark to the creation of the MPI type
and the call setting the MPI file view.! ROMIO creates its
internal flattened representation in this file view call. Since we
are omitting the writing and reading of this file, we are also
omitting any evaluation of ROMIO’s read-only consumption of
this datatype. The omission allows us to avoid any variations in

IThese modifications are reflected in the “bigio_viewonly” test case at-
tached to the referenced ticket.
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Fig. 4. ROMIO’s internal representation compresses well, yielding a dramatic reduction in memory usage, though with some cost in processing time.

TABLE III
HDFS5 “BIG-10” CASE: COMPRESSED-ARRAY CAN GREATLY REDUCE THE
MEMORY FOOTPRINT BY PAYING A LARGER TYPE PROCESSING COST. THE
GRAMMAR APPROACH CAN FURTHER SHRINK MEMORY, THOUGH AT EVEN
LARGER COST

Peak Memory ‘ Execution time

unmodified MPICH | 61.25 GiB 66.88 sec

compressed array 0.6902 GiB 84.15 sec

grammar array 0.02594 GiB 2008 sec
TABLE IV

MOAB MBCONVERT UTILITY

| Peak Memory | Execution Time
unmodified MPICH | 213136 KiB 0.28 sec
compressed array 214272 KiB 0.36 sec
grammar array 214624 KiB 0.56 sec

I/O performance between runs and make more reliable timing
observations. Results are reported in Table III.

The ROMIO-Ilevel cache (maintained for both gramarray
and compressed-array) reported a 0.78125 % miss rate for
index access - an exact match for our theoretical miss rate
for a linear walk through the array. It reported a 0.15625%
miss rate for blocklengths, indicating a great deal of repeated
accesses.

C. MOAB Mesh 1/0

MOAB [16] is a component for operating on mesh-oriented
data. It provides an interface for describing the various entities
of a mesh (points, edges, faces, shapes), defines an object
model for reasoning about these meshes, and includes tools
for writing and reading meshes. In this work we focus on
the I/O features. MOAB’s I/O layer stores the mesh database
in HDFS5, which in turn uses ROMIO for parallel I/O. This
deep software stack generates highly irregular MPI datatypes,
making heavy use of the INDEXED family of datatypes to
capture the location of the points of the mesh.

MOAB contains as part of its unit tests a partitioned mesh
stored in a file called 64bricks_12ktet.h5m. We applied the
tool mbconvert and generated an output file in parallel and
with the “resolve_shared_ents” option. We configured MOAB
to use HDF5-1.8.17.

Unlike the HDF5 test case, which created a single large
type, the MOAB case creates 6 types. Index and blocklength

arrays show a ROMIO-level cache hit rate of less than 1% in
all cases. The ROMIO and compressed-array caches are too
large relative to the small types created by this configuration
of MOAB. MOAB provides further evidence that we should
selectively enable compression for only those types exceeding
a threshold.

V. CONCLUSION

On-node memory is already a precious resource on today’s
leadership-class machines and will become more so in the fu-
ture. Our technique to reduce the memory footprint consumes
some CPU time but reduces the memory consumption of a
key middleware library.

We presented two utility libraries for managing compressed
data and applied them to ROMIO’s datatype bookkeeping. The
“compressed-arrays” approach, based on a general purpose
compression framework, works well in all cases studied.
The ‘“‘gramarray” approach leads to higher compression in
several cases but does not fare well when the data is irregular
and incurs a high runtime overhead. Gramarray still needs
significant work to improve its run time before it becomes
viable in production. We can will identify approaches to select
the best compression technique on the fly. VECTOR types, for
example, will always be regular, while INDEXED types may
or may not exhibit regularity. Small datatype descriptions are
unlikely to benefit from compression; our dynamic compres-
sion selection should extend to a ‘“no-compression” method in
such cases.

We have targeted one specific memory-intensive part of
ROMIO that was exhausting memory on a modest ma-
chine. Other latency-insensitive parts of MPI implementations
may also benefit from compressing internal data structures.
The compression utilities were written to be independent of
ROMIO and could be applied to other codes.
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