
Eurographics Symposium on Parallel Graphics and Visualization (2013)
F. Marton and K. Moreland (Editors)

Image-parallel Ray Tracing using OpenGL Interception

Carson Brownlee1,2, Thiago Ize3, and Charles D. Hansen1,2

1School of Computing, University of Utah
2SCI Institute, University of Utah

3Solid Angle

Abstract

CPU Ray tracing in scientific visualization has been shown to be an efficient rendering algorithm for large-scale
polygonal data on distributed-memory systems by using custom integrations which modify the source code of
existing visualization tools or by using OpenGL interception to run without source code modification to existing
tools. Previous implementations in common visualization tools use existing data-parallel work distribution with
sort-last compositing algorithms and exhibited sub-optimal performance scaling across multiple nodes due to
the inefficiencies of data-parallel distributions of the scene geometry. This paper presents a solution which uses
efficient ray tracing through OpenGL interception using an image-parallel work distribution implemented on top
of the data-parallel distribution of the host program while supporting a paging system for access to non-resident
data. Through a series of scaling studies, we show that using an image-parallel distribution often provides superior
scaling performance which is more independent of the data distribution and view, while also supporting secondary
rays for advanced rendering effects.

1. Introduction

Parallel ray tracing has proven to be an efficient algorithm
for rendering large-scale polygonal models which scales well
on multi-core and multi-node machines due to it’s embarrass-
ingly parallel nature [WSB01]. The most popular scientific
visualization tools often rely on brute-force OpenGL rasteri-
zation with no frustum or occlusion culling performed. Due
to the brute-force algorithms used, these programs often scale
poorly with increasing polygon counts and often do not sup-
port advanced rendering effects such as ambient occlusion
which can provide publication-quality images and enhanced
perception of information from additional depth cues. Recent
implementations of CPU ray tracing within common visu-
alization tools such as ParaView and VisIt [Kit10, LLN10]
only support rendering of secondary rays on shared-memory
systems and suffer from sub-optimal scaling when using
primary rays due to the data-parallel data distribution uti-
lized [BPL∗12]. These custom renderers must also be up-
dated with changes to the visualization tools, often requiring
considerable programmer effort with each change to the vi-
sualization tool. Brownlee et al. introduced GLuRay, which
used OpenGL interception for ray tracing in visualization
tools to avoid source code modifications [BFH12]. Using a

similar OpenGL interception technique as Brownlee et al.,
we use a scalable image-parallel work distribution model
based on the work of Ize et al [IBH11] for better scaling on
distributed-memory systems. Non-resident data regions are
loaded either through data replication on each node or through
a paging algorithm for accessing remote bricks of data. This
implementation also enables rendering of secondary rays on
distributed-memory systems which was not possible with a
static data-parallel distribution of the scene. In this paper
we describe previous work in massive model ray tracing in
Section 2. The implementation of our system is given in Sec-
tion 3 describing the OpenGL interception, image-parallel
work distribution, and data paging using remote reads. Sec-
tion 4 describes a series of strong scaling studies conducted
on a distributed-memory cluster comparing our system with
ray tracing using static data-parallel work distribution, GPU
rasterization, and CPU rasterization. Future work, conclu-
sions, and acknowledgements are described in Sections 5, 6,
and 7.

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

2. Related Work

Many commonly used visualization tools have been built
to handle parallel data analysis and visualization on large
distributed-memory systems such as the open-source tool Par-
aView [Kit10]. These programs utilize a client/server archi-
tecture with a single client using multiple server nodes to load
and process data remotely. Work is commonly sent to server
nodes in a data-parallel distribution where each node is re-
sponsible for a subregion of the overall data space [CGAF06].
Nodes then load in their subregion for analysis and rendering,
and the resulting images are then composited together using
depth information to compose an image of the entire scene in
a sort-last compositing step. By using image-parallel distribu-
tion, a sort-last compositing step is spurious, but still present
in the existing program and simply not timed in our results. In
ParaView, OpenGL calls are rendered either with hardware-
acceleration or using a software renderer such as Mesa, which
is a single-threaded build option for software rendering. Mitra
and Chiueh [MC98] developed a parallel Mesa implementa-
tion by running multiple instances of Mesa through a serial
interface which required a compositing operation for each
instance of Mesa. Nouanesengsy et al. [NAW11] explored
performance of such as setup on large shared-memory ma-
chines using different compositing methods. By utilizing a
hybrid sort-first and sort-last compositing step they could
achieve nearly linear speedups with the number of cores on a
machine; however, running multiple instances of ParaView
by spawning additional MPI processes failed to scale well.
Howison et al. [HBC10] demonstrated that running a MPI
hybrid setup with one MPI process running multiple threads
on a single node provided superior performance. Therefore,
we run all of our tests with a single running ParaView process
per node and use hybrid-parallelism with multiple threads per
process for our renderer.

Significant work has been done to show that ray trac-
ing presents an embarrassingly parallel algorithm which
scales efficiently on large multi-node and multi-core ma-
chines [BSP06, PSL∗98, PPL∗99]. The Manta real-time ray
tracing software has proven scaling performance on shared-
memory machines and scales well with large geometry
counts [SBB∗06]. DeMarle et al. described an image-parallel
work distribution system where each node stores a portion
of the scene, allowing the scene size to grow to a fraction of
the aggregate memory available across the cluster [DGP04].
Ize et al. [IBH11] developed a distributed-memory version
of the Manta ray tracer with a paging system which achieved
efficient performance by using a cache aware, traversal or-
dered BVH acceleration structures [WBS07] on multi-node
machines. This improves upon DeMarle et al.’s implementa-
tion which used a single core for rendering on each node and
a less efficient macro-cell grid for acceleration. Hybrid data-
parallel and image-parallel techniques have been developed,
however we use a caching scheme which exploits frame to
frame coherence of locally cached data with image-parallel
distribution [RCJ99].

Navratil et. al developed a non-interactive distributed-
memory ray tracer in VisIt for rendering large-scale, out-
of-core data to demonstrate the importance of ray scheduling
when disk reads are needed [NFLC12], however we focus
on interactive rendering of data that fits into the large aggre-
gate memory spaces of supercomputing clusters. Brownlee et
al. [BPL∗12] developed a ray tracing framework integrated
into VTK and subsequently ParaView and VisIt which could
use ray tracing, but relied on the data distribution and com-
positing present in VTK. GLuRay was developed by Brown-
lee et al. [BFH12] as a ray tracing framework using OpenGL
interception on top of scientific visualization programs. They
reported increased render times of over 300x native render-
ing performance using CPU rasterization on a single node,
however their implementation was burdened by the use of
the static data-parallel scene distribution provided by the host
application which resulted in poor scaling performance de-
pendent on the current view used and their implementation
only supported rendering secondary rays on shared-memory
systems. We present an OpenGL interception library using ray
tracing which uses an image-parallel work distribution and a
distributed paging scheme with a local cache on each node for
storing non-resident data. This implementation demonstrates
superior scaling performance on distributed-memory systems
and enables for ray tracing secondary rays across the entire
scene.

3. Implementation

We present a system which extends the OpenGL interception
techniques presented by Brownlee et al. [BFH12] while using
an image-parallel distribution based on the work by Ize et
al [IBH11].

3.1. Intercepting OpenGL Calls

We created an OpenGL implementation based on the offi-
cial OpenGL specification which maps OpenGL API calls
to ray tracing calls similar to GLuRay [BFH12]. Each Par-
aView process launches multiple rendering threads in the
background for ray tracing which are synchronized with the
main thread when rendering and display are needed. Many
OpenGL calls are directly mapped to the ray tracer includ-
ing transform matrices, material parameters, light properties,
geometry specification, and rendering attributes such as flat
or smooth shading. Groups of geometry are built with each
display list created with material parameters, lighting infor-
mation, and shading specifications. Geometry is added to the
scene upon calls to glCallList, instantiating the geometry with
the current ModelView transform. Some function calls are
passed through to an existing OpenGL implementation such
as glDrawPixels or glXSwapBuffers. Multiple renderings per
frame are avoided. For our runs with ParaView, rendering
was started with calls to glFlush for single process programs
or glReadPixels for runs over multiple nodes.

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

3.2. Ray Tracing using Data-parallel Distribution

ParaView uses a data-parallel work distribution across
distributed-memory machines. Each node is responsible for
loading, filtering, and rendering a subregion of the data. Ren-
dering is conducted on the data local to each node with no
dynamic data distribution across nodes. To generate an image
of the entire scene, each node distributes its rendered image
with depth information which are composited together to
determine the nearest pixel from each image to produce an
accurate image of the entire scene. This same compositing
and distribution scheme can be used with the ray tracer by
writing the rendered image and tracking depth information
of each nearest hit into a depth buffer which is then sent to
the framebuffer upon a call to glReadPixels. This implemen-
tation has no dynamic distribution of data meaning that only
primary rays can be rendered as each node only has geometry
pertaining to its portion of the scene.

3.3. Ray Tracing using Image-parallel Distribution

For this paper we have implemented an image-parallel work
distribution for rendering on top of a host program’s data-
parallel data distribution using both replicated data and dy-
namic data distribution using a paging scheme developed by
Ize et al. [IBH11]. This scheme allows for efficient scaling
of data loading and filtering within scientific visualization
programs while enabling rendering of secondary rays and
efficient scaling of primary rays compared to static scene
distributions. Accessing non-resident geometry not sent from
the host program is done through both data replication over
MPI and through paging in portions of data on demand by
nodes requesting blocks of data. For replicated data, each
node broadcasts resident portions of the data across all ren-
dering nodes according to display lists created locally which
are synchronized with unique ids corresponding to local dis-
play list ids. For each frame, transforms for each list instanced
locally are broadcast across all rendering nodes. A master
process is responsible for distributing tiles of the image for
rendering as each rendering node requests work and result-
ing pixels are sent to a display processes to produce a final
result. Rendering is conducted when all nodes make a call to
glReadPixels and the final image is sent to the framebuffer
when node 0 renders a screen aligned quad for display.

Each frame rendering requires cross-node synchroniza-
tion with MPI calls across multiple threads per node with
a single running MPI process per node in a hybrid-parallel
system. Since the host program initializes MPI, we over-
ride MPI_Init in order to enable multithreaded MPI with
MPI_THREAD_MULTIPLE. Running OpenGL API calls
with MPI in the background has the potential to break syn-
chronized MPI communications from a host program and
as such we only make MPI calls for OpenGL function calls
which are made at the same time across all nodes with no
waiting MPI calls on any one node. For ParaView, glRead-

Pixels provided such a synchronization point for our render
nodes.

3.4. Load Balancing and Display

Manta uses a dynamic work queue on each node where each
node requests tiles from a master process which are then
split into smaller tiles and distributed to rendering threads as
requested. The two level load balancer limits cross-node com-
munication while efficiently balancing work on a per-thread
basis on each node. A separate display process receives ren-
dered pixels from each render node and copies them into a
buffer which holds the final image. One thread on the display
process is responsible for all MPI communication, receiving
pixels from render nodes. Three additional threads are used
for copying the rendered pixels to the image buffer. Unlike
the data-parallel distribution, no compositing of pixel data
using depth buffer information is required making the im-
age compositing present in the host program spurious. The
IceT compositing library utilized by ParaView uses a call to
glReadPixels to grab the rendered framebuffer on each node
which are then sent to other nodes for sort-last compositing.
Unnecessary pixel transfer by the host program may be miti-
gated by sending an empty scene to each call of glReadPixels
as IceT has the option to only distribute portions of the ren-
dered image which contain pixels rendered into after a clear
with the background color; however, such implementations
were not tested in this paper.

3.5. Distributed-memory Paging

Our distributed-memory paging implementation uses the
same paging algorithm proposed by Ize et al. [IBH11]. Each
node is responsible for a portion of the overall scene data
while maintaining an explicit cache to store non-resident data
from other nodes. Paging is useful when the total scene size
does not fit on a single node, but fits into a cluster’s aggregate
memory space.

Ray tracing enables a straightforward calculation of ad-
vanced rendering effects such as depth of field, ambient-
occlusion, shadows, transparency, refraction, and reflections
[CPC84, Whi80]. Studies have shown that ambient-occlusion
provides depth cues which can aid in understanding data’s
spatial locality compared to using only local lighting such as
that provided through the OpenGL fixed-function pipeline
[GP06]. Manta supports path tracing to compute indirect
illumination, however we do not utilize path tracing in our
implementation to instead focus on interactive rendering. Ren-
dering properties and material properties not defined in the
OpenGL specification are sent to the ray tracer through con-
figuration files or an external GUI application communicating
over localhost. Changes are made globally to all objects of the
scene as there is no method for modifying individual scene
objects.

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

4. Results

We studied the performance of our rendering system com-
pared to hardware-accelerated OpenGL, software rasteriza-
tion using Mesa, CPU ray tracing using GLuRay [BFH12],
and CPU ray tracing using our implementation. We ran our
tests with the open-source visualization tool ParaView 3.14.1
using 1-62 rendering nodes on Longhorn, an NSF XD vi-
sualization and data analysis cluster located at the Texas
Advanced Computing Center (TACC). Longhorn has 256
4X QDR InfiniBand connected nodes running MVAPICH2,
each with 2 Intel Nehalem quad core CPUs (model E5540) at
2.53 GHz and 48-144 GB of RAM. Each node of Longhorn
also has 2 NVidia FX 5800 GPUs, however only a single
GPU per node is utilized in our runs. Our datasets consist of
two datasets with a zoomed out and zoomed in view. Using
a singe time-step from Los Alamos’ VPIC plasma simula-
tion, we calculated an isosurface and extracted streamtubes
that combined totaled 102 million polygons. A view of this
dataset rendered in ParaView can be seen in Figure 1(a). Am-
bient occlusion was used which shades polygons based on
proximity to other geometry as seen in Figure 1(b). An en-
hanced rendering seen in Figure 1(c) shows the same dataset
rendered with 36 ambient occlusion rays, 1 shadow ray, 1
reflection ray, and 4 samples per pixel. A zoomed in view
was also used to look at scaling performance with a caching
scheme as seen in Figures 2(a), 2(b), and 2(c). A time step
from a Richtmyer-Meshkov Instability (RM) simulation at
Lawrence Livermore National Laboratory was also used in
our tests. We created a polygonal representation with an iso-
surface from time-step 273 resulting in 123 million triangles
as seen in Figures 3(a), 3(b), 3(c), 4(a), 4(b), and 4(c). We
use two different views of the RM and VPIC datasets to test
performance scaling characteristics affected by camera views.
Image resolutions scale from 720p up to 2160p. ParaView
was run with offscreen rendering in batch mode in our tests
with a warm up period followed by averaged timing infor-
mation collected from IceT’s render and buffer read timings.
For the data-parallel GLuRay implementation and our image-
parallel implementation, timing information was taken from
buffer readings instead of render timings since rendering was
conducted at calls to glReadPixels in the buffer reading stage
of the IceT compositor. This comparison is not a comparison
of the ultimate potential of rasterization vs. ray tracing algo-
rithms, but rather a real-world study of their performance in
a commonly used tool.

Figure 5(a)† shows the 102 million triangle VPIC dataset
in a strong scaling study from 1-62 nodes using our method,
referred to as GLuDRay, with replicated data on each node,
GPU accelerated rasterization, GLuRay software ray tracing,
and software rasterization using Mesa rendered at 720x1280
resolution. The x and y axis are in logarithmic scale giving

† Tables with numeric data are provided for all graphs in the supple-
mentary material in the digital library

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 62

se
co

nd
s

render nodes

Render Time Strong Scaling for VPIC

GLuDRay
GPU

GLuRay
Mesa

 0.01

 0.1

 1

 10

 100

 2 4 8 16 32 62

se
co

nd
s

render nodes

Render Time Strong Scaling for VPIC Zoomed in

GLuDRay
GPU

GLuRay
Mesa

Figure 5: Node scaling study of the VPIC plasma simulation
rendered zoomed out (top), and zoomed in (bottom).

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 62

se
co

nd
s

render nodes

Render Time Strong Scaling for RM

GLuDRay
GPU

GLuRay
Mesa

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 62

se
co

nd
s

render nodes

Render Time Strong Scaling for RM Zoomed in

GLuDRay
GPU

GLuRay
Mesa

Figure 6: The RM dataset rended with a zoomed out view
(top) and a zoomed in view (bottom).

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

(a) (b) (c)

Figure 1: Renderings of a VPIC plasma simulation rendered with basic local illumination (a); 36 ambient-occlusion rays (b);
and 36 ambient-occlusion rays, 1 shadow ray, 1 reflection ray, and 4 samples per pixel (c).

(a) (b) (c)

Figure 2: Renderings of a VPIC plasma simulation zoomed in to a small portion of the data with local lighting (a); ambient-
occlusion (b); and ambient-occlusion, shadow, and reflections (c).

(a) (b) (c)

Figure 3: Renderings of a Richtmyer-Meshkov Instability with local lighting (a); ambient-occlusion (b); and ambient-occlusion,
shadow, and reflections (c).

(a) (b) (c)

Figure 4: Renderings of a Richtmyer-Meshkov Instability zoomed into a small portion of the data with local lighting (a);
ambient-occlusion (b); and ambient-occlusion, shadow, and reflections (c).

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

the number of seconds IceT reported for rendering or in the
case of the interception methods, reading back buffers which
triggered our ray tracer to render. Lines represent the average
render times across all nodes, while the vertical bar above
each data point shows the maximum rendering times across
all nodes giving the frame time without compositing and dis-
play time. Mesa and GPU renderings take over 26 seconds on
a single frame and don’t drop below 1 second for rendering
time until 8 and 62 nodes respectively. There is a jump for
GPU performance at 4 nodes as display lists crashed with 1
and 2 nodes. Both Mesa and the GPU scale very well with
node counts, showing that performance is highly correlated
with the number of triangles per-node in the scene. At best,
the GPU takes 0.12 seconds to render a frame with 62 nodes,
giving an average triangle count per-node at roughly 1.6M
triangles per node. GLuRay performance in our tests took
0.15 seconds to render the same dataset on a single node, a
speed which Mesa never obtains and the GPU did not surpass
until 62 render nodes were used. Scaling performance with
GLuRay is sub-linear with respect to increasing numbers of
nodes used for rendering. With 62 nodes, GLuRay achieves
rendering speeds of 0.035 seconds giving a scaling efficiency
of only 7%. Our implementation peaks at 32 nodes when
rendering primary rays only with a maximum render time of
0.011 seconds as nodes become starved for work, which is a
scaling efficiency of 36% and is likely limited by pixel and
work distribution over the network. Performance gains drop
off after 32 nodes, however optimizing beyond frame times
equivalent to nearly 100 fps is not a concern as it would pro-
vide little perceptible user benefit since monitor refresh rates
are typically 60Hz. If compositing is eliminated or reduced
in a later stage by sending a blank framebuffer, overall frame
time may be further reduced compared to the other methods
presented but this was not explored. While our method scales
better with rendering nodes, two additional MPI processes
are needed in the current implementation for display and
load balancing. As Ize et al. [IBH11] demonstrated, a single
multi-core node could be used for both; however, for our tests
two separate nodes were used for display and load balancing
which are not shown in the graphs. These processes could
also be run on the same node as a rendering node, however
this performance difference was not evaluated in theses tests
and instead we focus purely on scaling the number of render
nodes used solely for rendering during the rendering stage of
ParaView.

Figure 5(b) shows a strong scaling study of the VPIC
dataset with a zoomed in view. GPU performance is largely
unaffected in this case, although Mesa performance is in-
creased compared to the zoomed out view as triangles are
clipped out and don’t need to be rasterized to the framebuffer.
GLuRay rendering times are 0.015 seconds slower than the
zoomed out view which achieves better scaling results, while
our version is only 0.004 seconds slower. This minor decrease
in maximum rendering time in our method is likely due to
the increased pixel coverage by the geometry as empty space

 0.01

 0.1

 1

 10

 2 4 8 16 32 62

se
co

nd
s

render nodes

Cache Fraction Scaling for VPIC

Replicated
1/2 Memory
1/4 Memory
1/8 Memory

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 62

se
co

nd
s

render nodes

Cache Fraction Scaling for VPIC Zoomed in

Replicated
1/2 Memory
1/4 Memory
1/8 Memory

Figure 7: Cache fraction scaling study of the VPIC plasma
simulation rendered zoomed out (top), and zoomed in (bot-
tom).

surrounding the dataset is efficiently skipped over with a
bounding box test. Figures 6(a) and 6(b) display a similar
behavior with the RM datasets zoomed out and in. Our imple-
mentation exhibits better scaling performance than GLuRay
which does not scale with the RM zoomed in view until up to
32 nodes when visible data is split significantly.

Figures 7(a) and 7(b) show strong scaling render times with
a resident cache on each node for the VPIC datasets zoomed
out and in respectively. Runs using replicated data do not
use a cache but merely replicate all geometry on each node.
When the scene is zoomed out, smaller cache sizes perform
significantly worse than replicating data on each node. When
a zoomed in view of the dataset is used however, using a
small cache becomes less of a strain on performance as the
visible subregion of the overall dataset is smaller. Figures 8(a)
and 8(b) display render timings in a strong scaling study
of the VPIC dataset zoomed out and zoomed in with 36
ambient occlusion rays per hit pixel. Not only are render times
significantly longer, but more regions of the scene must be
accessed beyond what is visible by primary rays alone. This
results in less significant differences between the zoomed
out and zoomed in views of the dataset and greatly increased
ranges in both graphs between replicated and cached data.
Ambient occlusion also resulted in fewer cache misses as a
fraction of the total number of data accesses. Cache misses

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

 0.01

 0.1

 1

 10

 100

 2 4 8 16 32 62

se
co

nd
s

render nodes

Cache Fraction Scaling for VPIC with AO

Replicated
1/2 Memory
1/4 Memory
1/8 Memory

 0.01

 0.1

 1

 10

 100

 2 4 8 16 32 62

se
co

nd
s

render nodes

Cache Fraction Scaling for VPIC Zoomed in with AO

Replicated
1/2 Memory
1/4 Memory
1/8 Memory

Figure 8: VPIC plasma simulation rendered with ambient
occlusion (top) and zoomed in (bottom).

at 62 render nodes with VPIC zoomed in with primary rays
ranged from 0.6% of total data accesses with a cache size
of 1/2 the total data size to 1.1% with a 1/8 cache fraction.
With ambient occlusion, cache misses decreased to 0.2% to
0.8% for 1/2 and 1/8 cache fractions respectively. Render
times continue to scale up to 62 render nodes when more
work is introduced to be distributed, such as with ambient
occlusion rays. For the advanced renderings in Figures 1(c),
2(c), 3(c), and 4(c), additional secondary rays were used with
36 ambient occlusion rays, 1 shadow ray, 1 reflection ray, and
4 samples per pixel for a total of roughly 152 rays for each hit
pixel in the scene not counting multiple reflections. For the
VPIC dataset zoomed out and replicated data with advanced
rendering effects, maximum render times scaled from 57.96
seconds on a single render node to 1.72 seconds on 62 render
nodes which is not shown in the graphs.

Figures 9(a) and 9(b) show results of scaling window sizes
on a single node and 16 nodes respectively with the VPIC
dataset zoomed out. Window sizes were 720p, 1080p, 1440p,
and 2160p resulting in roughly 1, 2, 4, and 8 megapixels. In
the 16 node runs, GPU performance scaled from 0.44 seconds
at 1MP to 0.51 seconds at 8MP with Mesa scaling similarly.
As can be expected, the ray tracing performance of our system
decreased roughly linearly with window size scaling from
0.013 seconds with 1MP down to 0.0717 seconds with 8MP
and GLuRay demonstrated a similar drop in performance.

 0.01

 0.1

 1

 10

 100

 1 2 4 8

se
co

nd
s

megapixels

Render Time Window Scaling for VPIC 1 Node

GLuDRay
GPU

GLuRay
Mesa

 0.01

 0.1

 1

 10

 100

 1 2 4 8

se
co

nd
s

megapixels

Render Time Window Scaling for VPIC 16 Nodes

GLuDRay
GPU

GLuRay
Mesa

Figure 9: Window size scaling study of the VPIC plasma
simulation rendered from 1 to 8 megapixels with a single
node (top) and 16 nodes (bottom).

5. Future Work

Future work to achieve better performance using smaller
cache sizes on each node relative to aggregate data sizes
would be beneficial. Higher performance could be achieved
with smaller cache sizes by better scheduling work tiles from
the master node to server nodes according to previous frames
to better exploit frame to frame coherence. Lossless com-
pression could be used for geometry and pixel transfers to
reduce data sizes. Hierarchical level of detail would allow
for significantly reduced data transfer times. Voxelizing data
similar to the GigaVoxels system by Crassin et al. [CNLE09]
for simplifying sub-pixel regions of data could greatly reduce
data transfer times with little or no discernible reduction in
image quality. For secondary rays, many effects such as ambi-
ent occlusion are low-frequency and lower levels of detail can
be used while paging in higher levels for sharp shadows or
glossy reflections as required. We currently only support the
OpenGL fixed-function pipeline. Supporting shaders would
be a significant development effort but extend the implemen-
tation to programs which use shaders. In this paper we have
not explored compositing or display time. Sort-last composit-
ing is unnecessary with our implementation and if it could
be eliminated or reduced then significant performance gains
could likely be achieved.

c© The Eurographics Association 2013.

Carson Brownlee & Thiago Ize & Charles D. Hansen / Image-parallel Ray Tracing using OpenGL Interception

6. Conclusion

In this paper we have shown that image-parallel data distri-
bution conducted in the background of running visualization
tools using OpenGL interception results in real-time ren-
dering rates for large-scale data while also enabling tracing
secondary rays for advanced rendering effects on distributed-
memory systems. Our implementation attained significantly
improved scaling performance over previous ray tracing im-
plementations built into common visualization tools or used
through OpenGL interception using data-parallel geometry
distribution for rendering. We have demonstrated rendering
rates approaching 100 fps without compositing and display
with datasets over 100 million triangles on the visualization
cluster Longhorn when GPU accelerated rendering rates did
not achieve interactive performance and Mesa software ren-
dering failed to render a frame in under 1 second. With this
work, we have shown that CPU ray tracing in a widely used
visualization tool using image-parallel work distribution en-
ables real-time and high-quality rendering of large-scale data
without modification to the underlying program.

7. Acknowledgements

We would like to thank Paul Debevec for providing light
probes used in this paper. This research was sponsored by
awards KUS-C1-016-04 made by King Abdullah University
of Science and Technology (KAUST), DOE SciDAC Institute
of Scalable Data Management Analysis and Visualization
DOE DE-SC0007446, NSF OCI-0906379, NSF IIS-1162013,
NIH-1R01GM098151-01.

References
[BFH12] BROWNLEE C., FOGAL T., HANSEN C.: GLuRay: En-

hanced ray tracing in existing scientific visualization applications
using opengl interception. In Eurographics Symposium on Parallel
Graphics and Visualization (2012), The Eurographics Association,
pp. 41–50. 1, 2, 4

[BPL∗12] BROWNLEE C., PATCHETT J., LO L., DEMARLE D.,
MITCHELL C., AHRENS J., HANSEN C.: A study of ray tracing
large-scale scientific data in two widely used parallel visualization
applications. In Eurographics Symposium on Parallel Graphics
and Visualization (2012), The Eurographics Association, pp. 51–
60. 1, 2

[BSP06] BIGLER J., STEPHENS A., PARKER S.: Design for par-
allel interactive ray tracing systems. In Interactive Ray Tracing
2006, IEEE Symposium on (sept. 2006), pp. 187 –196. 2

[CGAF06] CEDILNIK A., GEVECI B., AHRENS J., FAVRE J.:
Remote large data visualization in the paraview framework. Eu-
rographics Symposium on Parallel Graphics and Visualization
(2006), 162–170. 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings of the 2009 Symposium on In-
teractive 3D Graphics and Games (2009), I3D ’09, pp. 15–22.
7

[CPC84] COOK R., PORTER T., CARPENTER L.: Distributed ray
tracing. Computer Graphics (Proceeding of SIGGRAPH 84) 18,
3 (1984), 137–144. 3

[DGP04] DEMARLE D. E., GRIBBLE C., PARKER S.: Memory-
savvy distributed interactive ray tracing. In Proc. of Eurographics
Symposium on Parallel Graphics and Visualization (2004), pp. 93–
100. 2

[GP06] GRIBBLE C. P., PARKER S. G.: Enhancing in-
teractive particle visualization with advanced shading mod-
els. In Proceedings of the 3rd symposium on Applied per-
ception in graphics and visualization (New York, NY, USA,
2006), APGV ’06, ACM, pp. 111–118. URL: http://doi.
acm.org/10.1145/1140491.1140514, doi:http://
doi.acm.org/10.1145/1140491.1140514. 3

[HBC10] HOWISON M., BETHEL E., CHILDS H.: MPI-hybrid
parallelism for volume rendering on large, multi-core systems. In
Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV) (May 2010). 2

[IBH11] IZE T., BROWNLEE C., HANSEN C. D.: Real-time ray
tracer for visualizing massive models on a cluster. In Proceedings
of Eurographics Symposium on Parallel Graphics and Visualiza-
tion (2011), pp. 61–69. 1, 2, 3, 6

[Kit10] KITWARE: Paraview - Open Source Scientific Visualiza-
tion, 2010. http://www.paraview.org/. 1, 2

[LLN10] LLNL: VisIt Visualization Tool, 2010. https://wci.
llnl.gov/codes/visit/. 1

[MC98] MITRA T., CHIUEH T. C.: Implementation and evaluation
of the parallel mesa library. In Parallel and Distributed Systems,
1998. Proceedings. (dec 1998), pp. 84–91. 2

[NAW11] NOUANESENGSY B., AHRENS J., WOODRING J.: Re-
visiting parallel rendering for shared memory machines. In Pro-
ceedings of Eurographics Symposium on Parallel Graphics and
Visualization (2011), pp. 31–40. 2

[NFLC12] NAVRATIL P. A., FUSSELL D. S., LIN C., CHILDS
H.: Dynamic scheduling for large-scale distributed-memory ray
tracing. In Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization (2012), pp. 61–70. 2

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-P.,
HANSEN C., SHIRLEY P.: Interactive ray tracing for volume
visualization. Visualization and Computer Graphics, IEEE Trans-
actions on 5, 3 (jul-sep 1999), 238 –250. 2

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive ray tracing for isosurface rendering. In
Visualization ’98. Proceedings (oct. 1998), pp. 233 –238. 2

[RCJ99] REINHARD E., CHALMERS A., JANSEN F. W.: Hybrid
scheduling for parallel rendering using coherent ray tasks. In Pro-
ceedings of the 1999 IEEE symposium on Parallel visualization
and graphics (1999), PVGS ’99, pp. 21–28. 2

[SBB∗06] STEPHENS A., BOULOS S., BIGLER J., WALD I.,
PARKER S. G.: An application of scalable massive model in-
teraction using shared memory systems. In Proceedings of the
Eurographics Symposium on Parallel Graphics and Visualization
(2006), pp. 19–26. 2

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (Jan. 2007). 2

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Commun. ACM 23, 6 (June 1980), 343–349.
3

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
distributed ray tracing of highly complex models. In Proc. of
Eurographics Workshop on Rendering (2001), pp. 274–285. 1

c© The Eurographics Association 2013.

http://doi.acm.org/10.1145/1140491.1140514
http://doi.acm.org/10.1145/1140491.1140514
http://dx.doi.org/http://doi.acm.org/10.1145/1140491.1140514
http://dx.doi.org/http://doi.acm.org/10.1145/1140491.1140514
http://www.paraview.org/
https://wci.llnl.gov/codes/visit/
https://wci.llnl.gov/codes/visit/

