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Abstract. The analysis of scientific simulations is highly data-intensive and is
becoming an increasingly important challenge. Peta-scale data sets require the
use of light-weight query-driven analysis methods, as opposed to heavy-weight
schemes that optimize for speed at the expense of size. This paper is an attempt in
the direction of query processing over losslessly compressed scientific data. We
propose a co-designed double-precision compression and indexing methodology
for range queries by performing unique-value-based binning on the most signifi-
cant bytes of double precision data (sign, exponent, and most significant mantissa
bits), and inverting the resulting metadata to produce an inverted index over a re-
duced data representation. Without the inverted index, our method matches or
improves compression ratios over both general-purpose and floating-point com-
pression utilities. The inverted index is light-weight, and the overall storage re-
quirement for both reduced column and index is less than 135%, whereas existing
DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate
univariate range queries that additionally return column values, a critical compo-
nent of data analytics, against state-of-the-art bitmap indexing technology, show-
ing multi-fold query performance improvements.

1 Introduction
Increasingly complex simulation models, capable of using high-end computing archi-
tectures, are being used to simulate dynamics of various scientific processes with a high
degree of precision. However, coupled with this opportunity to augment knowledge and
understanding of the highly complex processes being studied are the challenges of con-
ducting exploratory data analysis and knowledge discovery. Specifically, data size on
the tera- and peta-scale is becoming a limiting factor in understanding the phenomena
latent in these datasets, especially in a post-processing context.

Due to massive dataset sizes, full context analysis is a crucial bottleneck in the
knowledge discovery pipeline, being restrained by the limits of computer memory and
I/O bandwidth. Most commonly, the applications that such data exploration processes



are characteristic of are interactive and require close to real-time I/O rates for full data
exploration. However, I/O access rates are too slow to support efficient random disk ac-
cess in real-time for large-scale data sets, necessitating new approaches geared towards
reducing the I/O pressure of extreme-scale data analytics.

A knowledge priors approach to data analytics is promising in restricting data to
smaller and more practical sizes. Often times, scientists have some prior knowledge
about the regions of interest in their data. For example, fusion scientists aiming to un-
derstand plasma turbulence might formulate analyses questions involving correlations
of turbulence intensities in different radial zones (0.1<ψ < 0.15;0.3<ψ < 0.35;0.5<
ψ < 0.55;0.7 < ψ < 0.75;0.9 < ψ < 0.95). Likewise, climate scientists aiming to un-
derstand factors contributing to natural disasters might limit their search to particular
regions or perhaps only a single region.

Formulating queries on scientific simulation data constrained on variables of in-
terest is an important way to select interesting or anomalous features from large-scale
scientific datasets. Traditional database query semantics can effectively be used for for-
mulating such queries. This allows us to leverage a great deal of work done in the
database community on query processing. The indexing techniques used in traditional
database systems, such as B−trees [7] or bitmap indexes [20], have been used exten-
sively in the literature. However, while indexing is a blessing for fast and efficient query
processing, it is arguably a curse in terms of storage; the index size is often 100-300%
of the original column size for high-cardinality data (such as double-precision data),
which is a huge bottleneck for storage-bound extreme-scale applications.

A number of bitmap index compression techniques have been introduced to reduce
the size of the bitmap index while keeping fast query retrieval possible. In particu-
lar, Word Aligned Hybrid (WAH) [13] bitmap compression is used in FASTBIT [20],
a state-of-the-art scientific database technology with fast query processing capabili-
ties. Overall, the storage footprint used in FASTBIT for a high-cardinality column and
its corresponding index is around 200% of the original size, which still becomes pro-
hibitive for extreme-scale data sets. Furthermore, these indexing schemes are optimized
for returning the record ID, or region index in the context of spatio-temporal data sets.
However, for data analytics, the actual values of the variables associated with these
points are equally important.

Therefore, we present a co-designed data reduction and indexing methodology for
double-precision datasets, optimized for query-driven data analytics. We believe that a
tight cohesion between the methods allows us to optimize storage requirements while
at the same time facilitating both fast indexing at simulation-time and range query pro-
cessing with value retrieval, desirable features for data analytics. Our focus in particular
is on write-once, read-many (WORM) datasets utilizing double-precision floating-point
variables, representing large-scale, high-fidelity simulation runs that are subsequently
analyzed by numerous application scientists in multiple (often global) contexts. A few
examples of such data are in the particle-based fusion simulation GTS [17] and in the
direct numerical combustion simulation S3D [6], each of which are comprised of pri-
marily double-precision, high-cardinality variables (≈ 100% unique for GTS, ≈ 50%
unique for S3D).

To be more specific, our paper makes the following contributions:



– We present a lossless compression methodology for floating-point (single and double-
precision) columns that can be utilized for indexing and range query processing,
utilizing unique-value encoding of the most significant bytes. Our lossless com-
pression reduces the size of a number of high-entropy, double-precision scien-
tific datasets by at least 15%. Compared to lossless compression techniques like
FPC [4], optimized for double-precision data, we report superior average compres-
sion ratios.

– Using our lossless compression method, we optimize range query evaluation in-
cluding value retrieval by binning the column data by the distinct significant byte
metadata, integrating efficient compressed-data organization and decompression of
retrieved results. Compared to state-of-the-art techniques like FASTBIT [20], we
provide comparable or better performance on range queries retrieving record IDs.
For range queries additionally retrieving variable values, we achieve a performance
improvement of one-to-two orders of magnitude.

– For query processing, we utilize an inverted index that uses approximately 50%
space with respect to the original column size. Considering both the compressed
column data and index, our method has a smaller storage footprint compared to
other database indexing schemes.

2 Background
Search and query processing operations on traditional database systems like Oracle,
MySQL, and DB2 involve the use of indexing techniques that are usually variants
of either bitmap indexes or B−trees. While these techniques are effective in speeding
up query response times, they come at the cost of a heavy-weight index management
scheme. Indexing with B−trees [7], which tends to be more suitable for transactional
databases that require frequent updates, is observed to consume storage that is three
to four times the size of the raw column data for high-cardinality attributes. Scientific
data, which is typically read (or append) only, have been shown to be better served with
bitmap-based indexing techniques [16, 20], providing faster response times with lower
index storage overhead.

While there are numerous technologies that use variants of bitmap indexing, we pri-
marily focus on FASTBIT [20], a state-of-the-art bitmap indexing scheme, that is used
by a number of scientific applications for answering range queries. FASTBIT employs
a Word-Aligned-Hybrid (WAH) compression scheme based on run-length encoding,
which decreases the index storage requirement and allows FASTBIT to perform logical
operations efficiently on the compressed index and compute partial results by scanning
the index. For those records that cannot be evaluated with the index alone, FASTBIT
resorts to performing a read of the raw data, in what is called candidate checks. Unfor-
tunately, the bitmap index created is sensitive to the distribution and cardinality of the
input data, taking anywhere from 30 to 300% of the raw column size. The space can
partly be reduced through techniques such as precision binning, at the cost of disturbing
the distribution of values along the bins.

On the other side of the coin, data compression methods within databases have been
widely studied [9, 12, 18]. For example, the column-oriented database C-Store [2] uses
null compression (elimination of zeroes), dictionary encoding, and run-length encoding
for effective data reduction of attributes organized contiguously, as opposed to the tra-



ditional row-store organization. MonetDB, on the other hand, uses the patched frame
of reference (PFOR) algorithm and variants, which promotes extremely fast decom-
pression speeds for query processing [23]. While these methods have limited use on
double-precision data due to high-entropy significand bits, our work does share sim-
ilarity with the dictionary encoding method, in that we compress floating-point data
through identifying unique values and assigning them reduced bitwise representations.
However, we perform this on only the most significant few bytes of the double-precision
data, as opposed to the full dataset as in C-Store, and discard the representation entirely
when using the inverted index for our query processing methodology.

As mentioned, many general-purpose and specialized compression methodologies
fail to provide high compression ratios on double-precision data. Part of the reason
for this is that floating-point scientific data is notoriously difficult to compress due to
high entropy significands, of which floating-point data is primarily composed of (23
of 32 bits for single precision and 52 of 64 bits for double-precision). Much work has
been done to build compressors for these kinds of data, mostly based on difference
coding. Algorithms such as FPC [4] and fpzip [15] use predictors like the Lorenzo
predictor [10], FCM [21] and DFCM [8] to compress. Given an input stream of double-
precision values, the predictors use the previously seen values to predict the next value
in the stream, and rather than attempt to compress the double values themselves, the
compression algorithm uses a measure of error between the predicted and actual value,
typically as an XOR operation.

Our methodology is based on treating the most significant bytes of double-precision
data differently than the least significant bytes. Isenburg et al. use the same underlying
concept in a prediction-based compression utility, which partitions the sign, exponent,
and significand bits of the prediction error, followed by compression of each compo-
nent [11]. Unlike their method, our method must maintain the approximability of the
floating point datasets by treating the most significant bytes as a single component (sign,
exponent, and the most significant significand bits), enabling efficient index generation
and range query processing over the compressed data.

3 Method
3.1 System Overview

As mentioned, the goal of this paper is to facilitate query-driven analysis of large-scale
scientific simulation data with storage-bound requirements. There are two stages where
we focus our design to achieve this goal: first, while simulation data is being generated
and in memory, or as a post-processing step, we can process and reorganize a double-
precision dataset to compress the data. Second, we can modify the new organization
of data to optimize query processing on the preprocessed data. For this purpose, we
introduce two components in the scientific knowledge discovery pipeline, the lossless
compressor and query engine.

3.2 Compression

Scientific simulations use predominantly double-precision floating-point variables, so
the remainder of the paper will focus on compression and query processing for these
variables, though our method can be applied to variables of different precision. The



underlying representation of these variables, using the IEEE 754 floating-point stan-
dard [1], is a primary driver of our compression and querying methodology, so we
briefly review it here. The standard encodes floating point values using three compo-
nents: a sign bit, a significand field, and an exponent field. 64-bit double-precision val-
ues use one sign bit, 11 exponent bits, and 52 significand bits. Given the sign bit s,
the unsigned integral representation of the exponent field e, and each significand bit mi
(most to least significant), the resulting value encoded by a double-precision variable
is:

value = (−1)s×2e−1023× (1+
52

∑
i=1

(mi2−i)). (1)

Note that, all other components being equal, a difference of one in the exponent fields
of two double-precision variables leads to a 2x difference in the represented values.

Our key observation for the compression process is that there is similarity with
respect to orders of magnitude in our target datasets. For instance, in a simulation grid,
adjacent grid values are unlikely to differ in orders of magnitude, except perhaps along
simulation-specific phenomenon boundaries. Furthermore, the encoding naturally lends
itself to accurate approximation given the exponent components. Hence, we base our
compression and query processing methodology on the commonality in the sign and
exponent field of double-precision datasets.

Figure 1 gives an overview of the compression process, developed under the as-
sumption of similar exponent components and with the intention of applying to range
query processing. For an N-element partition, or compression stream of maximum
bounded size, we split the 8N-byte double-precision column stream into two compo-
nents: a kN-byte high-order byte stream consisting of the most significant k bytes of
each value, and the remaining (8− k)N-byte low-order byte stream consisting of the
remaining significant bytes. Using the observation of highly similar sign and exponent
values, we identify the unique high-order bytes and discard redundant values. Let n be
the number of unique high-order byte patterns. We define a bin to be a set of low-order
bytes with equivalent high-order bytes, with bin edges B1,B2, . . . ,Bn corresponding to
the sorted unique patterns. The low-order bytes are reorganized into their respective
bins, and a record ID (RID) to bin mapping M is generated to maintain the original
organization, using a bitmap with dlog(n)e bits per identifier. The unique high-order
bytes, M, and optionally the low-order bytes are then compressed using the general
purpose compressor bzip2. We do not consider using more complex algorithms, such as
prediction-based compressors, in this paper. We feel that the use of a general-purpose
compression algorithm provides a solid baseline of performance that applications can
improve on, given additional application-specific knowledge of dataset characteristics.

Three data structures are produced as the result of the compression process: (1) the
compression metadata, defining the high-order byte values and file offsets of each bin,
(2) the compressed RID-to-bin mapping M, and (3) the bin-organized low-order bytes.

The value of k should be chosen with two goals in mind: to cause the cumulative
number of distinct high-order bytes to stabilize with an increasing stream size, and to
maximize the redundancy of the patterns (for compression) while encoding the entirety
of the sign and exponent components (for future query processing). For scientific float-
ing point data, we found k = 2 to be the most effective; it covers the sign bit, all exponent



Fig. 1. Various stages of the compression methodology, described in Section 3.2. The bitmap
index is used for compression, while the inverted index is used in query processing.

bits, and the first four significand bits of double-precision values (approximately two
significant figures in base 10 scientific notation). This makes sense, as higher degrees
of precision in scientific data tend toward high-entropy values. To verify our choice of
k for this paper, Figure 2 shows the number of distinct high-order bytes recorded as a
data stream is processed. For both k = 2 and 3, a relatively small cardinality is seen
relative to the number of points processed, with the distinct values quickly reaching a
(near) maximum.
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Fig. 2. Cumulative growth of the number of distinct higher order 2-byte and 3-byte pattern for
increasing data size.

Recall that the metadata consists of unique high-order bytes as well as their re-
spective file offsets to the low-order byte payload. Hence, the metadata size is directly
proportional to the number of unique high-order bytes. As shown in Figure 2, for two
of the scientific datasets, the size of metadata is less than 0.1% of the dataset for k = 2,
due to the small number of distinct patterns. For k = 3, however, the number of distinct
patterns increases by a factor of 100 due to the addition of the higher-entropy signifi-
cand bits. This increases the metadata size similarly, while additionally increasing the
size of the RID to bin mapping logarithmically. Thus, we use k = 2 in this paper. Given



the trends in Figure 2, we expect random sampling to be sufficient to determine a good
value of k for double-precision datasets.

3.3 Query Processing: Index Generation

Fig. 3. Building an inverted index for query processing from the index used in compression.

The compression methodology presented in Section 3.2 is, as will be shown, effec-
tive at improving the compression ratio of many scientific datasets, but is not optimized
for query processing. If a range query is performed using our compression index, the
entire RID-to-bin mapping M would need to be traversed to map the binned data back to
RIDs. Thus, at the cost of additional storage, we optimize for range queries by using an
inverted index M−1 which maps each bin to a list of RIDs sharing the same high-order
bytes, creating a bin-based value-to-RID mapping. Figure 3 illustrates the index used
in compression compared to the inverted index. This organization is advantageous for
range query processing, because we now access the RIDs by bin, the same as access-
ing the low-order bytes. The organization is disadvantageous because of the increased
space, both for the index itself as well as the additional metadata, such as file offsets,
needed to access the new index. This means, for a partition of N elements, approxi-
mately Nlog(N) bits is needed to store the index, with marginally additional space to
store metadata such as the number of elements within each bin. Bounding the maximum
partition size to 32GB of double-precision data ensures that each RID in the inverted
index needs no more than four bytes, making the index size less than 50% of the raw
column size, or lower for smaller partitions. As a simple example, a partition size of
2GB of double-precision data requires 28 bits for each RID, translating to an index size
of 43.75% of the raw column size. This is assuming, of course, that the partition is com-
pletely filled. Furthermore, we do not consider compression of the inverted indexes, a
well-studied topic [19, 22] that we hope to integrate into our method in the future.

3.4 Query Processing: File Layout

The data used by the query processing engine is split into three components: a metadata
file, an index file, and a compression file, each corresponding to its purpose described
in the previous sections. The metadata file is shown in Figure 4.

The metadata file contains partition information, including file offsets for each par-
tition and bin, the number and bounds (high-order bytes) of bins, and the number of
values per bin per partition. The index file and the compression file contain the RIDs



and compressed low-order bytes, respectively. A single scan of the metadata file is nec-
essary for query processing and is small enough to be held in memory to optimize future
queries. In our experimentation, however, we do not consider this possibility.

<N number of partitions>
<Metadata offset for partition t> (0≤ t < N)
<Index offset for partition t> (0≤ t < N)
<Compression offset for partition t> (0≤ t < N)
(Repeat for 0≤ t < N)
<P number of elements in partition t>
<B number of bins>
<Number of elements in bin b> (0≤ b < B)
<Bin bound b> (0≤ b < B)
<Compression offset b> (0≤ b < B)
(End Repeat)

Fig. 4. Metadata file format.

3.5 Query Processing: Range Queries

Fig. 5. Query processing methodology, taking into account metadata, index, and compression
data fetching and aggregating.

The processing of range queries is based on two characteristics of our compression/in-
dexing process: data arranged per-bin (low-order bytes and inverted index) are orga-
nized on disk in increasing order of high-order bytes, and bin edges (the high-order
bytes) provide a lower bound on the values of RIDs within each bin by treating the
high-order bytes as a truncated double-precision value.

The query evaluation process is shown in Figure 5. Given a variable constraint
[v1,v2), the metadata file shown in Figure 4 is traversed to obtain the necessary high-
order bytes and bin file-offsets. Using the high-order bytes as a lower-bound for values
within a bin, the boundary bins Bx and By are obtained using a binary search. Then, a



single seek per-partition is needed in the index and low-order bytes files to fetch the data
corresponding to the range of bins Bx,Bx+1, . . . ,By, taking advantage of the bin organi-
zation in file. The column data corresponding to the low-order bytes are reconstructed
and only the data in boundary bins are filtered against the query bounds.

In the case of queries requesting only RIDs, not all of the low-order bytes need to be
fetched and reconstructed. Only the bins at each boundary need be checked against the
query constraints, as all remaining bins are guaranteed to fit within the query bounds.

4 Results And Discussions
4.1 Experimental Setup

We performed our experiments on the Lens cluster, dedicated to high-end visualization
and data analysis, at Oak Ridge National Laboratory. Each node in the cluster is made
up of four quad-core 2.3 GHz AMD Opteron processors and is equipped with 64GB
of memory. In the following figures and tables, we refer to our methodology as CDI,
corresponding to the Compressed representation of both the column Data and Index. All
experiments were run with data located on the Lustre filesystem. For the indexing and
query processing experiments, we compare against WAH encoding within the FASTBIT
software. To avoid database-related overheads such as concurrency control, transaction
support, etc. and provide a fair comparison between technologies, we wrote a minimal
query driver for FASTBIT using only the necessary indexing and querying functions
provided in the FASTBIT API. Furthermore, for fairness of comparison, we use the
same partition size of 2GB for both our method and FASTBIT.

4.2 Datasets

To evaluate our compression, indexing, and query processing performance, we use
a collection of double precision datasets from various sources. The majority of the
datasets (msg, num, and obs) are publicly available and discussed by Burtscher and
Ratanaworabhan [5]. We additionally use timeslice data for numerous variables gener-
ated by the GTS [17], FLASH [3], S3D [6], and XGC-1 [14] simulations.

In particular, we used the following two scientific simulation datasets to evaluate
our query performance in terms of value centric queries and region centric queries: 1)
GTS [17], a particle-based simulation for studying plasma microturbulence in the core
of magnetically confined fusion plasmas of toroidal devices, and 2) S3D [6], a first-
principles-based direct numerical simulation (DNS) of reacting flows which aids the
modeling and design of combustion devices.

4.3 Query Processing

Index Generation

We evaluate the performance of our index generation methodology with respect to both
computational efficiency as well as storage efficiency. Table 1 shows the results that we
obtained from these experiments. Without low-order byte compression, our indexing
operates an order of magnitude or more faster than FASTBIT when not considering
I/O, and requires storage smaller than that of all tested configurations for FASTBIT for
17 of the 24 datasets tested. With low-order byte compression, our method performs
roughly two to three times faster, while having a smaller storage footprint on 19 of



the 24 datasets. We attribute these gains to the less computationally intensive unique
value encoding method as well as the data reduction enabled by data reorganization and
redundant value removal.

Table 1. Query index generation throughput and storage footprint. C: CDI. Cb: CDI with bin com-
pression. FD: FASTBIT with default configuration (105 bins). F2,3: FASTBIT with bin boundaries
at two/three significant digits.

Dataset Index Gen. (MB/sec) Storage (data+index) Req. (%)
In-situ Post-processing

C Cb F3 C Cb F3 C Cb F2 F3 FD
msg bt 180 21 9 71 18 7 125.01 119.36 152.05 178.13 192.58
msg lu 187 21 9 72 17 7 125.01 124.44 162.63 197.86 201.55
msg sp 205 20 10 79 18 8 125.01 124.01 126.24 157.04 197.67

msg sppm 191 37 13 77 30 11 125.03 59.60 114.75 116.75 125.32
msg sweep3d 204 22 9 72 19 8 125.02 96.62 148.39 187.49 200.86

num brain 215 20 9 86 17 7 125.00 124.50 122.93 191.54 202.31
num comet 153 17 6 81 15 5 125.04 116.20 150.32 193.07 196.06

num control 164 21 6 78 18 5 125.03 124.05 154.83 199.63 200.89
num plasma 184 62 9 48 32 8 125.02 51.44 126.15 189.31 197.56

obs error 222 30 10 35 22 8 125.00 94.90 130.34 167.63 176.93
obs info 207 37 8 15 19 7 125.05 75.06 117.53 181.31 219.32

obs spitzer 213 20 10 89 17 8 125.01 94.37 138.29 195.90 198.31
obs temp 187 21 7 43 15 6 125.03 125.03 174.65 200.11 209.95
gts phi l 164 21 7 50 16 5 125.04 125.04 181.49 199.42 208.79

gts phi nl 169 21 7 62 16 5 125.04 125.04 183.64 199.70 208.85
gts chkp zeon 168 21 5 42 13 4 125.10 125.10 176.35 198.87 220.36
gts chkp zion 175 21 5 57 14 5 125.11 125.11 166.08 194.58 220.00

gts potential 143 20 15 62 17 14 125.00 125.00 184.01 197.95 199.85
xgc iphase 133 22 8 65 19 7 125.00 105.33 168.28 172.33 176.91

s3d temp 223 19 17 70 16 12 125.00 123.28 117.17 135.41 202.25
s3d vvel 186 20 9 76 17 8 125.01 125.01 168.89 194.96 202.12

flash velx 209 21 11 92 18 10 125.00 125.00 123.76 157.18 195.68
flash vely 217 21 12 91 18 9 125.00 125.00 112.30 137.32 193.07

flash gamc 219 17 20 89 15 14 125.00 121.37 100.40 102.14 198.11

End-to-End Query Performance Evaluation

For an end-to-end performance comparison, we perform queries under a number of
scenarios, using the GTS potential (gts potential) and S3D temperature (s3d temp)
variables. We look at two types of range queries: those that output record IDs given
constraints on variables, which we will refer to as “region-centric” queries, named for
the use-case of retrieving “regions of interest” from datasets arranged on a spatial grid
structure, and those that additionally output the values of the variables, which we will
refer to as “value-centric” queries. We compare each of these query types against FAST-
BIT, which is specifically optimized for range queries.
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Fig. 6. Comparison of speedup of our method over FASTBIT and sequential scans, for value-
centric queries when the query selectivity is varied from 0.001% to 10.0%. The left plot is for
GTS potential, while the right plot is for S3D temperature.

Value-centric Queries Figure 6 shows the speedup in value-based query response time
using our method, compared to FASTBIT’s default and precision-based indexing, with
varying query selectivity. By query selectivity, we refer to the percentage of the raw
dataset returned by a query. For two scientific application variables S3D velocity and
GTS potential, we provide a speedup of greater than a factor of 28. Due to the clustering
of the data, a very small number of I/O seek operations are needed by our method as
opposed to FASTBIT. The reason that sequential scan performs better than FASTBIT in
this context is that, in parallel file systems such as Lustre, seeks are a very high-latency
operation; FASTBIT resorts to seeking per item, while sequential scan reads all data in
a single read.

For value-centric queries, not much difference is observed in the response time by
FASTBIT using precision binning and default binning. This is because, in both cases,
random disk access dominates processing time. While FASTBIT has a very fast CPU
processing time for each query, the I/O time spent on random file access dominates the
overall query response time.

The speedup observed increases from a factor of 35 for 0.001% selectivity to 105
for 0.1% selectivity. Here the performance improvement is due to a significantly lower
number of seeks. On decreasing query selectivity, FASTBIT can fetch more consecutive
blocks of file from disk, thus reducing I/O seek time. The I/O read time contributes to
most of the query response time. Thus, the speedup comes down for 10% selectivity to
a factor of about 28.

Region-centric Queries Figure 7 shows region query response time with varying num-
ber of hits (records returned) for our method compared to FASTBIT with precision and
default binning. For region-centric queries, only the points falling within misaligned
bins need to be evaluated. For FASTBIT, the type of binning used plays a definitive
role in determining the time taken to respond to region queries. In the case of precision
binning for FASTBIT, it can answer queries involving three decimal point precision by
going through the set of bitmap indexes alone. It need not seek to the disk if the range
specified in the query involves less than three decimal points. On the other hand, the
default binning option needs to perform raw data access to evaluate edge bins.
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Fig. 7. Comparison of response return by FASTBIT against our method for region-centric queries
with varying number of query hits.

The performance of our method is better than the precision binning in many cases,
but both methods see instances of lower performance. This is caused by partitioning
methods that split on a fixed, rather than arbitrary, precision, causing lower degree of
regularity between the bins. This happens when misaligned bins happen to be those
with the largest number of points contained in them. In these cases, there is a higher
false positive rate, causing it to be slower than FASTBIT, though FASTBIT is seen to
have similar issues when using the precision-binning option.

4.4 Performance Analysis

Figure 8 shows the breakup of overall query processing time into I/O and compute com-
ponents, corresponding to index/bin loading and processing, respectively. The dataset
tested on is S3D using the velocity variable. I/O is the dominant cost of query process-
ing, while the application of the query constraints and data transformations is a low
but not insignificant component. We believe multithreading or asynchronous I/O would
be able to hide most of the compute costs by interleaving it with the more costly I/O
operations.
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Fig. 8. Comparison of computation and I/O time distribution for our method for different query
types of varying selectivity, on the S3D temperature variable. In comparison, FASTBIT spends
over 90% of the time on I/O.



4.5 Compression

To analyze the performance of our lossless data compression scheme, we compared the
compression ratios obtained with our method (without the inverted index) to those ob-
tained by other standard lossless compression utilities, as well as more recent floating-
point compressors. Out of the datasets tested, our method performed better than all of
the other compressors tested (gzip, fpzip [15], bzip2, and FPC [5]) on 18 of 24. FPC
gave superior performance compared to our method on two of the 27 datasets, while
fpzip gave better performance on the remaining four. Overall, our method was consis-
tent in yielding comparable or better compression ratios than the other compressors,
providing evidence of strong compression ratios in other application datasets.

Table 2. Compression ratio and CDI storage components. CDIb: CDI with bin compression.

Dataset Compression Ratio Storage Requirement (%)
gzip fpzip bzip2 FPC CDIb Data Index Metadata

msg bt 1.12 1.20 1.09 1.29 1.40 69.35 1.86 ≈0.00
msg lu 1.05 1.13 1.01 1.17 1.30 74.42 1.97 0.01
msg sp 1.10 1.11 1.06 1.26 1.33 73.98 1.11 ≈0.00

msg sppm 7.41 3.25 7.09 5.30 8.87 9.58 1.66 0.02
msg sweep3d 1.09 1.33 1.32 3.09 2.11 46.60 0.67 0.02

num brain 1.06 1.25 1.06 1.16 1.28 74.50 3.39 ≈0.00
num comet 1.16 1.27 1.17 1.16 1.34 66.16 8.16 0.03

num control 1.05 1.12 1.03 1.05 1.15 74.02 12.22 0.02
num plasma 1.77 1.06 6.17 15.05 80.67 1.40 1.04 0.03

obs error 1.44 1.37 1.36 3.60 2.59 44.90 5.88 ≈0.00
obs info 1.14 1.06 1.22 2.27 3.52 24.97 3.36 0.04

obs spitzer 1.23 1.07 1.78 1.03 1.90 44.36 8.05 ≈0.00
obs temp 1.03 1.09 1.03 1.02 1.13 75.00 12.70 0.03
gts phi l 1.04 1.18 1.02 1.07 1.19 75.00 8.56 0.03

gts phi nl 1.04 1.17 1.01 1.07 1.19 75.00 9.2 0.03
gts chkp zeon 1.04 1.09 1.02 1.01 1.17 75.00 10.04 0.10
gts chkp zion 1.04 1.10 1.02 1.02 1.18 75.00 9.6 0.11

gts potential 1.04 1.15 1.01 1.06 1.18 75.00 9.60 ≈0.00
xgc iphase 1.36 1.53 1.37 1.36 1.58 55.33 7.56 ≈0.00

s3d temp 1.18 1.46 1.15 1.34 1.35 73.38 0.77 ≈0.00
s3d vvel 1.04 1.24 1.02 1.15 1.27 75.00 3.74 ≈0.00

flash velx 1.11 1.34 1.08 1.26 1.32 75.00 0.81 ≈0.00
flash vely 1.13 1.43 1.09 1.29 1.32 75.00 0.80 ≈0.00

flash gamc 1.28 1.62 1.28 1.53 1.40 71.37 0.06 ≈0.00

To justify our superior performance on most of the datasets, we argue that the bin-
based compression of the data generally allows a much greater exploitation of existing
compression algorithms than the normal distribution of scientific data that was passed
to the other compressors. The reorganization of the data allowed gzip and bzip2’s al-
gorithms to be utilized as best as possible, causing the data to be reduced significantly
because of the splitting of the low-entropy and high-entropy sections of the data. As



evidenced by the small compressed index and metadata sizes, the reorganization is a
low-overhead operation with respect to storage. We attribute the better performance of
FPC and fpzip on some of the datasets to the encoding of data dependency which the
FCM [21], DFCM [8], and Lorenzo [10] predictors used by FPC and fpzip were able to
capture in their predictions.

5 Conclusion
As the size of scientific datasets in various disciplines continues to grow, new meth-
ods to store and analyze the datasets must be developed, as I/O capabilities are not
growing as fast, and new technologies, such as SSDs are not currently able to achieve
the storage density and cost-efficiency of traditional mechanical disk drives. Successful
methods of mitigating this growing gap must involve data reduction in all stages of the
knowledge discovery pipeline, including storage of raw data as well as analytics meta-
data. We believe our effort at compression, indexing, and query processing of scientific
data represents a step in the right direction, allowing both efficient lossless compression
of double-precision data for accuracy-sensitive applications as well as efficient query
processing on variable constraints, all with less space and I/O requirements than other
database technologies.
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