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Abstract—The size and scope of cutting-edge scientific sim-
ulations are growing much faster than the I/O and storage
capabilities of their runtime environments. The growing gap
gets exacerbated by exploratory data—intensive analytics, such as
querying simulation data for regions of interest with multivari-
ate, spatio-temporal constraints. Query-driven data exploration
induces heterogeneous access patterns that further stress the
performance of the underlying storage system. To partially
alleviate the problem, data reduction via compression and multi—
resolution data extraction are becoming an integral part of I/0
systems. While addressing the data size issue, these techniques
introduce yet another mix of access patterns to a heterogeneous
set of possibilities. Moreover, how extreme-scale datasets are
partitioned into multiple files and organized on a parallel file
systems augments to an already combinatorial space of possible
access patterns.

To address this challenge, we present MLOC, a parallel Multi-
level Layout Optimization framework for Compressed scientific
spatio-temporal data at extreme scale. MLOC proposes multiple
fine-grained data layout optimization kernels that form a generic
core from which a broader constellation of such kernels can be or-
ganically consolidated to enable an effective data exploration with
various combinations of access patterns. Specifically, the kernels
are optimized for access patterns induced by (a) query-driven
multivariate, spatio-temporal constraints, (b) precision—-driven
data analytics, (¢) compression—driven data reduction, (d) multi—
resolution data sampling, and (e) multi-file data partitioning and
organization on a parallel file system. MLOC organizes these
optimization kernels within a multi-level architecture, on which
all the levels can be flexibly re-ordered by user—defined priorities.
When tested on query—driven exploration of compressed data,
MLOC demonstrates a superior performance compared to any
state-of-the-art scientific database management technologies.

I. INTRODUCTION

Recent scientific computing projects, such as GTS core
plasma fusion [1] and S3D combustion simulations [2], re-
quire global-context, space+time, multi-variate analysis of
extreme-scale datasets as an integral part of their scientific
discovery cycle. Their typical analytical workflows consist of
iterative data querying for patterns of interest and fetching
subsets of data with heterogeneous access patterns on parallel
storage systems, for which current data management solutions
are hardly optimized.

Storage and I/O optimizations for scientific data in HPC
have been extensively studied at all levels of the software
stack—from parallel file systems (PFS) (e.g., GPFS [3], Lus-
tre [4], PVFS [5]) to I/O middleware (e.g., ADIOS [6],
HDFS5 [7], Parallel netCDF [8]), and data staging architecture
(e.g., DataStager [9], PreDatA [10]). However, such optimiza-
tions have been primarily driven by needs for fast data offloads
from the simulation runtime environment through maximizing
the throughput of data writes. Storage access patterns induced
by data writes in simulations are not only known as a priori
but also fixed, thus allowing for individual pattern-driven
performance optimizations.

In contrast, exploratory analysis of the simulation data
so-produced does not enjoy such a luxury: it induces ac-
cess patterns that are highly heterogeneous, arbitrary, and
hard—to—predict. Scientific simulation codes generate multi-
dimensional, multi-variate, time-series data of floating point
values (usually double-precision) over different meshes and
spatial grids and store them on PFS. The multitude of possible
access patterns during data reads is inherently combinatori-
al, making optimal linearization of the simulation data and
subsequent multi—file partitioning of this linearized represen-
tation and PFS layout an extremely challenging task. With
the emerging trends of utilizing leadership-class computing
facilities (LCF) not only for running simulations but also
for performing visual exploratory analyses of their products,
it is becoming imperative to optimize the I/O costs over
the entire lifetime of the scientific discovery cycle and to
accept potential extra up-front costs to mitigate performance
degradations under different access patterns.

Moreover, the underlying data model of scientific data
significantly differs from traditional relational data and storage
models that typically utilize either row—store or column—store
linearization of relational data tables. For simulation-driven
data models, existing storage layout techniques have primarily
focused on optimizations for a particular access pattern(s).
For example, space-filling curves (SFC) [11] linearize multi-
dimensional data for high spatial locality [12] [13]. While
successful, they only improve performance for access patterns



induced by spatial constraints on sub-planes/sub-volumes of
the data space. For value-constrained access patterns, the
entire dataset must be scanned to select qualified points.
FastBit [14] builds up binned bitmap indices of the data based
on their values, keeping similarly valued data in the same
bin to speed up value-constrained region queries. [SABELA-
QA [15] enables efficient data access based on value con-
straints by performing value-based binning on ISABELA-
compressed data [16]. However, both techniques are optimized
only for value-constrained accesses and cannot handle space-
constrained accesses efficiently. A naive approach to support
heterogeneous access patterns would be creating multiple
copies of one dataset that favor different data layouts on
storage optimized for different permutations of possible access
patterns. However, the ever-increasing sizes of simulation data
make multiple replications infeasible at extreme scale.

In this paper, we present MLOC (Multi-level Layout
Optimization of Compressed Scientific Data) which optimizes
the storage layout of scientific data for effective data ex-
ploration with heterogeneous access patterns in PFS envi-
ronments. In its core are multiple fine-grained data layout
optimization kernels that can be organically consolidated to
support various combinations of access patterns. The kernels
are optimized for patterns induced by (a) query—driven multi-
variate, spatio-temporal constraints, (b) precision—driven data
analytics, (c) compression—driven data reduction, (d) multi—
resolution data sampling, and (e) multi—file data partitioning
and organization on a parallel file system. MLOC organizes
these optimization kernels within a multi-level architecture, on
which all the levels can be flexibly re-ordered by user—defined
priorities. The paper makes the following contributions:

« It presents MLOC, a multi-level data layout optimization
framework on top of PFS for HPC environments. By
incorporating fine-grained data layout optimizations tuned
for PFS in a flexible multi-level manner, it achieves
optimization for multiple heterogeneous access patterns.

« It presents an efficient byte-level solution for precision-
driven data access support. The solution achieves higher
detail preservation than what is possible for traditional
multi-resolution data sampling.

« MLOC offers a first-class treatment of data compression
through support of different formats of compressed data,
and optimizes data layout for each of them to reduce stor-
age and I/O overhead and improve access performance.

« MLOC implements a data processing pipeline which is
readily incorporated with existing data staging frame-
works [9] [10] to achieve efficient in-situ data layout
optimization and compression.

o Experiments show that compared to the state-of-the-art
techniques like FastBit, our approach achieves both lower
query delays and storage overhead.

II. PROBLEM STATEMENT

MLOC is aimed toward several important classes of query-
driven and compression-driven access patterns for scientific
multi-variate spatio-temporal datasets. The patterns include:

o Value-constrained region-only data access (generated by
range or region queries) that requests spatial regions
and/or corresponding variable values, subject to their
or others’ values constraints (VC). E.g., what (latitude,
longitude) pairs at some time have an abnormally high
temperature? What are those temperature values?

o Spatial/Region-constrained value-retrieval data access
(generated by value queries) that requests spatial regions
and/or corresponding variable values, subject to spa-
tial/regional constraints (SC). E.g., what are the humidity
values within New York at some time?

o Value-and-spatial-constrained data access that requests
spatial regions and/or corresponding variable values, sub-
jects to constraints on both the regions as well as variable
values. E.g., what are the regions within New York with
an abnormally high temperature?

e Multi-variable data access that applies to all of the above
but may involve two or more variables. E.g., what are the
temperature values within New York at some time, where
the humidity is above 90%?

o Multi-resolution data access that applies to all of the
above with multi-resolution support. If lower resolution
of data is required, only a subset of the accessed data,
or less-precise values of the data are fetched so that
less data is transferred and processed to reduce I/O and
computation overhead. More precise and complete data
can be fetched if higher resolution is required.

MLOC also supports data compression for double-precision
scientific data with different compression techniques. The
compression can be lossy or lossless based on user require-
ments of precision, compression ratio, and throughput.

While current techniques optimize data storage layout for
some individual access patterns, to the best of our knowledge
no existing system meets all these requirements. It is challeng-
ing to optimize for all the accesses within a single linearization
scheme, without additional data replication to save storage
space. The major technical difficulties include:

1) Resolving Layout Optimization Conflicts: To reduce
search space and response time for data access, layout opti-
mization for one access pattern attempts to store data together
to reduce seek overhead for that access pattern. For other
patterns, the data that needs to be accessed may be scattered
over different areas, increasing seek time. Thus, the layout op-
timized for one access pattern will almost always conflict the
desired layout of other patterns and affect their performance.

2) Bounding Storage and I/O for Data and Indices: To
speed up various access patterns, existing technologies [14]
build multiple heavy-weight indices, often comparable with
or larger than the size of the data alone. However, the fast
growing size and complexity of scientific datasets make it
infeasible to hold large indices in storage and transfer them
via I/O efficiently. Thus, the solution must adopt an efficient
and light-weight indexing scheme that can serve for different
accesses without introducing too much additional storage.

3) Optimizing for Parallel File Systems: Previous layout
optimizations usually dealt with single-disk environments.
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Fig. 1. An overview of MLOC’s multi-level architecture. The positions of
levels for layout optimization (LO) are flexible.

However, scientific datasets are processed and stored on PFS
in HPC environments, which differs greatly from single-
disk. The solution should take PFS-specific mechanisms into
consideration and provide optimization for the PFS in HPC
environments to achieve best parallel access performance.

III. METHOD
A. Approach Overview

1) Multi-level Layout Optimization: MLOC applies a flex-
ible multi-level architecture, as shown in Figure 1. For each of
the data processing requirements listed in Section II, MLOC
applies one level of optimization with a specific technique.
There are three levels of layout optimizations targeting access
patterns induced by (a) queries with value constraints (VC),
(b) queries with spatial constraints (SC), and (c) precision-
based multi-resolution data reduction, as well as one level
for a data compression-induced access. As Figure 1 shows,
the input data are first divided into multiple subsets based
on the hierarchical Hilbert curve mapping to separate data to
support subset-based multi-resolution data access. For each
subset, data are processed through a pipeline consisting of
four layers, and each layer serves as a filter to optimize data
layout or perform data compression. The following introduces
how the MLOC architecture is designed and implemented to
address the challenges listed in Section II.

2) Flexible Placement of Different Levels: Layout opti-
mizations are performed in a certain order, as shown in Fig-
ure 1, and the optimization order may affect the performance
for other access patterns. However, we observe that, for queries
on certain scientific datasets, there exists a priority order of
different queries based on the frequency they are executed.
For example, for climate datasets, scientists may be mostly
interested in queries of temperature values within a certain
spatial region (queries with SC), while for fusion simulation
datasets scientists may mainly be interested in queries of
regions with temperature values higher than some threshold
(queries with VC). The priority of different queries invokes
the order of data layout optimizations for accesses.

Based on the above, MLOC allows each level to be placed
in a hierarchical order and switched based on the priorities

of optimizations. If queries with VC are the most frequently
executed, then MLOC can be configured to emphasize opti-
mization for VC by placing it at the top-most level and the
remaining patterns at lower levels. It will also optimize for SC
and multi-resolution accesses, though at a lower priority.

3) Light-weight and Efficient Indexing: To stay within the
allowable storage and I/O bounds, MLOC applies a light-
weight and efficient indexing scheme. The multi-dimensional
data is first chunked and then distributed into different bins.
The indices are built during binning to record the original
spatial position of the points so that region queries with VC
can be answered without the need to access the data itself. To
optimize for value queries with SC, MLOC applies Hilbert
Space-filling Curve (HSFC) [17] mappings to reorganize data
chunks, improving spatial locality without introducing addi-
tional space overhead of indices for multi-dimensional data.

4) Parallel File System Optimization: MLOC divides data
files to achieve the optimal file organization for PFS, taking
into account partitioning, striping, and so on, to achieve
optimal parallelism in data access. Details of the design and
optimization are described in Section III-C.

B. Optimization Techniques in Each Level

1) Value-based Binning for Value-constrained Queries:
MLOC bins the dataset by placing elements in each block into
bins based on their values so that points with similar values are
placed together on the storage. For queries with VC, MLOC
only needs to access a portion of the bins according to the
VC. If the bin bounds are contained within the bounds of the
VC, further filtering is not required. For region-only queries,
MLOC only needs to return the indices as output without
accessing and recovering the values. Such bins are defined
as aligned bins. Only bins whose bounds are not contained
within the query bound need their contents analyzed. One
major attribute that is critical to the performance of MLOC is
the number of bins that must be accessed to answer each query.
Moreover, the bin bounds should be selected carefully to form
as many aligned bins as possible for queries and to achieve
balanced access performance among different bins. MLOC
applies equal frequency binning to prevent load imbalance.

2) Hilbert Curve Mapping for Spatial-constrained Queries:
Since multi-dimensional arrays are linearized in one-
dimensional (1-D) storage space, the performance to access
values in different dimensions may vary greatly. To overcome
this problem, MLOC divides multi-dimensional arrays into
chunks and organizes the chunks in Hilbert Space-filling Curve
(HSFC) order on disks to optimize for queries with SC.
Space-filling curves help improve spatial locality of multi-
dimensional data when they are linearized on the 1-D storage
space. Thus, potential seek operations for access patterns on
certain spatial regions are reduced, since one pair of seek and
read operations should be able to load as many contiguous
blocks as possible. It is worth noting that since the order of
blocks is based on the HSFC itself and, contrary to other
methods, every grid point is representative of a block, no
additional metadata must be stored to track this order beyond
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the dimensions of the dataset in blocks. Figure 2 includes
an example of organizing 2-D 4 x 4 grids in HSFC order.
HSFC has been shown to have strong geometric locality
properties [17] compared to other SFC, motivating its usage
in the MLOC design.

3) Multi-resolution Support: MLOC supports two multi-
resolution data organization approaches: the traditional subset-
based approach and a new precision-based approach. The
subset-based approach supports multi-resolution access by
accessing partial points in datasets for certain resolution re-
quirements. It applies a hierarchical Hilbert space-filling curve
mapping to store data in the same resolution level together to
speed up multi-resolution data access, which is similar to [13].

However, the subset-based approach misses a large number
of points in lower-resolution accesses and is thus only suitable
for visualization or analytics with low-precision requirements.
To make up for its drawbacks, MLOC provides precision-
based multi-resolution support by exploiting the memory
layout of double-precision data, dividing a double-precision
number into seven parts, as shown in Figure 3. The first part
contains the first two bytes, which are the least required bytes
to represent a double-precision number (one byte will not
contain any bits from the fraction and only a partial exponent
value). Each of the other six parts contains one byte for
additional precision. The seven subsets of the eight bytes can
represent the original value with certain precisions, which is
called Precision-based Level of Details (PLoD). Each level of
details contains all data points, but only partial bytes of the
double-precision numbers (except for level 7, which contains
all bytes and is regarded as full-precision) to save I/O cost.
For example, while using PLoD level 2, only the first three
bytes of all points are fetched from storage to assemble the
original values. Experiments show that using PLoD level 2
(three bytes) only introduces a maximum per-point relative
error of 0.008% for S3D dataset in mean value analysis, which
is already enough for many statistic and data mining functions.
Meanwhile, it reduces the I/O cost by 62.5% since only 3
bytes out of each 8-byte double-precision value are fetched.
All the double-precision numbers are divided into 8 bytes, and
bytes at the same position (which means the same PLoDs) are
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Fig. 3.  Memory layout of double-precision floating point numbers and the
division of PLoD levels for precision based multi-resolution access support.

stored contiguously. Users can choose to fetch partial bytes
to assemble the original values with certain error rates, or all
bytes to recover original values with full precision.

4) Data Compression: MLOC provides architectural sup-
port for various lossless and lossy data compression tech-
niques of scientific data. Any compression technique, such
as the standard Zlib compression, can be plugged into the
framework. If PLoDs are used and different bytes are stored
and compressed separately, standard compression techniques
for ordinary buffers should be used. Otherwise, compression
specifically designed for floating point numbers, such as
FPZip [18], ISOBAR [19], or B-spline interpolation-based
ISABELA [16], can be used. MLOC supports flexible block
and binning size adjustment for different compression tech-
niques to achieve best performance in the desired area, such
as compression ratio and throughput.

5) Combination of Optimizations: Input datasets go
through a multi-level pipeline built by MLOC to achieve
multiple optimizations. As an example, assume that MLOC
applies optimizations in the following order: accesses with VC,
Multi-resolution access, accesses with SC and compression
(regarded as V-M-S order). With this permutation, MLOC will
optimize the data layout as shown in Figure 2. In Figure 2,
the entire dataset is first divided into bins. In each bin, the
data is stored by byte groups, in which the first two bytes
of all values are stored together, then the third byte, etc.,
which means optimization for PLoD is second. Finally, within
each byte group, data chunks are organized in HSFC order
to optimize for data accesses with SC. To achieve this layout,
or others, MLOC divides the entire dataset into the smallest
units (which is certain bytes of values inside a block within
a bin) and organizes these by the order of priority to achieve
the desired layout through MLOC’s multi-level architecture.

C. File Organization on Parallel File Systems

How large files are partitioned and organized on PFES is
critical to I/O performance. The basic approaches include
single shared file and unique files approaches. Researchers
have studied advantages and drawbacks for both [20] [21]
in terms of throughput, metadata management, and file lock
overhead. Subfiling [22] [23] was presented, which stands
between the two above approaches. This method achieves
balanced I/O throughput and file management overhead by
dividing big files into blocks which are neither too large nor
small. Thus, based on total size of the data, the chunk size
and the number of bins, MLOC stores data within each bin in
a single file. To yield suitable file sizes, the compressed index
and data are stored separately in their bin files as shown in
Figure 4. MLOC adopts this file organization for two reasons.



: File System

Compressed Index | Bin 1 |

Region-only

Compressed Index | Bin 2
Access

MLOC
Binning

and
Chunking |

I Files of data bins

Compressed Index | Bin 3 |

Files of index bins

Compressed Data | Bin 1 |

Value-retrieval
Acess

Compressed Data | Bin 2

Compressed Data | Bin 3 |
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Firstly, this approach generates files that are neither too small
for the metadata nor too large for management, balancing
their respective performances and overheads. For datasets of
several hundred gigabytes, if 100 bins are used, each bin will
be several gigabytes. Second, in subsequent data access and
analysis, files are opened as read-only; thus there will be little
overhead in file lock control since there are no requirements
for synchronization of reading as there is for writing.

PFES apply file striping, in which files are divided into
stripes and distributed to multiple Object Storage Targets
(OST) [4]. Previous work showed that data access patterns
should be aligned with stripe size to achieve best parallel
access performance [24]. Thus, MLOC adjusts the chunk size
based on total size and binning to ensure that the size of the
smallest unit accessed is within one stripe (e.g., IMB).

D. Parallel Data Access Requests Handling

MLOC applies MPI and MPI-IO [25] for parallel data
access request handling and returns qualified data to users with
high efficiency. The overview of the data access processing
is shown in Figure 5. Given an access pattern on a sub-
region/volume with a set of VC and SC, MLOC first decides
the bins to access by comparing the bounds of VC and the
bounds of bins. Then, MLOC calculates the blocks to access
in the chosen bins by mapping the blocks in the accessed
region to the Hilbert curve order. Each MPI process fetches
and processes a subset of blocks across the bins, as shown in
Figure 5. Equal numbers of blocks are assigned to processes
to achieve load balancing. Moreover, the assignment of blocks
follows the column order, in which as many blocks as possible
within a single bin are assigned to a single process. Since data
within each bin is stored in a single file, the column order
ensures that each process accesses the least number of bins
and thus the least number of files. In this way, I/O contention
due to multiple processes accessing a single file is minimized.

Each MPI process fetches data blocks from bin files, decom-
presses them, and filters them based on VC and SC to get local
results. The root process then gathers results from all processes
to return the final results to users. In the following subsections,
we describe handling data access requests for access patterns
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generated by region-only queries, value queries, multi-variable
queries, and multi-resolution support, respectively.

1) Region-only Access: Region-only access patterns are
generated by queries to answer the positions of points that
satisfy a specific VC. In this case, the values of variables
are not required as output. Furthermore, if bins accessed
are aligned bins, the values of points do not need to be
reconstructed. As shown in Figure 5, for the aligned bins,
MLOC only needs to access the index bins to answer the
query without reconstruction. Significant time is saved through
the reduction of I/O and CPU overhead.

For misaligned bins, there might be spatial regions that
fail to satisfy the VC. Since determining in advance which
of these points violate the VC is impossible for compressed
data, all the values in the spatial region must be decom-
pressed/reconstructed. The processing and filtering for mis-
aligned bins are similar to the value-retrieval access pattern.

2) Value-retrieval Access: Value-retrieval access patterns
are generated by queries that answer the exact values of
points that satisfy specific VC and SC; exact values of points
are required as output. So for MLOC, the values of all
points satisfying the constraints need to be reconstructed by
decompression. MLOC has to access data bins to fetch the
requested data. Given a value query with SC, MLOC first
decides which blocks to access by the spatial coordinates and
then re-maps them to the HSFC order they are organized
in on storage. The blocks are then fetched from storage for
decompression and filtering. If VC are specified, only the bins
within the blocks that satisfy the VC will be fetched and
decompressed. The retrieved data blocks are decompressed
and points within blocks are filtered based on VC and SC.



3) Multi-resolution Access: As shown in Figure 2, data in
different PLoD levels can be stored separately. For access to
a certain PLoD level, since data within the level are stored
together, minimum seek and decompression are required only
for the bytes of data that needs to be accessed. For example,
if PLoD level 2 is required, only the first three bytes of
the values are fetched from the storage and decompressed.
MLOC assembles the three bytes to double-precision based
numbers by appending five other dummy bytes. MLOC does
not fill zeros in dummy bytes, since this will further decrease
precision as the assembled values are always smaller than the
original. Instead, MLOC fills 0x7F in the first byte and OxF' F
in the remaining to improve average precision.

4) Multi-variable Access: In multi-variable data access
patterns, spatial regions are usually selected by the values of
one (or more) variable(s); values of other variables are fetched
on the corresponding spatial regions. Thus, the process can be
decomposed into two steps: region-only access for the first
variable(s) and value-retrieval access for others. The indices
derived by the first step can be directly used on other variables
to retrieve, decompress, and filter results.

MLOC applies a light-weight and high-performance bitmap
indexing to optimize for multi-variable data access. Spatial
indices are represented by bitmaps to minimize the memory
footprint and communication overhead, which are crucial
performance metrics in parallel HPC environment. Bitmaps
derived by region queries from all processes are synchronized
for the use of value-retrieval on the other variables.

IV. RESULTS
A. Experiment Setup

We conducted extensive experiments to evaluate MLOC’s
performance on Parallel File Systems in an HPC environment.
All experiments were conducted on the Lens cluster at Oak
Ridge National Lab, which runs on the Lustre parallel file
system. Lens is a 32 node Linux cluster dedicated to data
analysis and high-end visualization, which is suitable to serve
as the testbed for MLOC. Each node contains four quad-core
2.3 GHz AMD Opteron processors with 64 GB of memory.

1) Datasets: We use two datasets generated by scientific
simulation codes running on supercomputers for evaluation. As
these scientific codes are typical, the experimental results are
representative of MLOC’s capability of dealing with various
scientific datasets. The datasets we use are from:

o GTS [1], a particle-based simulation for studying plasma
microturbulence in the core of magnetically confined
fusion plasmas of toroidal devices in nuclear reactors. The
data is 1-D, so we aggregate from multiple time steps
to form a 2-D data space. In each time step, there are
32,768 x 32,768 double-precision floating point numbers,
totaling to 8GB. To demonstrate MLOC’s capability in
processing large datasets, we replicate the dataset to 512
GB, which is 262,144 x 262,144 2-D double-precision
data. We use a chunk size of 2,048 x 2,048 to achieve
an optimized unit size. The replication does not interfere
with the experiment results, since in all experiments we

perform queries with random value and spatial constraints
and report the average. Also, MLOC’s inherent benefits
from its storage architecture help reduced data complexity
and heterogeneity.

« S3D [2], a first-principles-based direct numerical simula-

tion of reacting flows that aids the modeling and design
of combustion devices. In each time step, we use 128 x
128 x 128 3-D double-precision data and replicate it to
form 1024 x 1024 x 1024 8 GB datasets. We also further
replicate it to 512 GB, which is 4,096 x 4,096 x 4,096.
We use a chunk size of 128 x 128 x 128.

For all datasets, we divide them into 100 equal-frequency
bins. This is achieved by calculating the binning boundaries
from partial dataset, and then applying the boundaries to the
whole dataset so that each bin has almost the same number
of elements. For MLOC, we assume that value-constrained
accesses are optimized first, followed by multi-resolution
accesses, and finally spatial-constrained accesses, abbreviated
as the V-M-S order. We also evaluate and compare with other
orders under different data access patterns.

2) Scenarios for Comparison: Among existing systems,
we chose FastBit and SciDB to compare with. FastBit is
the state-of-the-art bitmap indexing tool for answering region
queries. We use FastBit’s precision binning based on the
cardinality of bit patterns in double-precision scientific data,
found to have the best response time. SciDB is designed to
access sub-plane/volume of multi-dimensional matrices using
chunking techniques [26], which is optimized for spatial-
constrained access patterns. In the experiments, we apply the
same chunking sizes as MLOC. We also compare with naive
sequential scan in which data arrays are linearized on disk in
row-first order and are accessed by calculating the file offsets
based on multi-dimensional spatial constraints. As a result, the
performance of sequential scan mainly depends on the size of
query region as determined by the spatial constraints.

We use three MLOC-based approaches for comparison:
MLOC-COL, MLOC-ISO, and MLOC-ISA. Each of them
uses a specific compression technique. MLOC-COL applies
V-M-S§ optimization order (shown in Figure 2) and compresses
byte columns using ZIib, yielding good support for byte-
level multi-resolution access. MLOC-ISO applies ISOBAR,
a high-efficiency lossless compression technique, for double-
precision scientific data. MLOC-ISA applies ISABELA, a
lossy compression technique that achieves high compression
ratios with user-specified error-rates. These three approaches
represent different requirements in scientific computing.

In all experiments, data is assumed to be located on file
system storage instead of physical memory (RAM). This is
crucial as the explosive growth of data makes it impossible
for RAM to hold. Since the size of indices can also be huge
like in FastBit, they should also be assumed to be on disks. To
ensure this, after each round we clear the system file cache so
that all data and indices are fetched from disk for all accesses.
Random value and spatial constraints with certain selectivity
are generated for queries, and in all sets of experiments we
report the average results of 100 random queries.



TABLE I
SPACE REQUIREMENTS OF DATA AND DBMS INDEX FOR 8 GB RAW DATA.
*SCIDB REPLICATES DATA ALONG CHUNK BOUNDARIES TO MINIMIZE
THE NUMBER OF CHUNKS READ BY QUERIES, INCREASING THE DATA SIZE
OVER THE RAW DATA.

Data size | Index size | Total size
MLOC-COL 6.5 GB 1.6 GB 8.1 GB
MLOC-ISO 6.9 GB 1.6 GB 8.5 GB
MLOC-ISA (lossy) 1.6 GB 1.6 GB 3.2 GB
Seq. Scan 8.0 GB N/A 8.0 GB
FastBit 8.0 GB 10.0 GB 18.0 GB
SciDB* 8.8 GB N/A 8.8 GB

TABLE II

REGION QUERY RESPONSE TIME (SEC.) ON 8 GB DATASETS. NO SC ARE
SET. VALUE SELECTIVITY IS 1% AND 10%.

1% GTS | 10% GTS | 1% S3D | 10% S3D
MLOC-COL 0.53 1.21 0.59 1.62
MLOC-ISO 0.41 1.10 0.53 1.57
MLOC-ISA 0.34 1.23 0.56 1.66
Seq. Scan 19.22 20.27 22.71 22.93
FastBit 36.81 37.48 37.27 37.83
SciDB 206.80 677.10 210.00 597.80

B. Storage Space Overhead Measurement

Table I summarizes the storage requirements to store and
index 8 GB data under all scenarios: MLOC with differ-
ent compression techniques, sequential scan (on raw data),
FastBit, and SciDB. The table shows that by applying data
reduction with compression techniques, MLOC reduces the
total size of data and index to 38% of the raw data size using
lossy ISABELA compression, and around 105% for lossless
compression techniques, which is much smaller than FastBit
(225% of raw data) using precision-based bitmap indexing,
since the bitmaps produce large storage overhead for 100 bins.
This data reduction not only saves disk storage space but also
shortens I/O read time. While MLOC-ISA achieves the best
data reduction, the compression is lossy and thus may not be
desirable for computing with strict precision requirements.

C. Data Access Performance

1) Query-driven Data Access Patterns: We evaluate and
compare the performance of value-constrained access patterns
driven by region queries and spatial-constrained access pat-
terns driven by value queries for MLOC and other approaches.
For region queries, the value selectivity ranges from 1% to
10% of the total size of the dataset, and no spatial-constraints
(SC) are set. For value queries, the region selectivity ranges
from 0.1% to 10%, and no value constraints (VC) are set. For
both access patterns, we test on 8 GB and 512 GB datasets and
show their results, respectively. For MLOC-based approaches,
8 cores on the server are utilized for MPI-based parallel data
access and decompression. 8 cores were also used for FastBit,
and up to 8 cores were used by SciDB, as the number of cores
used vary based on chunk partitioning.

2) 8GB Datasets Results: Table II shows the performance
of value-constrained region-only data access patterns on 8
GB datasets in terms of response time for region queries.
MLOC-based approaches achieve much better performance
in all scenarios due to the fine-grained value-based binning

TABLE III
VALUE QUERY RESPONSE TIME (SEC.) ON 8 GB DATASETS. NO VC ARE
SET. REGION SELECTIVITY IS 0.1% AND 1%.

0.1% GTS | 1% GTS | 0.1% S3D | 1% S3D
MLOC-COL 3.07 5.06 3.51 5.26
MLOC-ISO 2.15 4.99 2.96 451
MLOC-ISA 1.52 3.31 1.63 3.42
Seq. Scan 4.38 5.92 1.81 4.75
FastBit 37.29 38.24 37.49 39.70
SciDB 29.10 122.50 143.20 469.10

TABLE IV

REGION QUERY RESPONSE TIME (SEC.) ON 512 GB DATASETS. No SC
ARE SET. VALUE SELECTIVITY IS 1% AND 10%.

1% GTS | 10% GTS | 1% S3D | 10% S3D
MLOC-COL 16.51 41.18 18.94 39.25
MLOC-ISO 15.81 42.06 19.43 41.55
MLOC-ISA 16.42 42.19 20.23 43.71
Seq. Scan 1596.52 2317.39 1423.45 2179.81

greatly narrowing down the search space. FastBit does not
perform well because it assumes the bitmap indices to be
stored in the memory to achieve best performance, so it must
load the huge indices into memory from disk each time before
query executions. However, due to the huge size of datasets
and bitmap indices FastBit produces, it is infeasible to assume
them to be held in the memory. For SciDB and sequential
scan, performances are poor since the whole dataset needs to
be scanned to select the points that satisfy the VC.

Table III shows the performance of spatial-constrained
value-retrieval data access patterns on 8 GB datasets in terms
of response time of value queries. Sequential scan achieves
good performance because it only needs to access a small
portion of data by spatial indexing. Note that this value query
has no VC, which means all bins have to be accessed to fetch
points within the SC. However, the within-bin curve ordering
increases locality and minimizes the number of seeks within
each bin. Furthermore, less I/O is needed due to compression.
Thus, MLOC (with ISABELA as a backend) outperforms the
others. The performance of FastBit for value queries is similar
to region queries as it must still load the entire index before
processing the query, which is the major overhead.

3) 512 GB Datasets Results: For 512 GB experiments,
we only compare to sequential scan as the other approaches
already show poor performances on smaller datasets. Table IV
and Table V show the performance results for the two access
patterns by region queries and value queries, respectively.
MLOC-based approaches achieve better performance again,
demonstrating MLOC’s strong scalability on large scientific
datasets. For region queries, sequential scan must read the
entire 512 GB dataset to select qualified points, taking a
significant amount of time due to the size. For value queries,
MLOC-ISA achieves the best performance when accessing
smaller portions of data due to the smaller size (Table I).
However, when accessing larger portions of data (1% of 512
GB), the response time exceeds other MLOC approaches due
to increased overhead of performing B-spline interpolation to
recover original values. Still, MLOC-ISA’s savings in storage
space is a very attractive feature in certain cases.



TABLE V
VALUE QUERY RESPONSE TIME (SEC.) ON 512 GB DATASETS. NO SC ARE
SET. REGION SELECTIVITY IS 0.1% AND 1%.

0.1% GTS | 1% GTS | 0.1% S3D | 1% S3D
MLOC-COL 13.25 33.03 15.24 39.34
MLOC-ISO 8.81 23.77 9.96 37.66
MLOC-ISA 7.82 40.99 8.39 44.04
Seq. Scan 37.22 248.87 40.74 230.26
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(0.1% selectivity) on 512 GB S3D datasets.

4) Component Analysis: To better understand the perfor-
mance for value-retrieval data accesses, we divide each data
access into three parts: I/O, decompression, and reconstruc-
tion, and measure the overhead for each. I/O includes seek
and read operations to load required data from storage to
memory. Decompression is the time required to decompress
the buffers. Reconstruction consists of filtering out unqualified
values and assembling the final results. Figure 6 shows the
overhead of different components for MLOC and sequential
scan. Although decompression brings additional overhead,
it successfully combines with the light-weight indexing and
parallel optimization of MLOC to reduce I/O overhead and
achieve improved performance. MLOC-ISA yields the least
I/0 time due to the best reduction in data size but spends more
time in decompression because of the B-spline algorithm.

5) Parallel Scalability Analysis: To demonstrate MLOC’s
capability in parallel access on large datasets, we perform
value queries using 10% selectivity on the 512 GB, replicated
GTS/S3D datasets, and larger number of MPI processes.
Figure 7 shows how performance improves as more processes
are used, especially, for decompression and reconstruction.
However, 1/0 does not scale well since more processes bring
more I/O contentions on limited I/O resources. Yet, MLOC
still achieves high throughput of 2 GB/s with 128 processes,
which is much faster than similar techniques [27] that achieve
throughput of several hundred MB/s in a similar environment.

D. Multi-resolution Access Evaluation

1) Data Access Performance: We only show results for
precision-based multi-resolution layout and access, since the
subset-based approach has been widely studied by previous
works [13]. Figure 8 shows the data access performance when
accessing data of different PLoDs using MLOC-COL on 512
GB datasets. Accessing data of lower PLoDs significantly
reduces response time. The majority of the reduction is in
I/O time, as less bytes are fetched from storage to assemble
the original values. Decompression time is not reduced signifi-
cantly because the third to the eighth bytes of double-precision
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on 512 GB datasets.
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Fig. 8.  Multi-resolution data access performance for value queries (1%

selectivity) under different PLoDs on 512 GB datasets.

numbers are regarded as incompressible so that original bytes
are stored. Thus, decompression is almost unnecessary when
assembling the third to the eighth bytes. Reconstruction time
remains the same since it is performed after the bytes are
fetched and assembled and is irrelevant to the PLoDs used.
2) Accuracy Measurement for Data of Different PLoDs: To
evaluate the precision of data in different PLoDs, we perform
histogram construction and K-means clustering on the original
data and data of different PLoDs using three variables of
S3D data, each with 20 million points. In the histogram con-
struction, equal-width histograms are constructed for original
data first. These bin boundaries are then applied to data in
different PLoDs to calculate the error rate, which is the number
of points that fall into different bins compared to results
for original data. In the K-means clustering experiments, K-
means clustering is performed for both original data and data
of different PLoDs. Mis-classifications are calculated, which
refers to the percentage of points of each PLoD that were
assigned to a different class than their corresponding original
data points. The clustering was run for 100 iterations, using
randomized centroids each time. Table VI shows that for both
experiments, using 2-byte PLoD produces rather high error
rate. However, 3-byte PLoD already produces very low error
rates, and the error rates for 4-byte PLoD are almost negligible.
Thus, through the usage of different PLoDs, we can achieve
a reduction in analysis time with acceptable loss of precision.
To evaluate the performance under different orders of opti-



TABLE VI
HISTOGRAM AND K-MEANS ERROR RATES FOR S3D DATA.

Num Histogram error K-means error
Bytes vu vy vw vv and vw
2 8.241% 1.83% 1.834% 4.290%
3 0.029% | 6.5E-3% | 8.3E-3% 0.017%
4 1.6E-4% | 4.5E-5% | 3.5E-5% 6.6E-5%
TABLE VII

QUERY RESPONSE TIME (SEC.) OF DIFFERENT ORDERS OF OPTIMIZATIONS
FOR VALUE-RETRIEVAL DATA ACCESS (1% SELECTIVITY) ON 512 GB
S3D DATASETS.

3-byte PLoD access

19.45
23.70

Full-precision access
39.34
35.47

V-M-S order
V-S-M order

mization placement in MLOC, we compare the default V-M-S
order with an alternative, V-S-M order. In V-S-M order, value-
constrained data accesses are optimized by binning at the first
place, spatial-constrained accesses at the second place, and
multi-resolution accesses at the third place. Table VII shows
performance of the two orders on two of access patterns.
For multi-resolution access with PLoD using three bytes, V-
M-S achieves better performance, since it optimizes multi-
resolution access at a higher priority by storing the first two
bytes of all blocks contiguously to reduce I/O overhead. For
V-S-M, it must go through the files to retrieve the first two
bytes of each point, which are distributed over different areas.
For full-precision access, in which all bytes of each point need
to be fetched and assembled, the results are opposite since V-
M-S has to access different bytes of points, which are stored
separately on disks. However, in both cases, the difference
for the two orders are not significant since both of them also
optimize for the other two access patterns, although not in the
primary place. This means MLOC’s multi-level optimization
is flexible and robust to the changes of access patterns. Users
can specify different orders of optimizations to achieve best
performance for the most frequently used access patterns with
minimal impact on other access patterns.

V. RELATED WORK

Organization of data on disks is crucial to optimizing
throughput of various analytics of large datasets. Simple
chunking has been used in various manners, such as S-
ciDB [28], which addresses sub-volume access patterns by
applying array slicing, joining operations, and array division
into regular/irregular chunks [26] for multi-dimensional sci-
entific data. The majority of the work has been on spatial
division of chunks and on performing algorithms at the chunk
level rather than providing structures optimized for value-
constrained region-only access. ISABELA-QA [15] operates
on windows of chunked data before binning to enable efficient
data access of value-constrained queries. It does this directly
on ISABELA-compressed data [16], which uses B-spline in-
terpolation with user-defined error rates. FastBit [14] optimizes
for value and region constrained accesses by building binned
bitmap indices based on values, keeping similarly valued data
in the same bin. The bitmaps improve the response time

of range queries based on values. However, FastBit indices
have large space requirements of 30% to 200% of the raw
data size in addition to requiring access to the raw data.
Both ISABELA-QA and FastBit are optimized only for
value-constrained access patterns and cannot efficiently handle
spatial-constrained access patterns on sub-volumes.

More complex layouts attempt to optimize chunk access
through spacial locality, particularly through Space-Filling
Curves (SFC) [11]. SFC have been studied to map multi-
dimensional data to one-dimensional space in order to achieve
high spatial locality. A hierarchical Z—order indexing scheme
develops a storage layout for rectilinear grids of data [13],
while the usage of Hilbert space-filling curves (HSFC) in
indexing sped up multi-dimensional data retrieval [12]. These
works try to understand the nature of placing chunks of data in
SFC order to increase throughput by improving spatial locality
and minimizing seeks. EDO [27], an elastic data organization
approach, uses Hilbert curve re-ordering and chunking to
optimize parallel access to subsets of multi-dimensional data
on parallel file systems. However, EDO only optimizes for
spatial-constrained sub-volume access. In contrast, we present
a hybrid approach that integrates various optimization tech-
niques combined with HSFC mapping to ensure optimized
performance for heterogeneous access patterns.

Given prior access patterns, prediction-based layouts can
be used to optimize for future accesses. BORG [29], a self-
optimizing storage system, performs automatic block reorgani-
zation based on the observed I/O workload. Resonant I/0 [24]
optimizes data striping patterns on the I/O nodes for particular
request patterns. Such works assume that data access patterns
are known or can be determined with the optimizations only
serving that particular access pattern, which is difficult as
the patterns are usually hard—to—predict. In contrast, we build
a storage layout scheme that satisfies the requirements of
heterogeneous access patterns.

Accompanying storage layout optimizations are considera-
tions of the parallel file systems, particularly in regards to file
size. Large shared files can achieve optimal performance in
certain scenarios [21]. Improved performance was achieved by
using small unique files for each process in select cases [30],
though the bottlenecks are induced by large numbers of small
files, and several architectural designs and optimizations of
parallel file systems for small files can address these bot-
tlenecks [31]. As a middle ground between these two filing
methods, subfiling [22] [23] divides large files into smaller
subfiles to achieve balanced performance between file opening
and I/O throughput. As the access patterns are hard—to—predict,
we use subfiling to achieve a balanced performance regardless
of individual scenarios.

VI. CONCLUSION

In this paper we presented MLOC, a Multi-level Layout
Optimization framework for Compressed Scientific Data. M-
LOC addresses the problem of analyzing large scientific
datasets with heterogeneous, arbitrary, and hard-to-predict
access patterns by using a flexible multi-layer pipeline to



optimize data layouts for multiple access patterns while al-
lowing user-driven prioritization. These layers optimize value-
constrained access through value-based binning and spatial-
constrained access through chunking in space-filling curve
order and enable multi-resolution support through the subset-
based or Precision-based Level of Detail (PLoD) access, allow-
ing a reduction in I/O necessary for various analysis functions.
MLOC additionally provides both lossy compression (such
as ISABELA) and lossless compression (such as ZIlib) and
organizes the resulting chunks using subfiling for improved
access on parallel file systems.

MLOC shows improvements over a number of access pat-
terns while minimizing the size of the data and index on disk.
MLOC also scales to larger scientific datasets through data
placement on disks and MPI/MPI-IO parallel implementation.
Usage of PLoD allows a further reduction in response time
with a negligible error rates for analysis functions. We are
working on integrating MLOC with I/O middleware running
in large parallel environments to further test and improve
its run-time performance. Also, the data reorganization and
parallel processing model in MLOC can be extended to other
parallel data processing models (e.g., MapReduce) to improve
the performance of data accesses with heterogeneous patterns.
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