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In this paper, we introduce a surface boxplot as a tool for visualization and exploratory analysis of samples of images.
First, we use the notion of volume depth to order the images viewed as surfaces. In particular, we define the median
image. We use an exact and fast algorithm for the ranking of the images. This allows us to detect potential outlying
images that often contain interesting features not present in most of the images. Second, we build a graphical tool
to visualize the surface boxplot and its various characteristics. A graph and histogram of the volume depth values
allow us to identify images of interest. The code is available in the supporting information of this paper. We apply
our surface boxplot to a sample of brain images and to a sample of climate model outputs. Copyright © 2014 John
Wiley & Sons Ltd.
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Introduction

As a result of new technologies and sophisticated monitoring devices, an increasing amount of functional data,
including curves, surfaces, and images, is collected in many different fields of science and engineering, such as envi-
ronmetrics, geophysics, biometrics, medicine, and neuroscience, to name a few. For example, modern brain imaging
techniques, such as functional magnetic resonance imaging (fMRI), measure brain activities and produce brain images
for the assessment of neurological disorders, and weather satellite images play an important role in weather forecast-
ing. Besides observational functional data, experimental functional data generated by computer models, for example,
various climate model outputs, have grown in size and complexity as well. Analysing and extracting useful information
from such complex data have become challenging especially in higher dimensions. Therefore, functional techniques
designed for surfaces or images are needed.

When sample surfaces or images are available, it is important to develop intuitive and efficient visualization tools
to represent the data and highlight their characteristics to make the best use of the data resources. Computer-
based visualization is widely used in many disciplines to help understand and communicate data, as well as to
gain insights into the underlying processes. Many different methods and software have been developed for various
purposes. For example, Walter et al. (2010) reviewed visualization methods for image data in biology, and medical
image visualization was discussed by Blackwell et al. (2000) and McAuliffe et al. (2001).
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In this paper, from a statistical point of view, we aim to use descriptive statistics for sample surfaces or images to find
the most representative sample surface or image as well as to detect potential outliers. This is statistically interesting
but challenging, mainly because of three issues we are facing. First, for functional data analysis, as the entire surface
or image is the information unit, we need a robust method to define the median surface or image and detect outliers.
Second, a computationally efficient procedure is needed owing to the usually large volume of data for high-resolution
surfaces or images. Third, an interactive and user-friendly visualization tool is desirable to display important statistics
and data features.

To address these issues, as suggested by Sun & Genton (2011), we propose the surface boxplot in 3D based on the
surface or image ranking induced by the notion of volume-based data depth. For computations, the fast algorithm
developed by Sun et al. (2012) is adapted to compute the volume data depth values in 3D. Besides displaying
important data features, we create an interactive visualization tool that allows users to understand the data better
from different perspectives.

The remainder of our paper is organized as follows. The ranking of surfaces based on volume depth is described
in Section 2, and the proposed surface boxplot construction is provided in Section 3. Our visualization tool of the
surface boxplot is presented in Section 4. Two applications to samples of brain images and climate model outputs are
illustrated in Section 5. The paper ends with a discussion in Section 6.

Ranking surfaces

Data depth is an important concept for multivariate data ordering. The general idea is that one can compute the data
depth of all the observations and order them according to decreasing depth values. Let Y(; denote the observation in
RY associated with the ith largest depth value. The order statistics, Y1y, ..., Yin, induced by data depth start from
the most central data point and move outwards in all directions. The implication is that a smaller rank is associated
with a more central position with respect to the data cloud. With regard to functional data, Lépez-Pintado & Romo
(2009) introduced the band depth (BD) concept to order sample curves, when each observation is a real function,
yit), i=1,...,n, t € Z, where Z is an interval in R. According to the general idea of data depth, for sample curves,
yi(®) is the deepest (most central) curve or simply the median curve, and yp1(t) is the most outlying curve.

More specifically, Lépez-Pintado & Romo (2009) defined the BD through a graph-based approach. Let the graph of
a function, y(t), be the subset of the plane G(y) = {(t,y(t)) : t € Z}. Then, the band in R? delimited by the curves
Yiys---,Yi is defined as B(y;,,...,yi) = {{t,x@®) : t € Z,min=1,._ kY, () < x() < max,=1,..«y;, ({)}. Let J be the
number of curves determining a band, where J is a fixed value with 2 < J < n. If Y{(?),...,Y,(t) are independent
copies of the stochastic process Y(t) generating the observations y;(%),...,y.(t), the population version of the BD
for a given curve, y(t), with respect to the probability measure, P, is defined as BD,(y,P) = Z/Lz BDW(y,P) =
Zf:z P{G(y) C B(Y1,...,Y))}, where B(Yy,...,Y)) is a band delimited by j random curves. The sample version of
BDW(y, P) is defined as BDg)(y) = (;’)_1 le,l<,2<.,.<,jsn KG(y) < BWi,,---,Yi))}, where /{-} denotes the indicator
function. Then, the sample BD of a curve, y(t), is BD, ;(y) = Z/J:z BD,(f)(y). The indicator function in the BD definition
accounts only for bands that completely contain a sample curve. Hence, the depth values tend to have too many ties,
especially when curves are very irregular, such that few bands completely contain a curve. To solve this problem,
Lépez-Pintado & Romo (2009) proposed a modified BD (MBD) that replaces the indicator function with a function
that measures the proportion of time that a curve, y(f), is in a band. It yields a more flexible ordering of the curves in
the sample.

The BD or MBD requires constructing all the possible bands, and the computational cost grows with the sample
size n at the rate (7), 2 <j < J. Loépez-Pintado & Romo (2009) pointed out that although the number, j, of curves

Copyright © 2014 John Wiley & Sons Ltd 2 Stat 2014; 3: 1-11



Stat Surface boxplots

The ISI's Journal for the Rapid (wileyonlinelibrary.com) DOI: 10.1002/sta4.39
Dissemination of Statistics Research

determining a band could be any integer between 2 and J, the order of curves induced by the BD is very stable in J.
To avoid computational issues, J = 2 is used by Sun & Genton (2011, 2012a), and a fast BD computation algorithm
has been developed by Sun et al. (2012).

Now, suppose we observe sample surfaces, z;(s), ...,2.(s), s € S, where S is a region in R2. The information unit
for such a dataset is the entire surface. To order sample surfaces, we therefore need to generalize univariate order
statistics to surfaces. To this end, we generalize the MBD with J = 2 to R3 through a volume. We define the sample
modified volume depth (MVD) to be

-1
MVDn(Z) = (g) Z Ar {A (Z;Z/I,Z/Z)} )

1<iy1<iz=<n

where A (z;z,,2i,) = {s € S : min—;, i, Z/(S) < z(s) < MaX,—;, i, Z/(s)} and A(2) = A (A (z;2i,,2i,)) /A(S), if A is the
Lebesgue measure on R3. A sample median surface is a surface from the sample with the largest sample modified
volume depth value, defined by argmax,c,, . ,\MVD,(2). If there are ties, the median will be the average of the
surfaces maximizing the sample modified volume depth.

Surface boxplot construction

The construction of surface boxplots is a strong analogue to that of functional boxplots (Sun & Genton, 2011). The
first step is the surface ordering. Sample surfaces are ordered from the centre outwards based on their MVD values,
inducing the order zjyy, ..., zin- The sample « central region is naturally defined as the volume delimited by the «
proportion (0 < @ < 1) of the deepest surfaces. In particular, the sample 50% central region is

yoooy =L

where [n/2] is the smallest integer not less than n/2. The border of the 50% central region is defined as the
inner envelope representing the box in a surface boxplot. The median surface in the box is the one with the largest
depth value.

Because the ordering is from the centre outwards, the volume of the central region increases as « increases. Hence,
the maximum envelope, or the outer envelope, is defined as the border of the maximum non-outlying central region.
To determine this region, we propose to identify outlying surfaces by an empirical rule similar to the 1.5 times the
50% central region rule in a functional boxplot. The fences are obtained by inflating the inner envelope by 1.5 times
the range of the 50% central region. Any surfaces crossing the fences are flagged as potential outliers. The factor
1.5 can be also adjusted as in the adjusted functional boxplots (Sun & Genton, 2012a) to take into account spatial
autocorrelation and possible correlations between surfaces.

Visualization

We have created an interactive visualization tool for exploring volumetric slice-based datasets using the surface boxplot
to extract descriptive statistics including the median, inner and outer envelopes, and potential outliers. As shown
in Figure 1, the visualization tool uses a multi-window approach, coordinating a collection of distinct views via mouse
interactions, each aimed at allowing the user to see the data from a unique perspective.
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Figure 1. Overview of the surface boxplot visualization tool: (a) the median display; (b) the 3D boxplot display; (c) the
envelope display; (d) the volume depth graph; (e) the volume depth histogram.

4.1. Median display

At the centre of the display (Figure 1a) is the median display. This display shows the median surface from the dataset,
which is the middlemost surface and can be thought of as a representative of the data. The display allows the user to
zoom in and scroll around the image to allow for in-depth and contextual views. We have chosen this display as the
largest, centralized display because it will be used as a comparison image throughout the exploration of the dataset.

4.2. 3D boxplot display

Also in the centre is the 3D boxplot display (Figure 1b). This display encodes the median and envelope images as
heightfields to allow a quick comparison between all images. The median image is displayed as the central heightfield,
and minimum and maximum images from the inner and outer envelopes are displayed above and below the median
image, respectively. Figure 2 shows a close-up of a 3D boxplot. The user can rotate, zoom, and pan the boxplot to
gain a better understanding and change the colour of the background for a better display of the data.

4.3. Envelope display

At the top of the tool, Figure 1c, are the displays of the inner and outer envelopes. From left to right is the minimum
outer, minimum central, maximum central, and maximum outer envelope images. These images are composited pixel-
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jo OASIS MRI
3D Boxplot View

Figure 2. Two examples of the 3D boxplot display. Each image is encoded as a heightfield. The median surface is the central
heightfield, flanked by the inner and outer envelopes.
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Figure 3. Envelope display. The outer envelope is shown on the far left (minimum) and far right (maximum), while the central
envelope is shown in the two centre images.

wise from the entire dataset. They are not actual data realizations and thus displayed in greyscale even for original
colour images. The interpretation of these images is an indication of the overall minimal and maximal pixel values (not
including potential outliers) and minimum and maximum pixel values of the central 50% of the data, both of which
create envelopes that can be thought of like the quartiles making up the “box” of a traditional 1D boxplot. Figure 3
shows an example of the envelope display using temperature data from a climate modelling simulation. As shown in
the figure, dark pixels represent low values, while light pixels represent high values.

4.4. Volume depth graph and histogram

To understand the results from calculating the surface boxplot, we have added a volume depth graph (Figures 1d and
4). This graph plots the volume depth of every image in the dataset such that the index number of the image is on
the x-axis and the volume depth is on the y-axis. The median image is indicated by a solid red disc; potential outliers
are shown as blue stars; and all other images are outlined black discs. This display allows the user to see the number
of potential outliers that exist in the data, as well as the volume depth of those outliers.
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Figure 4. A volume depth graph (left) and a volume depth histogram (right).

A volume depth histogram is also included in the tool (Figures 1e and 4), which summarizes the volume depth across
the entire dataset. The graph plots the number of images in each histogram bin, allowing the user to see quickly the
volume depth range containing the largest and smallest numbers of images.

4.5. Interactions

The tool is designed to be highly interactive to allow for exploration and comparison. Every image display can be
pulled out from the tool into its own separate window and placed anywhere on the screen. All images have zoom and
scrolling functionality through scroll bars and keyboard interactions. The volume depth graph allows the user to zoom
in and pan out in the graph itself to ensure that all data are viewable, or for more in-depth investigation. Multiple
points can be selected by the user, which are then highlighted, and upon a shift-modified click, a new independent
image display pops up with the corresponding image, as shown in Figure 5. This new image display also allows for
scrolling and zooming, and it can be placed anywhere within the screen for comparisons. Similarly, the volume depth
histogram allows for the selection of bins via the mouse, as shown in Figure 6. Upon selection, the bin is highlighted
in blue, and the corresponding images in the volume depth graph are also highlighted. A shift-modified mouse click
will bring up all images within the bin in independent image displays. These interactions allow the user to investigate
single images or entire ranges of images. For example, selecting histogram bins corresponding to outliers allows the
user to bring up all outliers quickly for investigation.

4.6. Implementation

The application is developed using C++ and Qt. While the application was developed to explore our application-
specific images, it is flexible enough to work on any collection of image data. The code is available in the supporting
information of this paper.

Applications
5.1. Open Access Series of Imaging Studies brain images

The first application of the surface boxplot is the Open Access Series of Imaging Studies (OASIS) brain magnetic reso-
nance imaging dataset (Marcus et al., 2007). This dataset consists of a collection of 436 brain slices of subjects aged

Copyright © 2014 John Wiley & Sons Ltd 6 Stat 2014; 3: 1-11



Stat Surface boxplots

The ISI's Journal for the Rapid (wileyonlinelibrary.com) DOI: 10.1002/sta4.39
Dissemination of Statistics Research

mum

Image Index: 199

Volume Depth Graph (<X Volume Depth Histogram

S6t b1 G4 o4 04 G40 Gurk oum

°
180 240 300 360 420 ° TS S o 636 030 o3 0% a3 GIC oIk 4% OF
Surface Index Volume Depth

#of Surfaces.

Figure 5. An example of the tool’s reaction when a point on the graph is selected. When the user selects a point, it is
highlighted, and a shift-modified selection will create an independent image display of the corresponding image.
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Figure 6. An example of the tool’s reaction when a bin on the histogram is selected. When the user selects a bin, it is
highlighted along with all corresponding images in the volume depth graph. Analogous to the volume depth selection system,
a shift-modified click will bring up all images within the bin in their own independent image displays.

18-96 years and includes a subset of subjects who have been diagnosed with very mild to moderate Alzheimer’s
disease. We have applied the surface boxplot to this dataset to try to determine non-normal brain functioning by
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Figure 7. Climate model simulation results visualized using our surface boxplot.

identifying scans that lie outside the range of normal brains. That is, we wish to identify potential outliers in the data.
Figure 5 shows the results of applying the surface boxplot on these data. We can see, on the right of Figure 5, three
brain images with low volume depth values that have been identified as potential outliers in this dataset. These images
have depth values of 0.3619, 0.3451, and 0.3645, and they have clear visual differences in comparison with the
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median image that has a depth value of 0.4410. Because of the complexity of medical diagnoses, we cannot say
directly that the potential outlier images found using our technique identify Alzheimer’s patients, although we are able
to select brain images outside the range of normal that may, with further testing, indicate some type of impairment.

5.2. Climate model outputs

We have also tested our method on outputs of climate model simulations from the high-resolution atmospheric model
(HIRAM) at the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory (GFDL)
in Princeton (Zhao et al., 2009). The simulations were conducted on the cubed sphere with an effective resolution
of 25 km. The data cover the time period 1977-2004 (experiment 1, historical run) and 2007-2034 (experiment
2, future projection with medium—low Representative Concentration Pathway, RCP4.5) at a monthly resolution and
are described by image anomalies of air surface temperature (at 2 m in °K). That is, each data value has been
centred with respect to its month’s average. The samples from both experiments have n = 336 images that are
1648 x 826 pixels in dimension. The runs have sea surface temperatures (SST) taken from the GFDL earth system
model (ESM2M).

Figure 7 presents two surface boxplots, one for each of the experiments. The surface index in the volume depth graphs
corresponds to months of each period in increasing order. The rankings of the images reveal interesting features. For
example, we see different spatial temperature patterns between the current median from experiment 1 (07/1996)
and the future median from experiment 2 (10/2019). Interestingly, the most representative image of experiment 1
is in July, whereas it is in October for experiment 2. The histograms of the volume depth values indicate a more
left-skewed shape for experiment 2, that is, more unusual images for the future projection. Three outlying images
have been selected to the right of each surface boxplot. For experiment 1, the outliers are for the dates 02/1986,
02/1987, and 03/1987, whereas for experiment 2, they are for the dates 03/2030, 02/2031, and 03/2034. For
both experiments, those outliers are in February and March, but intriguingly, for experiment 2, they are at the end of
the period. Notice that the outlying images of both experiments clearly show spatial regions of cooling or warming
compared to the median images. For experiment 1, the outliers are observed from 1986 to 1987, which are two
El Nifio years. Other years with local minimum depth values in the volume depth graph are also associated with
the EI Nifo effect, indicating relatively unusual temperature behaviour. For experiment 2, although it produces more
unusual images, this effect is not clear in terms of the volume depth values.

6] Discussion

This paper proposed the surface boxplot as a tool for visualization and exploratory analysis of samples of images.
We used the notion of volume depth, a generalization of BD, to order the images viewed as surfaces.
In particular, we defined the median image of the sample. We used an exact and fast algorithm for the ranking of
the images. This allowed us to detect outlying images that often contain interesting features not present in most of
the images.

We built a graphical tool to visualize the surface boxplot and its various characteristics. A graph and histogram of the
volume depth values allow us to identify images of interest. The code is available in the supporting information of this
paper. We applied our surface boxplot to a sample of brain images and to a sample of climate model outputs and then
identified various interesting images from these datasets.

An extension of our surface boxplot to multivariate images, that is, to images of more than one variable, could be
explored by ranking the images with the simplicial BD introduced by Lépez-Pintado et al. (2014).
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