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Abstract—Emerging scientific and engineering simulations
running at scale on leadership-class High End Computing (HEC)
environments are producing large volumes of data, which has
to be transported and analyzed before any insights can result
from these simulations. The complexity and cost (in terms of
time and energy) associated with managing and analyzing this
data have become significant challenges, and are limiting the
impact of these simulations. Recently, data-staging approaches
along with in-situ and in-transit analytics have been proposed to
address these challenges by offloading I/O and/or moving data
processing closer to the data. However, scientists continue to be
overwhelmed by the large data volumes and data rates.

In this paper we address this latter challenge. Specifically, we
propose a highly scalable and low-overhead associative messaging
framework that runs on the data staging resources within the
HEC platform, and builds on the staging-based online in-situ/in-
transit analytics to provide publish/subscribe/notification-type
messaging patterns to the scientist. Rather than having to ingest
and inspect the data volumes, this messaging system allows
scientists to (1) dynamically subscribe to data events of interest,
e.g., simple data values or a complex function or simple reduction
(max()/min()/avg()) of the data values in a certain region of
the application domain is greater/less than a threshold value,
or certain spatial/temporal data features or data patterns are
detected; (2) define customized in-situ/in-transit actions that are
triggered based on the events, such as data visualization or
transformation; and (3) get notified when these events occur. The
key contribution of this paper is a design and implementation
that can support such a messaging abstraction at scale on high-
end computing (HEC) systems with minimal overheads. We have
implemented and deployed the messaging system on the Jaguar
Cray XK6 machines at Oak Ridge National Laboratory and
the Lonestar system at the Texas Advanced Computing Center
(TACC), and we present the experimental performance evaluation
using these HEC platforms in the paper.

Keywords-associative messaging system, publish/subscribe, in-
situ/in-transit analytics, data staging.

I. INTRODUCTION

Emerging scientific and engineering simulations running

at scale on leadership-class High End Computing (HEC)

environment have the potential for leading to dramatic insights

into complex physical phenomena by enabling increasingly

accurate solutions to realistic models. At the same time, these

simulations are also generating large amounts of data that

has to be transported and analyzed before this potential can

be realized. This increase in data volume presents significant

challenges in terms of (1) the costs (time and energy) required

to transport the data as well as (2) the complexity of translating

the data into insights, both of which are significantly reducing

the productivity of the scientists and the impact of the sim-

ulations. For example, turbulent combustion direct numerical

simulations (DNS) attempt to resolve intermittent phenomena

that occur on the order of 10 simulation time steps. However,

in order to maintain I/O overheads and data management

complexities within a reasonable level, data is only extracted

and analyzed every 400 time steps, and, as a result, some

intermittent phenomena are lost. Furthermore, the analysis is

typically done offline as a post-processing step.

Several research efforts have tried to address these chal-

lenges and explored techniques for high-throughput data trans-

fers and efficient data management with low application over-

head. One promising approach is to offload expensive I/O

and data processing operations from the computing cores to

the staging area that comprises of a smaller set of dedicated

cores, typically on the same HEC system. For example, our

work with DataSpaces [1] uses this approach and essentially

builds a distributed shared space abstractions on the staging

cores, which can be associatively accessed by all applica-

tions/services that are parts of the simulation workflow, (i.e.,

simulation codes, coupling methods, analysis and visualization

codes, etc.) and enables them to asynchronously insert and

retrieve data to/from the shared space. This class of solutions

primarily focuses on the fast and asynchronous movement

of data from/to simulation cores to reduce the impact of

expensive I/O operations on the simulations.

Furthermore, in-situ and in-transit analytics approaches

have also been proposed that use compute and memory

resources at the stating area to process the data closer to

the compute cores. For example, projects such as DataS-

paces [1]/ActiveSpaces [2], DataStager [3]/PreData [4] and

Glean [5] have explored how staging resources can be used

to add value to the data path by executing parts of the

application’s data analysis pipeline.

While techniques such as data staging, I/O offloading,

and in-situ and in-transit analytics have helped address the

challenges and costs associated with transporting, managing

and processing the large volumes of data, the second challenge

– the complexity of translating data into insights remains

largely unaddressed and scientists continue to be overwhelmed

by the large data volumes and data rates – scientists have to



process all the data and/or data products to detect the events

of interest that they may want to explore further.

In this paper we address this second challenge and ex-

plore how the staging resources and the data staged there

along with in-situ and in-transit analytics can be leveraged

to automate the detection of event of interest and to improve

the productivity of the scientists. Specifically, we propose

a highly scalable and low-overhead associative messaging

system that runs on the staging resources within the HEC

platform and leverages the user-defined online in-situ/in-transit

analytics there, and provides publish/subscribe/notification-

type messaging patterns [6] to the scientists. The messaging

system builds on DataSpaces [1] and ActiveSpaces [2], and

allows scientists to (1) dynamically subscribe to data events

of interest possibly in regions of interest, (2) define actions

that are triggered based on the events, and (3) get notified

when these events occur. Both, events and triggered actions

can be based on in-situ and in-transit analytics operations. For

example, the registered data event may specify that a function

or simple reduction (max()/min()/avg()) of the data values in

a certain region of the application domain is greater/less than

a threshold value, or a certain spatial/temporal data feature or

data pattern is detected; and the resulting actions include users

getting notified and user-defined in-situ/in-transit actions, e.g.,

visualization or writing the target data to persistent storage,

being triggered at the staging nodes.

Such a messaging system provides several advantages. It

enables scientists or scientific applications to dynamically

formulate and asynchronously submit subscriptions for data

patterns of interest in a non-blocking manner, and to get

notified when such events occur. It thus avoids the overheads

of continuously monitoring data-availability and retrieving

data to detect events of interest. The messaging framework

also enables the online screening of data, enabling scientists

to quickly discover coarse-grained data characteristics and

decide whether subsequent data movement and further detailed

analysis are necessary. Furthermore, customized actions can

be triggered by the occurrence of events of interest, and

enable flexible user-defined in-situ/in-transit processing within

the staging area performed concurrently with the running

simulations.

Note that, while publish/subscribe messaging systems have

been explored in the past to support a range of applica-

tions [7]–[11], a key contribution of this work is a highly scal-

able design and implementation targeted at HEC platforms that

can run along with high-performance large scale simulations.

Our messaging platform builds on data staging techniques and

in-situ/in-transit analytics to support higher-level abstractions

(e.g., features, data patterns) at which subscriptions can be

defined, as well as support concurrently performed actions

that can be triggered by events of interest. This minimizes

the impact on the simulations and can accelerate scientific

discovery and the scientists’ productivity.

We have implemented and deployed the messaging system

on the Jaguar Cray XK6 system with Gemini interconnect

at Oak Ridge National Laboratory and the Lonestar system

at the Texas Advanced Computing Center (TACC), and we

present the experimental performance evaluation using these

HEC platforms in the paper.

The rest of the paper is organized as follows. Section

II presents two motivating application workflow scenarios.

Section III presents the overall architecture and design of

the proposed messaging system and describes the semantics

of the messaging abstractions provided. This section also

provides an overview of DataSpaces. Section IV describes

the implementation, and Section V presents the experimental

evaluation. Section VI presents the related work, and Section

VII concludes the paper.

II. BACKGROUND

In this section, we present two application scenarios that

motivate the design and implementation of our system.

A. Scientific Simulation and Analytics

The ”simulation-analytics” workflow is widely used in dif-

ferent research areas and scientific applications for scientific

discovery. For example, the study of turbulent combustion [12]

is extremely significant in terms of the development of new

efficient combustion technologies and addresses the challenges

related to climate change and air pollution. Direct numerical

simulation (DNS) [13] can provide relevant statistical informa-

tion to efficiently help the modeling of turbulent combustion.

While the simulation data is being generated, subsequent

analytics such as descriptive statistic analysis, visualization,

and topology-based analysis [14] assist scientists in gaining

insights and understanding causalities behind the physical

phenomena.

Previous work on descriptive statistic analysis [15] has

shown great interests in capturing and tracking flow features

and their statistics together with their correlation with associ-

ated scalar quantities, e.g., temperature or species concentra-

tions. For example, based on the features tracked, appropriate

computations are triggered and/or a collection of meta-data

is generated, which can be orders of magnitude smaller

than the original simulation data. This pattern can also be

used for topology analysis and visualization in combustion

applications. In this scenario, only if features of interest are

detected, appropriate computational analysis and visualization

actions need to be taken, avoiding the heavy I/O overhead in

traditional approach that dumps all the data and post-processes

them offline.

The presented messaging system allows scientists of regis-

tering features of interest and defining actions when the feature

is detected, which monitors the simulation and automates the

analytics dynamically and efficiently.

B. Online Data Monitoring and Adaptations

As an explicit example, consider the petascale fusion appli-

cation being developed by researchers at Oak Ridge National

Laboratory. This scientific investigation attempts to better

understand the stability of contained fusion plasma, which

involves large (independently developed) codes that implement



complex mathematical models for the core and edge of the

plasma, and the runtime couplings of these codes.

This application requires continuous monitoring of the

coupled simulations as they run to ascertain whether certain

events (e.g., elm event) have occurred and that the results

of the coupling are scientifically meaningful, and to adapt

the simulations accordingly when such events are detected.

The presented messaging framework can effectively support

such online data monitoring and automatic adaptations without

pausing/restarting the simulation.

III. SYSTEM ARCHITECTURE

A. Overview of DataSpaces

In this research work, our messaging framework is built

on the top of the DataSpaces [1] framework, which is a

distributed semantically specialized shared space abstraction

that is accessible by all the components and services in an

application workflow. DataSpaces mediates communications

amongst applications and provides them with the data services

such as asynchronous data insertion and retrieval. For instance,

the run-time simulation may easily output data into DataS-

paces by calling put() operator; and the visualization process

running on another system could fetch the data objects stored

in DataSpaces by calling get(). The internal data management

mechanisms of DataSpaces ensure the scalability of distributed

data storage and lookup across the staging nodes.

DataSpaces consists of two basic components, a DataSpaces

server that runs on the staging area and a DataSpaces client,

which is integrated with the applications on the computing

nodes. The DataSpaces server utilizes the memory space of

all the staging nodes to build a distributed data storage

layer, which temporarily stores and maintains the data objects

aggregated from user applications. Beyond the storage layer,

DataSpaces implements data services like data lookup and

query engine to refer and access the data objects across the

server nodes. Space-filling curve (SFC) indexing is used on

the server side, which maps the multidimensional application

domain to a linear index and constructs a distributed hash

table (DHT) to manage the storage location information of

data objects. The SFC indexing and DHT serve the data

lookup module, enabling quick and flexible data lookups. Also,

it allows the overall DataSpaces framework to be scalable,

flexible and handle large volume of distributed data storage.

The query engine benefits from this indexing mechanism and

enables fast and efficient data insertion and retrieval.

The DataSpaces client is a lightweight component that

integrates with the applications and exposes the API to access

and leverage the data services supplied from the DataSpaces

server side. It runs on application computing nodes and allows

the application to query the data objects from the staging

server or vice versa. If the data objects are located on multiple

server nodes, it transparently dissembles the data query and

disseminates the sub-queries to DataSpaces servers, and then

locally assembles the final results.

DataSpaces is often implemented on top of underlying

data communication layer, e.g. DART [16], with remote di-
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Fig. 1. System component and semantic workflows.

rect memory access (RDMA) to enable asynchronous in-

memory data transfer. This asynchronous computation pass-by

memory-to-memory exchange mechanism avoids the latency

of the parallel file-systems caused by concurrent accesses by

multiple applications, so as to accelerate the data transfer with

less variability than using persistent storage systems like files

or databases.

B. System Components

We implemented a content-based Publish-Subscribe mes-

saging layer on the top of DataSpaces to support more

flexible non-blocking data querying, event registration, and

other relevant services. Our distributed messaging framework

derives from DataSpaces and extends its main components:

a client component (publisher or subscriber) and a server

(broker) component (Figure 1). Different semantical interfaces

are provided for each component.

Client Component: The Client is a lightweight component

that integrates with upper layer applications and utilizes the

data services through exposed programming API. The client

could run either as a publisher to spawn simulation data into

server component, or a subscriber to submit specific data

events of interests and corresponding actions to the server

side. Not only the value-based events like a certain range of

data value could be defined here, feature-based data events

are also supported, e.g. boundary coordinates of a data block,

thresholding of data characteristics like max()/min()/svg().

Server Component: The server is a distributed component

based on existing DataSpaces services. It provides a temporary

in-memory storage space and enables the data services to

interact with this space, such as data inserting and retrieving,

and data indexing and lookup. It also acts as an intermediate

message broker which provides extended new data services

for real time data events detection, which includes publish/-

subscribe management, event matching, data execution, and

notification dissemination. These staging nodes keep matching

the incoming live data against a set of subscriptions containing

the data events, and trigger the relevant actions based on the

event. The server component consists of three key layers to

support these services: a data movement and communication



Applications

Data Lookup                    

Broker Engine Layer

Data Lookup 

Indexing

Data Storage

DART/Data Communication Layer

Server Component

(Broker)   

Pubscriber/Subscriber API

DART/Data Communication Layer

Data Query                    

Client Component

(Publisher/Subscriber)   

Fig. 2. Layered system architecture (shaded area is DataSpaces layer).

layer, a Dataspaces layer, and a broker engine layer, as

described below.

C. Layered Architecture

Data Movement and Communication Layer: This layer

builds on DART [16], which is an asynchronous communi-

cation and data transport abstraction based on RDMA one-

sided communication. DART supports asynchronous message

passing and data transport between the parallel simulation

nodes and the staging area. It provides semantical services

such as node registration/deregistration, message passing, data

transfer, event notification and processing. DART can be easily

ported onto different communication fabrics with scalable

performance. A significant contribution in this paper is that

we implement the DART functionality on the Gemini network

of the Cray’s XE/XK systems.

Dataspace Layer: This layer directly uses the DataS-

paces [1] framework, which is a distributed interaction and

coordination service. It provides efficient internal services like

in-memory data storage, data lookup and data querying for

upper layer usage. DataSpace implements a scalable, semanti-

cally specialized shared space abstraction that is accessible by

all the components and services in an application workflow.

Due to the asynchronous, low-overhead, memory-to-memory

data transport provided by the data movement and commu-

nication layer, it allows applications to overlap interactions

and data transfers with computation, and to reduce the I/O

overheads by offloading data operations to the staging area. In

this work, we use its data query, lookup, and storage modules

to support upper layer functionalities.

Broker engine layer: Broker engine layer provides the

central semantics and mechanisms of publish/subscribe man-

agement, event matching, action triggering and distributed

query merging across the servers. Essentially, this layer offers

four types of modules, as shown in Figure 2: (a) Pub/sub

management module caches the coming publishing/subscrip-

tions and removes them when they are processed. (b) Event

matching module decodes the data events from subscriptions,

tracks properties of online data sets from publishers and

matches data events, and triggers pre-defined actions. The

basic descriptive statistic functions like min()/max()/avg() are

embedded in this module. (c) Data execution module defines

the in-situ/in-transit actions triggered on the occurrence of data

events, like data transforming, content filtering, visualization,

and other customized functions. (d) Notifying module performs

notification if requested. The mechanisms and detailed imple-

mentation of these functions are presented in the next section.

IV. IMPLEMENTATION

In this section, we present the design and implementation

of the central mechanisms underlying our messaging system.

These mechanisms effectively support the functionality and

performance of the system, and ensures its scalability and

dynamic operation.

A. Dynamic Subscription Management

The data services offered by our messaging system are non-

blocking, and client applications can asynchronously register

data events of interest related to any data region of the compu-

tation domain. On receiving subscriptions from the clients, the

server must manage and appropriately process subscriptions

and events. The following mechanisms are implemented to

support flexible and dynamic subscription/event management.

Subscription Caching: Multiple subscriptions with unique

identifiers are temporarily cached on the server side in a

Subscription Queue. When data is generated, the server nodes

monitor the completeness of associated data objects on the

basis of the cached local data events, and determine the subse-

quent event matching. After the server successfully processes

the data event and notifies the user, the associated subscription

will be removed from Subscription Queue, and moved to a

Hit Queue that contains the most recently processed events,

in order to reduce the processing cost of same events and

improve system performance.
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SFC Indexing for Data Completion Detection: Space Filling

Curve (SFC) indexing is used to monitor the completeness of

requested data in a region of interest on the server side. When

a new data object is inserted into the staging server, its storage

location information will be updated to a hashed server node

based on the index of this new data object and the distributed

hash table (DHT) provided by DataSpaces layer [1]. Then, if

it intersects the requested data region, the system monitors the

data completeness – whether all the registered data subsets in

the region of interest have been completely put and stored on

the server side.

The process of data completeness monitor has three steps.

Firstly, each staging server uses SFC to map the subscriber-

requested multidimensional region of interest to a linear index

over the entire application domain, and calculates the total

number of associated data elements that are within the re-

quested region and also hashed to it. Each staging server node

provides the storage location information for its associated

data elements. Secondly, the staging server node counts the

number of associated data elements that have been successfully

inserted into the staging area, by looking up the data storage

location information in the table. Finally, if the data element

numbers from previous two steps are equivalent, which means

the anticipated data of interest has already been stored in the

staging nodes completely, the subsequent event matching is

triggered. Otherwise, the monitoring process repeats with the

insertion of a new data object. For example, in Figure 3,

the data region of interest falls into the shaded area, whose

storage location information is hashed to Server 0, Server

1, and Server 3. Server 0 checks the completeness of its

associated data elements following the monitoring process

described above, and calculates the number of requested data

elements as 4 in the first step. After looking up the local data

storage location information table, Server 0 counts the total

number of inserted data elements as only 3, indicating that

the requested data region is incomplete. If the missing data

object (2,1) is inserted, the subsequent registered event will

be processed.

This monitoring approach enables asynchronous data event

registration and dynamic data insertion.

B. Binary Tree Based In-network Aggregation

In many cases, the data associated with a user subscription

may be distributed across different staging server nodes. It

is typically not reasonable to reassemble the scattered data

subsets together at a single node and then process it as a whole,

since it would result in large data movement among the nodes

as well as redundant memory copy operations. An alternate

approach is to query/analyze the distributed data subsets in

parallel and in-situ, and then aggregate the result at the client.

However, such a method would result in a large number of

interactions between the servers and the clients, especially

when the data is distributed across many server nodes, and the

clients would need to have sufficient capabilities to assemble

the intermediate results and compute the final result.

In our messaging framework, we leverage the computing

capabilities of the staging servers to compute the result of

a query in-transit using a hierarchical divide-and-conquer ap-

proach – the data subsets matching a subscription are analyzed

in parallel at each server node and the intermediate results are

merged and aggregated along a binary tree path as they are

routed towards a dynamically selected server node. This node

at the root of the tree then summarizes the result, trigger the

user-specified actions, and notifies the client.
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For each subscription, we thus construct a temporarily

binary tree, which is then used for in-network aggregation.

The binary tree is composed of staging server nodes with data

that matches a subscription. When a subscription is registered,

the server node looks up the SFC DHT and data storage hash

table for all the staging severs nodes that are associated with

the query, and constructs the binary tree, which is then use

to aggregate results generated from data event matching the

subscription.

Figure 4 illustrates the construction of the binary tree and

the recursive aggregation of results for the example presented

in Figure 3. In this figure, the user subscribes for the minimum

data value inside the shaded region. Looking up the SFC DHT,

Server 0, Server 1, and Server 2 are identified as storing the

locality information of data storage associated with the region

of interest. These servers are then used to construct the first

level of the binary tree, as shown in Figure 4. Then, each of

them refers to its own local data storage location information

tables and find all the staging server nodes that store the



associated data subsets, then construct the second level binary

tree respectively and disseminate it with data event request to

the associated data storage servers.

In the example shown in Figure 3, Server 0 finds Server 3,

Server 4, Server 5, and Server 6 as the nodes at the second-

level of the tree. The data reduction required to compute

the minimum value requested by the subscription can be

simply computed in a hierarchically manner along this binary

tree. Compared with direct all-to-one aggregation method,

this in-transit binary aggregation tree balances the number

of messages passing through each node, especially when

the same cluster of nodes are simultaneously involved in

processing multiple events. This has been validated in our

baseline experiments.

C. uGNI-based Asynchronous Data Transfer

One of the key contribution of our work is that we have

implemented and deployed our messaging system on top of

the Gemini interconnect network using the DART data com-

munication layer. The Gemini network provides user Generic

Network Interface (uGNI) [17] as its low-level interface. User-

space communications in uGNI is supported by a set of data

transfer functions using the Fast Memory Access (FMA) and

the Block Transfer Engine (BTE) mechanisms. To ensure

efficiency and scalability, DART dynamically adapts which

mechanism is used on the basis of data size. For small

message sizes, DART uses the GNI Short Message (SMSG)

mechanism, which leverages FMA and allows for direct OS-

bypass achieving the low latencies and high message rates.

For large data transfers, the BTE memory operations (RDMA

Get and RDMA Put) are used to achieve lower performance

overhead and better computation-communication overlap. The

completion of an FMA or BTE transaction generates a corre-

sponding event notification at both the source and destination

of the data transfer, allowing DART to track the status of a

transaction and schedule related data analysis operations.

V. EXPERIMENT AND EVALUATION

We have implemented and tested our system prototype on

both Jaguar Cray XK6 system at Oak Ridge National Labo-

ratory’s National Center for Computational Sciences (NCCS)

and the Lonestar system at the Texas Advanced Computing

Center (TACC). The Jaguar Cray XK6 system has 18,688

nodes connected through a Gemini internal interconnect, and

each node has a single 16-core AMD 6200 series Opeteron

processor. The Lonestar has 1,888 compute nodes, each of

which contains two hex-core Intel Xeon processors, 24GB

of memory and a QDR InfiniBand switch fabric that inter-

connects the nodes through a fat-tree topology. The system

supports a 1PB Lustre parallel file system.

Multiple experiments using synthetic application codes were

performed on Jaguar Cray XK6 system, in order to evaluate

and analyze the framework performance and scalability. We

also performed experiments with a coherent turbulent vortex

application with feature-based object extracting on Lonester

system, in order to test system behavior in real scientific

scenario.

A. System Performance and Scalability

1) Weak Scaling Experiments: This experiment measures

and evaluates the performance of our system for a weak

scaling scenario. In this experiment, two synthetic application

codes are used to insert various size of data into system

server side, register data events for data region of interest, get

notified and retrieve data blocks if all the data exist. These

two codes emulate a simple and generic data publishing and

event subscribing workflow in a coupled interactive pattern

in real scientific scenarios. The publisher application and

subscriber application are distributed and discretized running

on different computing resources, but sharing the same global

communication domain and computation domain. The shared

computation domain used in this case is a 3-dimensional

Cartesian grid; and each application assigns distinct number

of processors for each dimension, i.e., X×Y×Z. Similar to the

real scientific scenario, the queried data can be mapped into

the shared computation domain and be represented by using

its geometric location information like (x,y,z). The data size in

a certain region can be easily acquired by data point size ×
region volume.

Table I shows the test setups of our experiments. The

number of data publisher processors and consequent number of

concurrent data inserting varies from 64 to 8192, each of which

inserts 32MB data. Accordingly, the number of subscriber

processors and corresponding concurrent event subscriptions

and data retrieving is from 8 to 1024. Each subscriber will

retrieve 128MB data. The number of server nodes on staging

area is from 2 to 256, which means every node needs to offer

1GB memory for data storage. The processor distribution of

each application and queried data size are also presented.
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On the publisher side, we measured the execution time

including the total time to prepare data and transfer data to

the staging area at the application level; on the subscriber

side, since the subscriber operated in a non-blocking manner,

we separately measured the time spent on subscription sub-

mission, notification receiving and data retrieving. The final



Number of Publishers 64 128 1024 2048 4096 8192

Number of Subscribers 8 16 128 256 512 1024

Number of Staging Nodes 2 4 32 64 128 256

Query Data Size 2GB 4GB 32GB 64GB 128GB 256GB

Processor Distribution on Publisher side 4× 4× 4 8× 4× 4 16× 8× 8 16× 16× 8 16× 32× 8 16× 32× 16

Processor Distribution on Subscriber side 2× 1× 4 4× 1× 4 8× 2× 8 8× 4× 8 8× 8× 8 8× 8× 16

TABLE I
EXPERIMENT SETUP FOR SYSTEM PERFORMANCE AND SCALABILITY EVALUATION.

timing value averages the execution time in 100 iterations

over the total number of processor for each application. The

subscription submission time is constantly around 0.00016

seconds for all the experiment sets, which shows very low

overhead and light impact on local computation. Figure 5

illustrates the execution time for data publishing and data

retrieving, presenting a nice overall scalability with the various

data size and number of application processors for concurrent

region based data query and event registration. In terms of

data publishing, the time difference between the largest scale

case and the smallest one is only around 1.1 seconds; and

that value is less than 1.5 seconds on the subscriber side.

However, the trend of increasing time of data publishing and

retrieval can be identified on the plot with larger application

scale. The reason is, as the number of the staging servers

increases, the storage of data is distributed over more servers,

which causes the longer coordination across the staging sever

side and introduces more message passing between servers

and clients. Also, the interference on the shared links causes

higher delays when using 32 and 64 staging servers for data

publishing.

Figure 6 illustrates the application level data exchange

throughput by using our system. The point values are cal-

culated based on the execution time in Figure 5 and the ex-

changed data size. The application level throughput increases

dramatically when the system scales up.
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Fig. 6. Application level throughput for data publishing and data retrieve.
Bottom X axis: number of publishers / number of staging servers; Top X axis:
number of subscribers.

2) Events Scaling Experiments: In this part, the experi-

mental setups and testing sets are the same as the previous

experiments, except for the data event registered from the sub-

scriber side. Instead of subscribing the data block in the entire

data domain, we subscribe the minimum value in the whole

computation domain. The subscription could be described as

followed: if the minimum data value in a region of interest is

greater than a threshold, notify the clients with the coordinates

of corresponding data element in minimum value. The events

number varies with the change of subscriber number, from 8

to 1024, and each query targets an application data domain of

16,777,216 data elements (128MB/8Byte) distributed stored

on the server side.

Although the client immediately returns after submitting the

data event and won’t communicate with server side before

getting notified, the event processing capability at server side

is still important and may impact the overall application. We

measure the system response time from the server side, which

includes the time spent on subscription management, data

monitoring, distributed computation and result aggregation.

Figure 7 presents the system response time and event

processing rate over different experimental sets. As we can

see, the system response time increases a little bit with the

scaling up of application processors and query numbers. The

time difference between the shortest response time and longest

one is around 2 seconds, which is greater than time variation

on data retrieving in the previous experiment. There are

three main reasons for this gap: (1) the data of interest is

distributed across multiple servers. As a result, the divide-and-

conquer method with the binary aggregation tree introduces

the communication overhead; (2) each leaf server in the binary

aggregation tree needs to spend time on computation; (3)

imbalanced data storage distribution may also impact the

processing time. However, it’s worth pointing out that in our

messaging system, the event matching and result aggregation

at server side are fully asynchronous and run in parallel with

workflows at client side, therefore this 2 second time difference

is acceptable for parallel information query of large data. In

addition, the event processing rate under concurrent subscrib-

ing dramatically increases with the increasing subscription

number.

3) Data Scaling Experiments: In this experiment, 64GB of

data is inserted into 64 staging nodes from 2048 publishers,

and 256 subscribers concurrently submit the data query events

about various data region of interest, which contain data from

4GB to 64GB (each subscriber queries 16MB to 256MB data).

The subscription used in this case contains both the minimum

value monitoring and data retrieving: if the minimum data

value in the region of interest is less than a threshold, the

subscriber will get notified and then fetch all the data inside
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Fig. 7. System response time and event processing rate for events scaling
experiment. Bottom X axis: number of publishers / number of staging servers;
Top X axis: number of subscribers. Left Y axis: time; Right Y axis: event
processing number per second

this region. System response time and data retrieving time are

measured and analyzed in this experiment.

As shown in Figure 8, system response time shows very

good scaling performance with 0.06 seconds difference

when the registered data size changes from 4GB to 32GB.

However, when subscribing the entire 64GB data distributed

on the server side, the system response time jumps to 1.2

seconds. The most significant reason is, based on the Hilbert

SFC DHT, the smaller region of data subscribing has higher

possibility to be hashed into fewer servers for data storage

location information lookup and have fewer storage servers

involved, which reduces the depth of aggregation binary

tree and consequently the communication overheads during

the result aggregation. Furthermore, the data transfer time

increases with the change of the data size, under a constant

number of subscriber processors.
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Fig. 8. System response time and data transfer time with data scaling from
4GB to 64GB.

B. Comparison with Traditional Approach

One of the objective of our system is to avoid the overheads

of continuously monitoring data-availability and retrieving the

data to detect the events of interest and of unnecessarily

moving data. To validate this advantage of our system, we

repeat the previous test case by using a traditional approach
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Fig. 9. Comparison with traditional post-processing approach. Left column:
performance using traditional post-processing approach; right column: perfor-
mance using our system.

that offloads the entire data block into subscriber nodes first

and then performs local post-processing. Overall performance

of these two approaches are compared.

The left bar in Figure 9 present the result from experiment

with traditional approach in various data size, which includes

the entire data transfer time (lower part) and local computation

time (upper part). The right bar represents the system response

time plus data transport time by deploying our system. In

terms of data computation and overall time cost, the result

shows an overwhelming advantage with our approach by

offloading the data computation and monitoring to staging

area through associated data event subscription. It’s also worth

noting that, the non-blocking subscription mechanism ensures

the client side continues the computation while the system

processing on staging nodes is running. In addition, if the

minimum data value doesn’t meet the constraint conditions

that the subscribers set, the data transfer in the traditional

case becomes unnecessary.

C. Effectiveness in Coherent Turbulent Vortex Scenario

This section presents the behaviors and effectiveness of

our messaging system running with a coupled coherent tur-

bulent vortex [18] application with the requirement of in-

situ feature-based object visualization on Lonestar system.

The scientific dataset is generated on the publisher side by

simulation of coherent turbulent vortex structures with 128
3

resolution (vorticity magnitude) at 200 time steps. The data

event subscriptions with feature information that defines the

data objects of interest are submitted from the clients to detect

the associated data objects in a certain data domain, which is

defined as a thresholded connected voxel region evolving both

in location and shape during the simulation.

In this experiment case, we define the volume regions of

interest and the vorticity values both in the range of 9 to

maximum as the registered feature. A feature detecting algo-

rithm implemented on the system server side keeps tracking

the data object satisfying the registered feature. If the featured

object is tracked inside the data point region, the server side

will notify the clients and trigger the in-transit visualization



Time step 1 Time step 4 Time step 8

tracked object
tracked object tracked object

Fig. 10. Sample view of the evolving volume regions with featured objects visualized on staging nodes when registered event (feature is detected in this
region) occurs.

code. Sample results at (Time Step 1, Time Step 4, and Time

Step 8) are shown in Figure 10. We can clearly find that,

only the data object that satisfies the feature constraint in the

region of interest is tracked and visualized on staging area. It

avoids the overhead spent on unnecessary data movement and

visualization.

VI. RELATED WORK

Insitu/Intransit Processing and Data Staging: The in-

creasing performance gap between the compute and I/O ca-

pabilities has motivated recent developments in both insitu

and intransit data processing paradigms. Largely data-parallel

operations, including visualization [19]–[21], and statistical

compression and queries [22], have been directly integrated

into the simulation routines enabling them to operate on in-

memory simulation data. Another approach, used by FP [23]

and CoDS [24], performs insitu data operations on-chip using

separate dedicated processor cores on multi/many-core nodes.

Data staging area, namely, a set of additional compute nodes

allocated by users when launching the parallel simulations,

has been investigated in projects such as DataStager [3], Pre-

DatA [4], JITStaging [25], DataSpaces [1]/ActiveSpaces [2],

and Glean [5]. Most of these existing data staging solutions

primarily utilize the data transport mechanism of underlying

hardware and memory resources in staging area to quickly

and asynchronously move the data off simulation nodes to

lessen the impact of expensive I/O operations. They typically

support limited one-step synchronous data operations within

the staging area, such as preprocessing, and transformations,

often resulting in underutilization of the computational power

of the staging nodes. Our approach implements a notification-

based messaging system, allowing users to register the data

events of interests and consequent actions to staging area in a

non-blocking manner and effectively leveraging the memory

resources and computation capabilities of the staging area.

Publish/Subscribe based System in HPC: Since the pub-

lish/subscribe messaging pattern provides asynchronous and

flexible event registration, it is well suited for many interactive

and coordinated large-scale applications. An existing event-

based system [7] has investigated this nature to offer decoupled

communication to aid system scalability and adaptability.

Cayuga [8] extends the expressiveness of standard publish/sub-

scribe system to powerful language features. Some researchers

from UK even propose a common API [9] of publish/subscribe

systems for research requirements.

However, only few projects apply this pattern into HPC

applications. The Echo [10] publish/subscribe system is a

typical high performance event delivery middleware designed

for large scale event rates in grid computing environment. For

event filtering and transformation Echo uses channel-based

filtering and extends event channels via derivation. All the

required computation for filtering and transforming events are

performed in the same source node for the original event

channel. EVPath [11] is a next generation of high performance

distributed event middleware in grid computing environment,

which is an extended and upgraded version of Echo [10] with

system resource monitoring events. Another publish/subscribe

based event service for HPC applications is designed and

implemented with CCA [26], in order to achieve performance

enhancement.

Compared with these systems, Our scalable framework

extends the capability of standard publish/subscribe pattern

and provides more flexible and complex content-based real

time data monitoring as well as user-specific insitu/intransit

analytics for specific data intensive HPC scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present the architecture, design and imple-

mentation of a scalable notification-based messaging system

that builds on the data staging resources in HPC environment

as well as the customized in-situ/in-transit analytics defined

there, and provides a publish/subscribe messaging pattern to

scientists. The system allows the scientists to dynamically reg-

ister the live data events of interest, define the actions that are

triggered based on the events, and get notified when the events

occur. In addition, our system is implemented and deployed

on the leading HEC platforms, such as Jaguar Cray XK6

machines at Oak Ridge National Laboratory and the Lonestar

system at the Texas Advanced Computing Center (TACC).

Finally, the experimental results and evaluation validate the

performance advantages of our system, and the potential for

real scientific applications. Overall, our system is extensible to



a wide range of large scale scientific application scenarios and

can potentially accelerate the scientific discovery and improve

productivity.

Our direction for future work includes dynamic code inte-

gration on staging servers of our system by using scripting

language and measure the related performance. In addition,

we are also trying to integrating our system with very large

data intensive applications for scientific debugging.
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