Chapter 1

Overview and State-of-the-Art of Uncertainty
Visualization

Georges-Pierre Bonneau, Hans-Christian Hege, Chris R. Johnson, Manuel M.
Oliveira, Kristin Potter, Penny Rheingans and Thomas Schultz

“What is not surrounded by uncertainty cannot be the truth.” - Richard Feynman

“True genius resides in the capacity for evaluation of uncertain, hazardous, and con-
flicting information.” - Winston Churchill

Abstract The goal of visualization is to effectively and accurately communicate
data. Visualization research has often overlooked the errors and uncertainty which
accompany the scientific process and describe key characteristics used to fully un-
derstand the data. The lack of these representations can be attributed, in part, to the
inherent difficulty in defining, characterizing, and controlling this uncertainty, and
in part, to the difficulty in including additional visual metaphors in a well designed,
potent display. However, the exclusion of this information cripples the use of visu-
alization as a decision making tool due to the fact that the display is no longer a
true representation of the data. This systematic omission of uncertainty commands
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fundamental research within the visualization community to address, integrate, and
expect uncertainty information. In this chapter, we outline sources and models of
uncertainty, give an overview of the state-of-the-art, provide general guidelines, out-
line small exemplary applications, and finally, discuss open problems in uncertainty
visualization.

1.1 Introduction

Visualization is one window through which scientists investigate, evaluate and ex-
plore available data. As technological advances lead to better data acquisition meth-
ods, higher bandwidth, fewer memory limits, and greater computational power, sci-
entific data sets are concurrently growing in size and complexity. Because of the
reduction of hardware limitations, scientists are able to run simulations at higher
resolution, for longer amounts of time, using more sophisticated numerical mod-
els. These advancements have forced scientists to become increasingly reliant on
data processing, feature and characteristic extraction, and visualization as tools for
managing and understanding large, highly complex data sets. In addition, there is
becoming a greater accessibility to the error, variance, and uncertainty not only in
output results but also incurred throughout the scientific pipeline.

With increased size and complexity of data becoming more common, visualiza-
tion and data analysis techniques are required that not only address issues of large
scale data, but also allow scientists to understand better the processes that produce
the data, and the nuances of the resulting data sets. Information about uncertainty,
including confidence, variability, as well as model bias and trends are now available
in these data sets, and methods are needed to address the increased requirements
of the visualization of these data. Too often, these aspects remain overlooked in
traditional visualization approaches; difficulties in applying pre-existing methods,
escalating visual complexity, and the lack of obvious visualization techniques leave
uncertainty visualization an unsolved problem.

Effective visualizations present information in a manner that encourages data
understanding through the appropriate choice of visual metaphor. Data are used to
answer questions, test hypotheses, or explore relationships and the visual presen-
tation of data must facilitate these goals. Visualization is a powerful tool allowing
great amounts of data to be presented in a small amount of space, however, different
visualization techniques are better than others for particular types of data, or for an-
swering specific questions. Using the most befitting visualization method based on
the data type and motivated by the intended goals of the data results in a powerful
tool for scientists and data analysts.

The effective visualization of uncertainty, however, is not always possible through
the simple application of traditional visualization techniques. Often, the visualiza-
tion of the data itself has a high visual complexity, and the addition of uncertainty,
even as a scalar value, complicates the display. Issues of visual clutter, data conceal-
ment, conflicts in how the data and the uncertainty are represented, and unintentional
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biases are just some of the problems incurred when visualizing data accompanied by
uncertainty. Also, the complexity of these data sets may not lend themselves to the
straightforward application of existing visualization methods, and thus, the added
burden of uncertainty can be overwhelming.

Uncertainty data are becoming more prevalent and can be found in fields such as
medical imaging, geoscience, and mechanical engineering. The simulation of com-
plex systems, compilation of sensor data, and classification of tissue type are but a
few sources of uncertainty data and their expression, size, and complexity can dras-
tically vary. Uncertainty can arise in all stages of the analysis pipeline, including
data acquisition, transformation, sampling, quantization, interpolation, and visual-
ization. It can be a single scalar value presented alongside the original data, or can
be an integral aspect of the data, derived from the description of the data itself. In
any case, uncertainty is an imperative component of scientific data sets and should
not be disregarded in visualizations.

1.1.1 Sources of Uncertainty

Uncertainty can mean very different things in different situations, with each driven
by different key characteristics and goals. The uncertainty in a data set may re-
sult from the process through which the data was gathered or generated, or it may
represent variability in the phenomenon represented by the data. We divide data un-
certainty sources into three broad classes: uncertainty observed in sampled data, un-
certainty measures generated by models or simulations, and uncertainty introduced
by the data processing or visualization processes. Variability in the underlying phe-
nomenon could manifest itself in sampled data or be incorporated into models or
simulations. A particular data set might be subject to one form of uncertainty or
multiple. Different types of uncertainty offer different challenges to effective and
truthful visualization. While most of the visualization literature about uncertainty
concentrates on issues of visual representation rather than source, a few papers have
made a thoughtful analysis of the source of uncertainty, as well [9, 30, 75, 77, 101].
Other useful discussions of the sources of uncertainty can be found in the geo-spatial
visualization and GIS literatures [11, 19, 20, 63]. The discussion below draws from
all these sources.

1.1.1.1 Uncertainty in sampled data.

Uncertainty in data that is gathered through a sampling process might give the ap-
pearance of too little information, too much information, or information that just
cannot be trusted. Data sets where missing or incomplete instances provide too
little information present challenges to many visualization methods. Filtering out
data with missing elements can ignore valuable information and produce awkward
holes. Filling in missing values or instances by interpolation, imputation, or other
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Fig. 1.1 Sources of uncertainty. Both sampling and modeling uncertainties affect each other and
add to visualization uncertainties.

estimation techniques from known values can introduce error. In such cases, data
quality metrics might indicate the confidence in estimated quantities. For instance,
estimating a single missing data value from a dense set of similar instances would
be expected to produce a smaller error than an estimation from a sparser or more
disparate set. Data sets where multiple, contradictory measurements seem to pro-
vide too much data also offer challenges for visualization. Such situations can be
caused by noisy data, noisy instruments, human error in the data gathering process,
or sampling at a scale different than that natural to the phenomenon. One special
case of error in data measurements is that of spatial data where the error might be
in the position of a sampled location, rather than in its measured values, resulting
in uncertainty about where values should be displayed. Similarly, data with con-
tradictory values might be characterized by data quality metrics based on sample
value range, variance, or another measure of variability. Finally, metadata about a
data source may cast doubt on its certainty. For instance, data that is old, from an
untrusted source, or gathered through a nonstandard process might be regarded with
some skepticism.

1.1.1.2 Models containing uncertainty.

Sophisticated computational models may contain elements designed to estimate the
uncertainty or variability in the model predictions. The sources of this type of un-
certainty include residual variability from simplifying abstractions, variability in the
mechanism or magnitude of causality and relationships, potential error in model in-
puts, incorrect model parameters, and imprecision in tacit knowledge incorporated
in the model. The range of predictions made by model ensembles, where differ-
ent component models may make different assumptions or use different parameters,
illustrate the potential variability in even the best models.
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The output from such a model may include information about estimated error in
the form of a single error measure, ranges for expected values, or predicted distri-
butions for values or errors. These measures are applicable to numeric quantities.
Alternatively, a model that makes nominal or categorical predictions may also indi-
cate the degree of confidence in its predictions by producing multi-value predictions,
where each possible value or classification is associated with a likelihood.

1.1.1.3 Uncertainty from the visualization process.

Finally, we should understand how the visualization process impacts the propaga-
tion, magnification, perception, and impact of uncertainty. In order to do this, we
must understand computational sources and magnifiers of error and uncertainty in
input values, perceptual and cognitive influences on the understanding of uncer-
tainty visualization, effects of differences in audience abilities and cultures, require-
ments imposed by different application tasks and goals, and competing positive and
negative consequences of showing uncertainty.

1.2 Perceptual Uncertainty

Logically, it seems sensible to display information about uncertainty in a manner
consistent with our cognitive models of which perceptual elements contain vari-
ability or uncertainty. A number of approaches to uncertainty visualization seem to
build on this principle, representing uncertainty with such visual elements as blur,
flicker, reduced saturation, sketched outlines, or transparency.

There have been relatively few careful evaluations of the effectiveness of un-
certainty visualization and its impact on the decision-making process that have ap-
peared in the visualization literature. In some cases, researchers have used quan-
titative evaluations or user studies to evaluate the ability of subjects to understand
uncertain information [34, 112]. Zuk and Carpendale [114] present a framework for
the heuristic evaluation of uncertainty visualizations from the perceptual and cogni-
tive principles described by Bertin [6], Tufte [104], and Ware [108]. They use this
framework to analyze eight uncertainty visualizations of different types and from
different domains. They propose this sort of heuristic evaluation as a rough substi-
tute when more specific evaluations are not practical.

Additional insight into the perceptual and cognitive elements of effective un-
certainty representations can be found in the GIS literature. Harrower surveys a
collection of evaluations of methods for representing uncertainty in map-based vi-
sualizations [39]. He observes that the most common characteristics used to judge
a technique are its effects on confidence, speed, and accuracy of judgements. Two
principles which may be derived from that set of evaluations are the superiority of
displays that integrate value and certainty information over those that show each in
a separate display and the preference for static displays over those that toggle be-
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tween value and certainty. Deitrick describes experiments that show how inclusion
of information about uncertainty changes the judgements made by subjects [21].

The field of medical decision-making has also considered the role of uncer-
tainty in the decision-making process. Politi et al. studied the effect of commu-
nication of uncertainty on patients engaged in shared decision-making [81]. They
reported an aversion to ambiguity in this situation, leading some patients to avoid
making decisions in the presence of uncertainty while others engaged in additional
information-seeking behaviors. They observed interactions between level of edu-
cation and decision-making under uncertainty. In particular, less educated patients
were more likely to conclude that the inclusion of visual depictions of uncertainty
made data less trust-worthy. Patients also tended to interpret uncertain situations in
a way that reinforced their initial values and preferences. Finally, Politi et al. suggest
that communication of uncertainty may lead to greater ultimate satisfaction in the
decision process and a lower likelihood of regret about a decision.

There is evidence that decision-making in the presence of uncertainty takes place
in different regiogns of the brain than decision-making in more certain conditions.
Specifically, Paulus et al. observed different patterns of brain activity under fMRI
during different decision-making conditions [79]. They suggest that the more com-
plex task of decision-making under uncertainty requires more complex strategies
and is more influenced by experiences in the past. The physiological evidence sup-
ports this theory by showing increased involvement of brain areas important to strat-
egy formation and adjustment, in particular the prefrontal and parietal cortex, when
uncertainty is present.

1.3 Formal Description

The consideration and quantification of uncertainties is of great importance in many
practical applications and is part of the data analysis chain to support decision mak-
ing. For this reason, we need to understand the data including its shortcomings,
value, and relevance, which largely depends on the presence or absence of uncer-
tainty. Our goals are to understand quantified uncertainty and deal with it, as well as
independently perform uncertainty quantification ourselves.

1.3.1 What is Uncertainty?

Uncertainty is the lack of information. It can be due to randomness, such as results
by chance, for example the roll of the dice or knowing the exact daily quantity of
rain in Seattle. This type of uncertainty is called aleatoric and is objective in that
results differ each time an experiment is run. These types of phenomenon are truly
random in that the results depend on chance, and thus use probabilistic modeling
to describe. Uncertainty can also be due to a lack of knowledge, that is, knowledge
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that can in principle could be known, but in practice is not. This type of uncertainty
is called epistemic and is subjective, such as not knowing the birth date of the last
Chinese Emperor. These uncertainties are due to errors that practically cannot be
controlled and can be described by non-probabilistic modeling.

1.3.2 Mathematical Modeling of Uncertainty

A variety of types of uncertainties occur in practice, including mixtures. Quantifi-
cation of uncertainties, including mixtures, requires a unifying mathematical frame-
work, which is very difficult to establish and not yet fully accomplished.

1.3.2.1 Fundamental Setting

From a fundamental standpoint, we are interested in the situation with possible out-
comes or occurrences of “events” A,B,C, where A,B, and C are subsets of the set
of all elementary events in the universe. The task at hand is to then measure the
evidence that A ever happened, the degree of truth of that statement “event A hap-
pened”, and the probability that event A will happen. The question is then, how do
we measure and what is measurement?

In mathematics, measurement means to assign real numbers to sets. For exam-
ple, the classical task in metric geometry is to assign numbers to geometric objects
for length, area, or volume. The requirement in the measurement task is that the
assigned numbers should be invariant under displacement of the respective objects.

In ancient times, the act of measuring was equivalent to comparing with a stan-
dard unit. However, it soon became apparent that measurement was more compli-
cated than initially thought in that it involves finite processes and sets. The first tool
to deal with this problem was the Riemann integral which enabled the computation
of length, areas, and volumes for complex shapes (as well as other measures). How-
ever, the Riemann integral has a number of deficiencies, including its applicability
only to functions with a finite number of discontinuities, fundamental operations of
differentiation and integration are, in general, not reversible, and limit processes,
in general, can not be interchanged. In 1898, Emile Borel developed classical mea-
sure theory which includes o-algebra to define a class of sets that is closed under
set union of countably many sets and set complement, and defined as additive mea-
sure u that associates a number € R(J{ with each bounded subset in the c-algebra.
Around 1899-1902, Henry Lebesgue defined integrals based on a measure that sub-
sumes the Borel measure, based on a special case. He connected measures of sets
and measures of functions.
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1.3.2.2 Quantification

Probability measure was then developed in 1933 by Andrey Nikolaevich Kol-
mogorov, which used classical measure theory and added the measure of 1 assigned
to the universal set. This is thought of as classical probability theory.

The classical probability theory has since become the dominant approach to ex-
amine uncertainty and randomness. Extensive mathematical studies followed and
resulted in highly sophisticated theories. Its foundation rests on the definition of
probability space, which was Kolmogorov’s big achievement. A probability space
is a triplet (2, F, P). Here Q is a countable event space containing all possible out-
comes of a random event. F is the so-called c-algebra of 2 and it represents all
combinations of the outcomes from 2. Its construction satisfies:

e Itisnotempty: 0 € Fand 2 € F.
e IfasetA € F, then its complement A° € F'.
o Ifsets Aj,Az,...,€ F,then U2 A; € F,and (i, A; € F.

P is the well known probability measure and it is used to assign a real number, i.e.,
the probability, on the occurrence of any outcomes of the events (from ) and their
potential combinations (from F). It satisfies the following important and well known
principles.

1. 0<P(A)<1,foranyA €F.
2. P(Q) = 1. That is, the probabilities of all outcomes add up to one.
3. ForAj,A;,---€ Fand A;NA; =0, for any i # j,

(u) S
i=1 =

About 50 years later, the additivity requirement became a subject of controversy
in that it was too restrictive to capture the full scope of measurement. For example,
it works well under idealized, error-free measurements, but is not adequate when
measurement errors are unavoidable. In 1954, Gustave Choquet developed a (po-
tentially infinite) family of non-additive measures (capacities), and for each given
capacity, there exists a dual “alternating capacity”. An integral based on these mea-
sures is non-additive, can be computed using Riemann or Lebesgue integration and
is applied specifically to membership functions and capacities.

In 1967, Arthur P. Dempster introduced imprecise probabilities based on the mo-
tivation that the precision required in classical probability is not realistic in many
applications. Imprecise probabilities deal with convex sets of probability measures
rather than single measures. For each given convex set of probability measures he
also introduced 2 types of a non-additive measures: lower and upper probabilities,
and super- and supra-additive. This allow probabilities to be represented imprecisely
by intervals of real numbers.

In 1976, Glenn Shafer analyzed special types of lower and upper probabilities
and call then belief and plausibility measures. The theory based on these measures
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became known as Dempster-Shafer theory (DST) or evidence theory. DST is ca-
pable of dealing with interval-based probabilities, such that belief or probability
measures are equal to the ranges of admissible probabilities. As it turns out, belief
measures are equivalent to Choquet capacities of order inf and plausibility measures
are equivalent to alternating capacities of order inf.

The comparison of membership functions of fuzzy sets and probabilities was
investigated in 1978 by Michio Sugeno and found to be not directly possible. This
lead to the generalization of additive measures analogous to generalization such that
crisp sets generalize to fuzzy set, and additive measures generalize to (non-additive)
fuzzy measures or monotone measures. The Sugeno integral was then introduced
with respect to a monotone measure. That same year, Lofti Zadeh defined a pos-
sibility function associated with each fuzzy set that is numerically a membership
function, and a possibility measure that is a supremum of the possibility function in
each set of concern, for both crisp and fuzzy sets. This is one of several interpreta-
tions of the “theory of graded possibilities”. Its connection to DST is that constant
plausibility measures are equivalent to possibility measures and constant belief mea-
sures are necessity measures.

In summary, the three most utilized uncertainty theories are the Classical Prob-
ability Theory, the Dempster-Shafer Theory, and Possibility Theory and can be di-
vided into two classes. The first class uses additive measures in which the addition
equal to the union expresses no interaction between events and can be thought of
a classical probability combined with measure theory. The second class uses non-
additive measures, in which addition greater than the union expresses positive in-
teraction between events, such as synergy, cooperation, coalition, enhancement or
amplification, while addition less then the union expresses negative interaction be-
tween events such as incompatibility, rivalry, inhibition, downgrading, or condensa-
tion. This class combines one of many uncertainty theories with generalized mea-
sure theory.

1.4 evaluation

Visualization research is too often neglected by industry and other potential expert
users. One of the reasons is the lack of a proper evaluation of the results. This lack
of evaluation was especially obvious in historical visualization fields such as vol-
ume rendering or fluid flow visualization. In the more recent domain of uncertainty
visualization, researchers have made a significant effort into the assessment of the
proposed techniques. The types of evaluation may be classified into three groups:

e Theoretical evaluation: the method is analyzed to see if it follows established
graphical design principles,

e Low-level visual evaluation: a psychometric visual user study is performed to
evaluate low-level visual effects of the method,

e Task oriented user study: a cognitive, task-based user study is conducted to
assess the efficiency or the usability of the method.
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1.4.1 Theoretical Evaluation

General guidelines and rules regarding visual depiction of data have been estab-
lished, that have proven their efficiency. Bertin in [5], later translated in [6], has
introduced the concept of visual variables. These include among others the loca-
tion, size, orientation, shape, focus and realism. Furthermore he defined four visual
properties, natural ordering, the ability to quantify, the ability to focus user attention
(selectivity) and the ability to associate similar elements (associativity). He studied
which of these properties are verified by the visual variables. Tufte in [105], through
his concepts of graphical excellence and integrity, has proposed a number of guide-
lines to enhance the precision and the usability of graphical depiction. Chambers
and co-authors in [14] have studied the relative influence of specific patterns on the
visual perception, for example straight lines versus curves, dark versus light objects
or small versus large patterns. This study leads the authors to define general rules
for plot construction.

These graphical design principles may be used to conduct a theoretical evaluation
of new uncertainty visualization techniques. As already mentioned in Section 1.2,
Zuk and Carpendale in [114] have done such an evaluation for eight uncertainty
visualization techniques. The same type of theoretical evaluation was followed by
Riveiro in [90] to evaluate three uncertainty visualization techniques in the context
of information fusion and decision making.

1.4.2 Low-level Visual Evaluation

Barthelmé in [2] studied the influence on noise uncertainty in a decision-making
task. Based on psychometric and simple task experiments, he proved that users can
reliably measure the visual uncertainty and use this information in their decision-
making. Coninx in [18] conducted psychometric experiments to measure the impact
of contrast sensitivity on the visibility of uncertain noisy patterns. He used this in-
formation in order to control the visibility of uncertainty data in a visualization
technique based on the perturbation of colormaps by Perlin noise.

1.4.3 Task-oriented User Study

Task oriented cognitive user studies are by far the most common way of assessing
the efficiency and usability of uncertainty visualization techniques. In this type of
evaluation a panel of users is typically asked to perform a task that requires not
only low-level visual processing but also high-level cognitive treatment of the visual
information. Standard tasks as an example may consist in counting the number of
local minima in a dataset, find the location of the maximum or minimum value,
find the direction of rotation of a vortex. The task completion time, task completion
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accuracy, user’s rating of efficiency and usability may be recorded. A statistical
analysis of the recorded data is done. Typical analyses include analysis of variance
(ANOVA), used to check in particular if the difference in the mean value of two
distributions is significant. Examples of uncertainty visualization papers with a task-
based evaluation include [20, 21, 70, 94].

1.5 Review of Current State of the Art

The goal of visualization is to effectively present large amounts of information in
a comprehensible manner, however, most visualizations lack indications of uncer-
tainty [43, 44, 64, 86].

1.5.1 Traditional Representations

Tukey [106] proposed graphical techniques to summarize and convey interesting
characteristics of a data set not only to facilitate an understanding of the given data
but also to further investigation and hypothesis testing. These tested graphical meth-
ods, such as the boxplot, histogram, and scatter plot, provide identifiable represen-
tations of a data distribution, and their simplicity allows for quick recognition of
important features and comparison of data sets. In addition, they can be substituted
for the actual display of data, specifically when data sets are too large to plot effi-
ciently.

1.5.1.1 1D

Extrema 3 ° °
Maximum |

Upper
Quartile

2
ot {\ [}

Lower
Quartile

Minimum

a) b) o} d) e) f 9

Fig. 1.2 Variations of the boxplot. a) The construction of the boxplot [106] b) Range plot [97] c)
Innerquartile plot [105] d) Histplot [4] e) Vaseplot [4] f) Box-percentile plot [26] g) Violin plot [40]
h) Variable width notched boxplot [68] i) Skewplot [16] j) Summary plot [85]
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One of the most ubiquitous approaches to displaying uncertainty information is
the boxplot [28, 35, 97, 106], which is the standard technique for presenting the
five-number summary, consisting of the minimum and maximum range values, the
upper and lower quartiles, and the median, as illustrated in Figure 1.2 a). This col-
lection of values quickly summarizes the distribution of a data set, including range
and expected value, and provides a straightforward way to compare data sets. In
addition, the reduced representation afforded by the five-number summary provides
a concise tool for data analysis, since only these characteristic values need to be
analyzed. Figure 1.2 b and ¢ show visual modifications of the boxplot. Surveys on
the introduction and evolution of the boxplot can be found in [16, 84].

The box plot is often adapted to include information about the underlying dis-
tribution, as demonstrated in Figure 1.2(d-g). The most common modification adds
density information, typically through changes to the sides of the plot. The hist
plot [4] extends the width of the cross bars at the quartiles and median to express
density at these three locations. The vase plot [4] instead varies the “box” contin-
uously to reflect the density at each point in the innerquartile range. Similarly, the
box-percentile plot [26] and violin plot [40] show density information for the entire
range of the data set. Density can also be shown by adding dot plots [109], which
graph data samples using a circular symbol. The sectioned density plot [17] com-
pletely reconstructs the box plot by creating rectangles whose colors and size indi-
cate cumulative density, and placement express the location of the quartiles. Sample
size and confidence levels can be expressed through changing or notching the width
of the plot [68] (Figure 1.2, h) or by using dot-box plots, which overlay dot plots
onto box plots [110]. Other descriptors, such as skew and modality, can be added
by modifying the width of the median line [68], thickening the quartile lines [16],
(Figure 1.2, 1) adding beam and fulcrum displays [23] alongside, or overlaying ad-
ditional glyphs [85] (Figure 1.2, j).

1.5.1.2 2D

a) Rangefinder Boxplot b) 2D Boxplot ) Bagplot d) Quel- (gray) and Rel- (black) plots

Fig. 1.3 Bivariate extensions of the boxplot. (a) The rangefinder boxplot [3]. (b) The 2D box-
plot [102]. (c) The bagplot [91]. (d) The quel- and relplots [33]

Standard implementations of the boxplot focus on univariate data distributions.
The five-number summary is a useful descriptor of not only univariate, but also
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bivariate data distributions. The main challenge in extending the boxplot for use
with higher dimensional data is how to translate the five-number summary values,
which are vector values in the bivariate case, into visual metaphors with meaning-
ful spatial positions, while maintaining the simplicity of the original boxplot. A
rangefinder boxplot [3], as seen as the solid back lines in Figure 1.3(a), is a simple
extension of the boxplot into 2D which determines boxplots for the two dimensions
independently and draws lines to show the interquartile ranges and extrema of those
plots. This idea was further improved upon, as shown as the thick gray lines in Fig-
ure 1.3(a), to emphasize the quartiles rather than the range, by moving the perpen-
dicular lines from the extrema values to the upper and lower quartile positions and
extending whisker lines to the extrema value of the variables [54]. Other techniques
for extending the boxplot into 2D all use the notion of a hinge that encompasses
50% of the data and a fence that separates the central data from potential outliers.
The distinctions between each of these methods are the way the contour of the hinge
and fence are represented, and the methods used to calculate the contours. The 2D
boxplot [102], as seen in Figure 1.3(b), computes a robust line through the data by
dividing the data into three partitions, finding the median value of the two outer par-
titions, and using these points as the line. Depending on the relationship between
the slope of the line and each variable, the quartile and fence lines are drawn either
parallel to the robust line, or parallel to the variables coordinate axis. The lines not
comprising the outer-fence and the inner-hinge boxes are removed. The bagplot [91]
uses the concept of halfspace depth to construct a bivariate version of the boxplot,
as seen in Figure 1.3(c). The relplot and the quelplot [33] use concentric ellipses to
delineate between the hinge and fence regions. Both the relplot and quelplot can be
seen in Figure 1.3(d).

1.5.1.3 PDFs

There is a body of research investigating methods for displaying probability distribu-
tion functions with spatial positions. Each of these methods takes an exploratory ap-
proach to the presentation of the data by filtering down the amount of data, and then
providing a user interface for the scientist to explore the data sets. Ehlschlaeger et
al. [25] present a method to smoothly animate between realizations of surface eleva-
tion. Bordoloi et al. [7] use clustering techniques to reduce the amount of data, while
providing ways to find features of the data sets such as outliers. Streamlines and vol-
ume rendering have been used by Luo et al. [62] to show distributions mapped over
two or three dimensions.

Kao (2002) [49] uses a slicing approach to show spatially varying distribution
data. This approach is interesting in that a colormapped plane shows the mean of
the PDFs, and cutting planes along two edges allow for the interactive exploration
of the distributions. Displaced surfaces as well as isosurfaces are used to enhance
the understanding of the density of the PDFs.

Case studies of specific data have been performed by Kao [47, 48]. Their data
sets come from NASAs Earth Observing System (EOS) Satellite images and Light
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Detection And Ranging (LIDAR) data. The methods used to show this data include
encoding the mean as a 2D color map, and using standard deviation as a displace-
ment value. Histograms are also employed to understand better the density of the
PDFs. To explore the mode of specific distributions, a small set of PDFs are plotted
onto a color mapped spatial surface.

1.5.2 Uncertainty Visualization

Many visualization techniques that incorporate uncertainty information treat uncer-
tainty like an unknown or fuzzy quantity; [78] is a survey of such techniques. These
methods employ the meaning of the word uncertainty to create the interpretation
of uncertainty or unknown to indicate areas in a visualization with less confidence,
greater error, or high variation. Ironically, while blurring or fuzzing a visualization
accurately indicates the lowered confidence in that data, it does not lead to more in-
formed decision making. On the contrary, it obfuscates the information that leads to
the measure of uncertainty. Because it obscures rather than elucidates the quantita-
tive measures leading to the uncertain classification, such a solution to the problem
of adding qualitative information to visualization misses important information.

1.5.2.1 Comparison Techniques

Often, uncertainty describes a comparison that can most clearly be understood visu-
ally, such as the difference between surfaces generated using different techniques, or
arange of values that a surface might fall in. A simple approach to the visualization
of this type of information is a side-by-side comparison of data sets. And example
of this type of visualization is presented in Jiao et al [42] use where streamlines
computed from various fiber tracking algorithms are interactively displayed along
with the global and local difference measures. Another example is the time win-
dow, presented in [115], in which temporal uncertainty around archeological sites
is displayed, using various visual clues, in an interactive, exploratory system.
However, this approach may not clearly manifest subtle differences when the
data are nearly the same, and it becomes harder to perform this comparison as the
visualization becomes more complicated. Another simple approach is to overlay the
data to be compared [46]. With this technique, the addition of transparency or wire
frame can produce a concise, direct comparison of the data sets. A similar approach
uses difference images to display areas of variation [111]. These approaches are
less effective, however, when the uncertainty can be categorized as more of a range
of values rather than just two distinct ones. In such cases, a surface sweep, known
as a fat surface [78], can be used to indicate all possible values. Another approach
is the integration of isosurface and volume rendering. Here, an opaque isosurface
can be used to indicate the most likely value, and a transparent volume rendering
surrounding the isosurface can indicate the range of possible values [44]. Uncer-
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tainty information for large collections of aggregated data can be presented using
hierarchical parallel coordinates [29]. Lee et al [53] visualize differences in location
and sub-tree structure between two hierarchies through color and transparency. Fi-
nally, bounded uncertainty, while not effectively visualized in 3D, can be expressed
through the ambiguation of boundaries and edges of pie charts, error bars, and other
2D abstract graphs [71] or as modifications to line charts [99].

1.5.2.2 Attribute Modification

Another standard method to visualize uncertainty involves mapping it to free vari-
ables in the rendering equation or modifying the visual attributes of the data. Such
methods include modifying the bidirectional reflectance function (BRDF) to change
surface reflectance, mapping uncertainty to color or opacity [66, 94, 100], or pseudo-
coloring using a look-up table [78]. This technique has been used as a means for con-
veying uncertainty in the areas of volume rendering [22, 52, 92], point cloud surface
data [80], isosurfacing [46, 82, 83, 89] and flow fields[8], and is often combined with
other uncertainty visualization methods. An example technique colormaps flowline
curvature onto volume rendered surfaces, highlighting areas in which small changes
in isovalue lead to large changes in isosurface orientation and thus indicating areas
where the isosurface is a poor representation of material boundary [50]. Another ex-
ample uses height as free parameter to display uncertainty in 2D vector fields [73].
Texture can be used similarly to convey uncertainty and is also often modified by
opacity, hue, or texture irregularities [18, 41, 76]. Sound has also been used as an-
other channel for expressing uncertainty [59].

1.5.2.3 Glyphs

Glyphs are symbols used in visualization to signify data through parameters such
as location, size, shape, orientation, and color. Because of the multivariate nature
of glyphs, they can be used in visualization to map uncertainty to a free parameter.
One such approach uses glyphs to present the distribution of multivariate aggregated
data over a range of values [15]. These glyphs show the average, standard deviation,
and distribution of three attributes of the data set. Conical glyphs have also been
used to portray fiber tracks from DTI, leveraging the radius of the cone to encode
uncertainty in the orientation of bundles [45].

An approach that modifies attributes of glyphs already present in the visualiza-
tion is presented as a procedural generation algorithm [13]. In this work, the data
is sampled on a regular grid and the size, color, and placement of glyphs are taken
directly from the data samples. The uncertainty is then used to distort the glyphs so
that glyphs with low uncertainty are very sharp, with the sharpness level decreasing
as the uncertainty level increases. This distortion provides a clear indication of un-
certainty and error while not placing heavy emphasis on areas of high uncertainty. In
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a similar fashion, contours already present in the visualization can be used [87, 88]
or modified [72, 95] to express uncertainty.

Because not all data is visualized effectively using glyphs, the addition of glyphs
to convey only uncertainty information is often a preferable approach. A specific
example is the UISURF system [46], which visually compares isosurfaces and the
algorithms used to generate them. In this system, glyphs are used to express posi-
tional and volumetric differences between isosurfaces by encoding the magnitude of
the differences in the size of the glyphs. Similarly, line, arrow, and ellipsoidal glyphs
can be used to depict uncertainty in radiosity solutions, interpolation schemes, vec-
tor fields, flow solvers, astrophysical data and animations through variation of place-
ment, magnitude, radii, and orientation [55, 56, 58, 78, 94, 96, 112, 113, 116].

1.5.2.4 Image Discontinuity

Uncertainty visualization often relies on the human visual systems ability to quickly
pick up an images discontinuities and to interpret these discontinuities as areas with
distinct data characteristics. Techniques that utilize discontinuities rely on surface
roughness, blurring, oscillations [13, 34, 57, 111], depth shaded holes, noise, and
texture [22], as well as on the translation, scaling, rotation, warping, and distortion
of geometry already used to visualize the data [78], to visualize uncertainty. An-
imation can highlight the regions of distortion or blur or highlight differences in
visualization parameters [31, 61, 67]. Such techniques have been applied to multi-
varitate data displayed through scatter plots or parallel coordinates [27, 37].

1.6 Examples

1.6.1 Medical Visualization

A fundamental task in medical visualization is segmentation, the partitioning of a
given image into regions that correspond to different materials, to different anatom-
ical structures, or to tumors and other pathologies. Medical image acquisition typ-
ically introduces noise and artifacts, and we may wish to segment structures for
which the data itself provides little contrast. This is a source of data uncertainty. In
many cases, segmentation also involves complex computational models and numer-
ous parameters, which introduces model uncertainty.

Traditional volume rendering classifies materials based on scalar intensity or fea-
ture vectors that account for first and second derivatives [51]. Lundstrom et al. [61]
introduce probabilistic transfer functions that assign material probabilities to model
cases in which the feature ranges of different materials overlap. This results in a dis-
tribution of materials at each location in space, which is visualized by an animation
in which each material is shown for a duration that is proportional to its probability.
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More complex segmentation tasks cannot be achieved based on local image prop-
erties alone. They require models that account for more global assumptions or more
complex prior knowledge. Such models are also more computationally demanding
and are typically run as a pre-process of the visualization. Some of them output
class probabilities, from which Kniss et al. [52] derive measures that can be used to
define transfer functions that enable exploring the risk associated with binary clas-
sifications, or to visualize spatial decision boundaries. Figure 1.4 shows the use of
such transfer functions in a visualization of a segmented brain.

Fig. 1.4 A visualization of the brain using transfer functions that express the risk associated with
classification.

The framework of Saad et al. [93] combines volume rendering with tables that
list groups of voxels for which the same materials have been found to be most, sec-
ond most, and third most likely. They demonstrate several examples in which these
tuples can be used to detect anomalous subregions within areas that share the most
likely material. Follow-up work [92] has concentrated on identifying anomalies or
misclassification by considering regions in which the image-based likelihood dis-
agrees with shape and appearance priors.

Finally, work by Torsney-Weir et al. [103] addresses the model uncertainty in
segmentation methods by providing a systematic framework to explore the impact
of model parameters. This should facilitate finding settings that produce the desired
segmentation, and for which the results do not change significantly when slightly
changing the exact parameter values.
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Fiber tracking, the reconstruction of nerve fiber bundles from diffusion MRI, is
another subfield of medical visualization in which uncertainty plays an important
role. It is treated in detail in Chapter 8 of this book.

1.6.2 Weather and Climate

Short-Term Reference (SREF) Ensemble Forecast Explo
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Fig. 1.5 The EnsembleVis tool [87] for exploring short-range weather forecast data.

Uncertainties are prolific in weather and climate applications and arise not only
from insufficient models, but also from our inability to accurately measure current
weather conditions and obtain precise knowledge on parameter settings. The typi-
cal approach for mitigating uncertainties in weather and climate applications is to
perform multi-run simulations, often using a collection of models, parameter per-
turbations, and initial conditions to generate outcome results for multiple variables
and time steps. While the variables contained in the output of both weather and cli-
mate simulations are similar, the main differences between the two domains are the
spatial region of interest and the duration of time covered. Weather applications are
typically only interested in a small subsection of the planet, such as North America,
and run to cover time steps within the near future. In contrast, climate modeling has
a spatial interest of the whole planet and is run over hundreds of years.

The uncertainty resulting from these multi-run simulations are typically captured
in what is know as “Ensemble data sets”. These ensembles combine the multiple
runs such that notions of probability of outcome can be explored. An ensemble
consists of multiple simulation realizations and are often generated by pre-defined
parameter perturbations. The visualization and analysis of these data sets aims to
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understand variations between models and effects of parameters and initial condi-
tions, culminating in an understanding of the phenomenon leading to weather and
climate events.

An example of a visualization and analysis tool can be seen in Figure 1.5, which
shows a screen shot of the EnsembleVis framework for the exploration of short-
range weather forecasting data [87]. This tool uses a multiwindow approach to pro-
vide a collection of views for the end user, an approach used by other tools [95]. This
approach allows the user to see overviews of a single time step, the progression of
the data over time, drill downs to explore interesting spatial locations, including
direct data display, and finally query-based exploration for more complex analyses.

1.6.3 Security and Intelligence

Security and intelligence uncertainty factors are a natural fit for security visualiza-
tion, where making well-informed decisions is the primary goal. Enforcing security
has become a top priority among a wide range of real-life applications, for instance
large corporate or government/military networks. However, the task of decision
making is notoriously difficult due to the malicious, hidden nature of attacks, sparse
sampling of real-time environment, and time-critical requirements. Therefore, in se-
curity analysis uncertainty often exists among decisions at all levels, ranging from
global scale such as “is there any malicious activity? to finer scale such as which en-
tities are malicious?” or “in what order did these events actually occur?”. The results
of these decisions are used to make recommendations which can have significant
operational impact, as nodes identified as malicious will be quarantined or removed
from the network. Previously, both automated attack mitigation and interactive visu-
alization approaches have been developed for security visualization. These existing
techniques serve as a good platform for the integration of uncertainty visualizations
and interactions. For example, several visual abstractions have been explored for
detecting the sybil attack, which is a coordinated attack that can subvert many types
of networks [24]. Sybil attacks are challenging to detect due to their variable attack
forms and patterns. Because of this, traditional signature-based or behavior-based
methods are ineffective, and security analysts must often find these nodes through
manual analysis of their network. Visual abstractions from both adjacency matrix
of the network connections [60] and spectral space [38] are explored, which can
elucidate the signature patterns of an attack and apply automatic pattern matching
algorithms or interactive analysis methods to search for similar patterns. As the short
paper (Incorporating Uncertainty in Intrusion Detection to Enhance Decision Mak-
ing) in this chapter describes, the factors of uncertainty can be introduced to existing
detection mechanisms to improve the continuing analytic process. Since uncertainty
is prevalent in security applications, the impact of uncertainty should be integrated
into the entire procedure of data analysis and interactive exploration. Many current
security visualization approaches can and should be augmented with interactions
and visualizations for specifying and managing analytic uncertainty. By integrating
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analytic uncertainty in security visualization, analysts are able to better-informed
decisions regarding critical network infrastructure issues.

1.7 Open Problems

1.7.1 Perceptual and Cognitive Implications

Since visualization often relies heavily on the use of colors to convey information,
it can be quite challenging for individuals with color vision deficiency. For them,
even interpreting visualizations that would pose no problems for individuals with
normal color vision can be a difficult task. In this case, however, the resulting ambi-
guity, and therefore, uncertainty, is inherent to the observer, falling outside the broad
sources of uncertainty discussed in Section 1.1.1 (i.e., uncertainty observed in sam-
pled data, uncertainty measures generated by models or simulations, and uncertainty
introduced by the data processing or visualization processes). Thus, individuals with
color vision deficiency have to constantly deal with uncertainty visualizations and
make decisions based on ambiguous information. For those individuals, the dis-
play of additional data that tries to express the amount of uncertainty from various
sources may even generate further ambiguities. The issues involving uncertainty
visualization and color vision deficiency are discussed in Chapter 2.

1.7.2 Comparative Visualizations

The visualization of uncertainty may involve a comparison of different results, such
as a weather forecast generated with different parameters. To detect similarities or
differences in the results a comparative visualization technique [74] can be em-
ployed. In 3D a visualization via fusion [10, 12] is not feasible beyond a small
number (2 or 3) of data sets, due to clutter and inter-dependence of the different
data sets. An alternative to fusion is a side-by-side view of the data sets. This may
be problematic in 3D since it is hard to find corresponding reference points in more
than two volumes. As an example to control a 3D comparison Balabanian et al. [1]
propose to integrate volume visualization into a hierarchical graph structure. These
integrated views provide an interactive side-by-side display of different volumes
while the parameter space can be explored through the graph structure. In 2D a
blending of different results has basically the same issues as a fusion in 3D [36, 32].
There are techniques which allow a comparative visualization of different data sets
in a single image. Urness et al. [107] introduced color weaving for flow visualization
to compare different flow fields in a single 2D view. In contrast to blending, each
pixel of the resulting image represents an unmodified value from one of the data
sets. The generated pattern provides a good overview to detect similar or varying
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regions in the data sets. To compare certain regions in more detail, e.g., borders, it
is better to consider larger comparison areas than individual pixels. In this context it
is crucial that data sets which should be compared are visualized next to each other
to get a direct comparison for a certain area. For only two data sets a checkerboard
pattern can be used to achieve screen door transparency [98]. The white squares
show one data set and the black squares show the other data set. The attribute block
by Miller [69] allows a simultaneous comparison of four data sets. A repeating 2x2
pattern provides a shared border between all four data sets. An extension to this ap-
proach is the comparative visualization technique of Malik et al. [65]. Instead of a
rectangular pattern a hexagonal pattern is used to more finely subdivide the image
space. This allows the comparison of a larger number of data sets to one central data
set since the hexagonal pattern can be subdivided according to the number of data
sets to compare. Uncertainty of a measurement, simulation, or process provides an
additional data stream which generates further visualization challenges. Uncertainty
may be shown at discrete positions through glyphs or icons. For a dense represen-
tation of uncertainty, comparative visualization seems to be a promising emerging
area. Topics of research will be: integrated views; sparsification of many data sets
which shall be shown simultaneously; comparative navigation; visualization of com-
peting, contradictive, or conflicting features.
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